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Large-scale bulk motions complicate the Hubble diagram
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We investigate the extent to which correlated distortions of the luminosity distance-redshift relation due
to large-scale bulk flows limit the precision with which cosmological parameters can be measured. In
particular, peculiar velocities of type 1a supernovae at low redshifts, z < 0:2, may prevent a sufficient
calibration of the Hubble diagram necessary to measure the dark energy equation of state to better than
10%, and diminish the resolution of the equation of state time-derivative projected for planned surveys.
We consider similar distortions of the angular-diameter distance, as well as the Hubble constant. We show
that the measurement of correlations in the large-scale bulk flow at low redshifts using these distance
indicators may be possible with a cumulative signal-to-noise ratio of order 7 in a survey of 300 type 1a
supernovae spread over 20 000 square degrees.
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I. INTRODUCTION

The challenge to discover the nature of dark energy is
pushing all methods and measures of cosmology to their
limits. The luminosity distances to type 1a supernovae
(SNe) which first revealed the cosmic acceleration [1–3],
are now being pursued to obtain tighter constraints on
cosmological model parameters [4–7]. Observational pro-
grams, such as the Supernova Legacy Survey [8], the
Supernova Factory [9], Essence [10], the Carnegie
Supernova Project [11], in addition to ongoing efforts by
existing groups, are currently underway, hoping to achieve
�10% constraints on the dark energy equation of state
parameter. In order to decisively advance our understand-
ing, and test for a possible time-evolution of the dark
energy, a dedicated space-based mission is planned as
part of the NASA/DOE Joint Dark Energy Mission
(JDEM).

The luminosity distance-redshift relation, however, has a
basic limitation as a tool for cosmology in an inhomoge-
neous universe. Large-scale structures distort the distances
and redshifts. It is well known that peculiar velocities of
SNe induced by the internal properties of host galaxies and
clusters contribute a random component to distance esti-
mates. Assuming the underlying cosmology is known,
these peculiar velocities can be used to both determine a
reference frame of the large-scale structure as well as map
the mass distribution of the local universe. (See
Refs. [12,13], as well as the recent Refs. [14,15] for
more recent analysis.) In the case of cosmological mea-
surements in the Hubble diagram, peculiar velocities act as
a source of noise and it is generally assumed that velocity-
induced errors can be reduced by averaging over many
SNe.

Furthermore, gravitational lensing of SN light reduces
the accuracy with which the true luminosity distance can
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be determined for an individual SN [16–19], thereby com-
plicating an easy interpretation of the Hubble diagram. The
effect comes from the slight modification of the observed
SN flux due to lensing by the intervening large-scale
structure [20–23]. Since the intervening mass distribution
is spatially correlated, as characterized by the dark matter
and baryonic mass power spectrum, the lensing distortion
of luminosity distances to SNe along different lines-of-
sight is also correlated. Typically, this correlation peaks for
lines-of-sight with arcminute angular separations, but dis-
tances to SNe at large angular separations will also suffer a
few percent correlation. The net result will be an increase
in noise, and therefore an increase in the errors on cosmo-
logical parameters extracted from the SN Hubble diagram.
The lensing effect generally argues against use of survey
geometries in the form of ‘‘pencil beams’’ or small areas on
the sky as well as surveys that are long in one direction, but
narrow in the other [24].

Our primary concern in this paper is large-scale bulk
flows [25], peculiar motions that are coherent on scales
above �60 Mpc, which correlate individual SN distance
estimates spread over ten or more degrees angular scale. In
this case the effect comes from the slight Doppler shifting
of both the source and observer, affecting both the inferred
redshift and the flux, resulting in a nonlinear correction to
the luminosity distance. This correlated noise cannot be
reduced simply by increasing the sample size and is ex-
pected to affect the error budget from low to intermediate
redshifts (z < 0:2). Because the Hubble diagram at these
low redshifts must be pinned down accurately in order that
we may hope to find a possible time variation in the dark
energy equation of state [26,27], it follows that accounting
for bulk motions is a necessity.

Fluctuations and anisotropies in luminosity distance
have been studied previously, with most of the focus on
formalism [28,29] and the role of gravitational lensing (e.g.
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[30]). The attention has only recently expanded to include
peculiar motions [31]. Our intention is to examine the
consequences of correlated distortions of luminosity dis-
tances due to bulk motions for the interpretation of the
Hubble diagram and efforts to extract cosmological infor-
mation about dark energy. Turning the problem around, we
will also examine whether low-redshift SNe can provide a
way to measure large-scale bulk flows.
II. CALCULATIONAL METHOD

In order to quantify these statements, we will first sum-
marize the errors induced by peculiar velocity fluctuations.
The effect resulting from velocities involve two differ-
ences: first, the inferred redshift is modified by the differ-
ence in the velocity of the source relative to the observer,
projected along the line-of-sight; second, the motion at the
observer leads to a dipole correction to the distance. In
combination, we obtain (see, Ref. [28] for details including
their equation 3.15; also [29,31]):

�dL
dL
� n̂ �

�
vSNe �

a
a0�
�vSNe � vobs�

�
; (1)

where n̂ is the unit vector along the line-of-sight, vSNe is the
SN velocity, vobs is the velocity of the observer, � is the
comoving radial distance to the SN, and the prime denotes
the derivative with respect to the conformal time. Unless
otherwise stated, here and throughout, we take a unit
system in which c � 1. The covariance matrix of errors
in luminosity distance is

Cov ij � �2
int�zi��ij � C

vv�zi; zj; �ij�; (2)

where �2
int�zi� is the variance term that affects each dis-

tance individually (e.g. due to random velocities, or the
intrinsic uncertainty in the calibration of SN light curves).
While in practice this error is different from one SNe to
another, in our calculations we ignore such complications
arising from survey parameters and assume the same nu-
merical value for variance. Cvv�zi; zj; �ij� is defined as the
correlation of the errors in two luminosity distance esti-
mates in the SN Hubble diagram, for SNe at redshifts zi
and zj and a projected angular separation of �ij on the sky,
due to the modification of the luminosity distance by
peculiar velocities.

Equation (2) defines the full covariance matrix due to
peculiar velocities. The covariance in luminosity distance
errors can be computed, following Refs. [32,33], whereby
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(3)
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with Fl � �l� 1�!!=
2l=2�l=2�!� cosl�=2, and the summa-
tion is over even values of l. We assume that SNe are point
sources that trace the linear velocity field, but if there is a
velocity bias, then the correlations could be enhanced
(unless SNe are underbias with respect to the peculiar
velocity field with a velocity bias factor less than unity).
Note that Pvv�k; zi; zj� is the power spectrum of velocity
fluctuations between redshifts zi and zj respectively, which
can be written as

Pvv�k; zi; zj� � D0�zi�D0�zj�Pmm�k�=k2; (4)

where Pmm is the mass fluctuation power spectrum andD is
the mass growth factor. This form only accounts for linear
fluctuations at large scales. The variance related to velocity
fluctuations can be obtained in the limit where zi � zj and
�ij ! 0. We additionally included nonlinear velocities,
corresponding to internal motions of SNe within halos
such as groups and clusters, and found that these also do
not affect error estimates. This is due to the fact that the
velocity-induced variance is smaller than the intrinsic er-
ror, �2

int. The effect on the Hubble diagram, however, is not
negligible since correlations between errors are dominated
by the large-scale bulk flows at low redshifts.

In Fig. 1(a), we show the luminosity distance covariance
Cvv�zi; zj; �ij� with equal redshifts and also with zi � 0:2
for different values of zj, as a function of the separation
angle �ij. In Fig. 1(b) we show the covariance as a function
of z � zi � zj for several illustrative values of �ij. For
reference, we also plot the variance due to gravitational
lensing (with �ij � 0) as a function of redshift z and
compare it to an intrinsic SN magnitude error of �m �
0:1, which is the expected level to which SN light curves
may be calibrated in upcoming searches. We note that the
recent Supernova Legacy Survey (SNLS) has reached an
average intrinsic error of 0.12 (in magnitudes) [7]. Peculiar
velocities are a concern for SNe separated by angular
scales of tens or more square degrees as seen in Fig. 1(a),
and at low redshifts, z & 0:2, as seen in Fig. 1(b).

To determine the impact on cosmological parameter
estimates, we compute the Fisher information matrix

F �� �
X
ij

@dL�zi�
@p�

�Cov�1�ij
@dL�zj�

@p�
: (5)

If the errors are uncorrelated in the Hubble diagram,
then the final error on a given cosmological parameter
obtained by model fitting is proportional to �int=

�����������
N�zi�

p
.

But in the case that there are correlations between
data points due to bulk flows, the final error is close

to �int

�������������������������������������
1� 
N�zi� � 1�r2

p
=
�����������
N�zi�

p
where r �

Cov�i; j�=
��������������������������
Var�i�Var�j�

p
is the average correlation between

data points. The limit r! 0 corresponds to the case of
uncorrelated errors, but in the limit of perfect correlation,
r! 1, the error remains as �int with no improvement from
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FIG. 1 (color online). Correlations in luminosity distance er-
rors due to peculiar velocities, Cvv�z1; z2; ��, as a function of two
SN redshifts, z1 and z2 and their projected angular separation �.
On the left, in panel (a), we consider the correlations as a
function of � when z � z1 � z2 and also with z1 fixed at 0.2
with z2 varied. On the right, in panel (b) we consider the
correlations as a function of redshift, with z1 � z2, for variety
of illustrative � values. The horizontal line shows the intrinsic
SN measurement error corresponding to �m � 0:1. Peculiar
velocities correlate SNe separated at 10 to 100 square degrees
on the sky at redshifts around 0.1, but extra covariance from SNe
at redshifts greater than a few tenths is negligible compared to
the intrinsic error. The lensing variance overtakes the effect due
to correlated motions at redshifts starting at z� 0:2, depending
on the velocity-velocity separation angle.
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the number of SNe in the survey. For 0< r2 < 1, while
there is an improvement with increasing the SNe sample
size, in the limit of large numbers, the error on an individ-
ual parameter will not improve beyond r�int.

III. ANALYSIS

To estimate cosmological parameter measurement er-
rors, we consider a survey with 2000 SNe, similar to the
combined Supernova Factory [34] and the Supernova
Acceleration Probe (SNAP) proposal for a JDEM [35].
We distribute 300 SNe uniformly in redshift between 0 to
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0.2 over an area of 10 000 sqr. degrees, and 1700 between
redshifts 0.2 and 1.7 over 10 sqr. degrees. We calculate the
covariance matrix of size 2000 by 2000 obtained by as-
suming a distribution of separations that peaks at roughly
one half of the diagonal of the survey geometry (assumed
to be a square).

In Fig. 2, we summarize our results related to cosmo-
logical parameter estimates. Here, we have considered the
measurement of four parameters, the matter density pa-
rameter �m, the Hubble parameter h which can also be
considered as an overall normalization to the Hubble dia-
gram (and affected by low-redshift bulk flows), and assume
a dark energy equation of state given byw�a� � w0 � �1�
a�w1. Our fiducial test model is a cosmological constant
plus cold dark matter, with w0 � �1, w1 � 0 and matter
density �m � 0:3. In Fig. 2(a), we assume w1 � 0 exactly
and consider the measurement of �m and w � w0. In
Fig. 2(b), we set a prior on �m with ���m� � 0:01, and
consider measurement of w0 and w1. The error ellipses
show the expected errors based on which part of the
covariance is included. The innermost ellipse is the case
where covariance is ignored and only intrinsic noise is
included while the outermost ellipse is the case where
both peculiar velocities and lensing covariance are taken
into account. We can see that the velocity correlations
dilate the �m � w0 uncertainty by �25% in the case
illustrated by Fig. 2(a), and the w0 � w1 uncertainty by
�20% in the case illustrated by Fig. 2(b). Including the
effects of both velocities and weak lensing, for which the
variance rather than covariance between sources is domi-
nant, we see that the uncertainties expand by 40%, 150%
on w0, �m respectively in case (a), and 50% on w0, w1 in
case (b).

In general, smaller separations at high redshift lead to an
increase in parameter errors from lensing, while at low-
redshifts correlations at the scales of a few tens sqr. degrees
increase the peculiar velocity contribution. A combination
of large area (� 10 000 sqr. degrees) at z < 0:2 and a
smaller area (� a few tens sqr. degrees) at higher redshifts
provides the optimal combination, though covariances are
not simply reduced to zero in that case.

There is some possibility to use the dispersion in the
Hubble diagram as a measure of peculiar velocity fluctua-
tions. This is summarized in Fig. 3, where we plot the
angular power spectrum of line-of-sight projected veloc-
ities as a function of redshift in the form of rms fluctuations

given by vrms �
������������������
l2Cl=2�

p
c. The plotted power spectrum

is equivalent to the Fourier transform of Eq. (3) except that
we have not included factors of (1� a=a0�) which relate
fluctuations in the velocity field to that of the luminosity
distances estimated with SNe. We are assuming that an
individual distance estimate, combined with redshift and
an external estimate of the overall normalization of the SN
light curve, can be converted to an estimate of the peculiar
velocity [36].
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FIG. 2 (color online). Expected errors on cosmological parameters due to the peculiar velocity covariances. In Fig. 2(a) (left panel)
the expected errors on a constant dark energy equation of state, w � w0, and the matter density parameter are shown. In Fig. 2(b) (right
panel) the expected errors on the dark energy equation of state parameters, w0 and w1, where w � w0 � �1� a�w1, and assuming a
prior uncertainty on �M of 0.01, are shown. We have assumed a survey of 300 SNe out to a redshift of 0.2 over 10 000 sqr. degrees,
such as the Supernova Factory, and another 1700 SNe between redshifts 0.2 and 1.7 in 10 sqr. degrees on the sky, such as from SNAP/
JDEM. We break the error ellipses to covariances from lensing and peculiar velocities.
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In Fig. 3, we also show the uncertainty related to pecu-
liar velocity fluctuation measurements, �2

vel= �N where �vel

is the intrinsic error in the velocity measurement from each
SN and �N is the surface density of SNe (in sr�1). Assuming
an intrinsic uncertainty of 0.1 magnitudes, then �vel �
�intcz=2:17 (in km/s) which at z� 0:02 is 275 km/s. We
also assume no uncertainty in the observer’s velocity, and
that the measurements are not limited by uncertainties in
cosmological parameters such as the Hubble constant or
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FIG. 3 (color online). The rms fluctuations in the line-of-sight
projected velocities

������������������
l2Cl=2�

p
in km/s as a function of the

multipole. We show the angular power spectrum at different
redshifts. The diagonal, dot-dashed line is the expected noise
power spectrum for velocity measurements for a sample of SNe
with an intrinsic uncertainty of 0.1 magnitudes and a surface
density of 50 sr�1. Along the lines of a survey such as the
Supernova Factory, which expects �300 SNe at low redshifts,
z � 0:01–0:08, and assuming the survey to be spread over a
fractional sky area fsky � 0:5, we plot the expected error boxes
for angular power spectrum measurements binned in multipole
space, for the mean survey redshift. The velocity fluctuations are
detected at the cumulative signal-to-noise ratio �7.
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affected by any systematic biases. Note that while the
observer velocity is established through the CMB dipole,
which is precisely measured, the conversion to a local
frame of reference, such as with respect to the local group,
is uncertain. (See Ref. [37] for a recent analysis of the
relation between the CMB dipole and the peculiar motion
of the local group.) This uncertaintly and any systematic
offsets will result in a dipole correction at the observer and,
due to transformation, corrections to higher order multi-
poles as well.

At low redshifts, surveys such as the Supernova Factory
expect �300 SNe over 2� sr so that using an estimate of
50 sr�1 for the surface density and fsky � 0:5 for the
fractional sky coverage, we obtain the expected error boxes
for binned multipole measurements in Fig. 3. The line-of-
sight projected velocity anisotropy power spectrum is de-
tected with a cumulative signal-to-noise ratio of�7 for the
noise curve and error bars shown in Fig. 3. However, this is
not a significant detection for detailed cosmological pa-
rameter estimates. For comparison, unlike the low velocity
anisotropy ‘‘signal’’ captured by low-redshift SNe, it may
be possible to study clustering statistics of lensing magni-
fication with samples of SNe at a redshift beyond unity
with signal-to-noise ratios of order 30 or more [30,38].

While peculiar velocity fluctuations in the Hubble dia-
gram do not provide extra cosmological information, there
are significant implications for distance estimators and
cosmological probes. For example, due to the correlations,
a full Ntot 	 Ntot Fisher matrix, as opposed to a redshift-
binned smaller version, is required in order to obtain
cosmological parameter accuracy estimates. Presumably
this is not a problem since the correct treatment of SN
calibration uncertainties already requires the full Ntot 	
Ntot (or even larger) covariance matrix [39]. The challenge
is significant, however, as one can neither ignore small
correlations nor assume some arbitrary cosmology to esti-
mate covariance among measurements which are then used
-4
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to extract new cosmological parameters. The full covari-
ance matrix must be established as a function of cosmo-
logical parameters to obtain an accurate gauge of
cosmological parameter uncertainty.

None of these considerations will deter upcoming
searches for SNe for cosmological purposes, though a
careful consideration must be given to account for velocity
fluctuations at low redshifts and lensing effects at high
redshifts. Since peculiar velocity correlations are only
significant at z < 0:2, one can potentially ignore low red-
shift SNe when fitting distance data to cosmological esti-
mates. In this case, we find that the parameter errors are not
significantly affected by velocity correlations except that
the errors are increased by the fractional factor in which the
SN sample is reduced. In fact, this increase is larger than
the case where all SNe are used to estimate cosmology, but
with a proper accounting of the correlations. So, instead of
simply throwing away data, such as low-redshift SNe, it
may be best to keep the sample as a whole, but develop
techniques to account for peculiar velocity correlations.

Since the low, ‘  6 multipoles in the velocity anisot-
ropy spectrum dominate the SN distance covariance, if
such multipoles can be determined independently of the
SN measurements then corrections, at least partially, can
be applied to the interpretations of the Hubble diagram.
While we have not investigated the required accuracy for a
correction, if a signal-to-noise ratio of 10 or better mea-
surement in each multipole is required, then independent
bulk flow measurements at redshifts ranging over 0.01 to
0.1 must involve a source surface density of 103 sr�1 and
an uncertainty in the velocity measurement of each object
below 100 km s�1. If a lower signal-to-noise ratio mea-
surement is adequate then the surface density can be
correspondingly reduced. Such a surface density of sources
and a velocity error may be achievable with cluster studies
of the kinetic Sunyaev-Zeld???ovich [40] effect with the
upcoming Planck surveyor [41], though foregrounds and
internal motions within clusters will contaminate bulk flow
measurements and reduce the overall signal-to-noise ratio
levels [42]. Another approach will be to consider informa-
tion from an almost all-sky peculiar velocity survey based
on low-redshift galaxy samples. In the past, the IRAS Point
Source Redshift Catalog (PSCz) has allowed modeling of
the spherical harmonic moments of the velocity field [43]
out to a redshift of 0.02. We encourage the development of
techniques to use information from such surveys to correct
the correlations in the low-redshift part of the Hubble
diagram.

It is interesting to note that the dimensionless fluctua-
tions of the angular-diameter distance dA due to large-scale
bulk motions are identical to that for the luminosity dis-
tance,

�dA=dA � �dL=dL: (6)

This means our results for velocity covariances apply
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equally to distances based on angular-diameter measure-
ments. Possible scenarios include the distances to large-
scale structure obtained through baryon acoustic oscilla-
tions [44], distances to galaxies using the Sunyaev-
Zeld́ovich effect (for a recent example, see [45]) or other
features such as radio lobes [46,47], and probes of cosmol-
ogy using the Alcock-Pazcynski [48] test which employ
the angular-diameter distance to a correlation radius. The
survey details will differ in all cases, so that the extent to
which velocity correlations of low-redshift, wide-
separation objects contribute noise will also vary.

We can also consider dimensionless fluctuations of the
Hubble constant arising from velocity correlations, due to a
Hubble bubble or other effects of large-scale structure, as
inferred from either luminosity or angular-diameter dis-
tances. Using dL, we note that H�1 � d=dz
dL=�1� z��
whereby

�H
H
� �

�dL
dL
� �

d
d�

�
�dL
dL

�
: (7)

The second term on the right includes the correction due to
the peculiar acceleration. At low redshifts, this is equiva-
lent to �H � ��dL � �z�1�

1
2 �1� q�z�O�z2��, which

we obtain by perturbing the redshift expansion of the
luminosity distance. Here, �X is the fractional perturbation
to X � H, dL, z and �z � �1� 1=z�n̂ � �vSNe � vobs�. (See
Refs. [28,31].) In principle, the deceleration parameter q,
also varies on the sky and suffers from correlations.
Although few if any theoretical models for the origin of
the cosmic acceleration predict inhomogeneities in q,
large-scale structure may be expected to distort q at the
same level as H. Similar to fluctuations associated with
distance in Eq. (4), one can define a covariance for the
Hubble constant anisotropies using the line-of-sight pro-
jected correlation function for the velocity field. This co-
variance is
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(8)

where Fl is defined below Eq. (3). Compared to fluctua-
tions of the luminosity distance, anisotropies in the Hubble
constant are larger by a factor of�3� 5 depending on the
redshift and the deceleration parameter (see Fig. 4). The
increase comes from the correction to fluctuations associ-
-5



0 50 100 150
Angular Separation (Degrees)

-4

-2

0

2

4
H

ub
bl

e 
C

on
st

an
t C

or
re

la
tio

ns
 (

 x
10

-4
)

0.025
0.05
0.075

Redshift

FIG. 4. Correlations in the Hubble constant, CHH�z1; z2; ��, as
a function of � when z1 � z2. At redshifts less than 0.05, the
correlations are generally at the level of few times 10�4 and peak
at angular scales of 50�, suggesting that the Hubble constant
should show fluctuations at the level a few percent, at most,
when divided to patches on the sky at the same angular scale. A
reliable detection of this few percent fluctuation is challenging
given the low surface density of SNe expected at low redshifts,
similar to the detection of velocity anisotropies shown in Fig. 3.
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ated with peculiar acceleration in Eq. (7). As shown in
Fig. 4, at redshifts between 0.025 to 0.05, fluctuations in the
Hubble constant are at most a few percent, given that the
correlations are CHH�zi; zj; �ij� �O�10�4� at angular
scales of 60 deg. Detecting such a small fluctuation from
a low-redshift SN survey such as the Supernova Factory,
however, will be challenging just as velocity fluctuations
are marginally measurable from SN surveys. This is mostly
due to the low surface density of SNe expected at low
redshifts.

Note that the expressions for the Hubble constant and
distance fluctuations depend on the line-of-sight source
and observer velocities separately. Hence, there is the
possibility of a Hubble bubble, large fluctuations in H, if
the motion of the reference frame defined by the sources,
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SNe or large-scale structure, does not converge to our
reference frame, defined relative to the cosmic microwave
background [49–52]. For example, a local low-density
bubble could bias H high by �5% [53,54], although ob-
servations suggest that the reference frames have indeed
converged by length scales �50 Mpc=h [55,56].
Nevertheless, our local motion will induce correlated ve-
locity fluctuations if it is not removed from the data
properly.

To conclude, we have investigated the correlated dis-
tortions of the luminosity distance-redshift relation due to
large-scale bulk flows and how these correlations limit the
precision with which cosmological parameters can be
measured. At low redshifts, peculiar velocities correlate
errors of type 1a SNe and prevent a precise calibration of
the Hubble diagram, relative to the scenario where one
arbitrarily assumes no correlations so that the errors de-
crease by the square-root of the number of SNe. The
increase in individual error of a distant SN, or the correc-
tion to variance from the velocity field, however, is negli-
gible relative to an expected intrinsic error of 0.1 to 0.15
magnitudes. These results are consistent with other recent
calculations on how peculiar velocities affect cosmological
studies with SNe [31]. Turning our arguments around, we
find that the measurement of large-scale bulk flows at low
redshifts using SN distance indicators is challenging. At
high redshifts, weak gravitational lensing magnification
adds an extra dispersion to the light curve and increases
the individual errors of SN distance estimates. For surveys
that are concentrated on smaller areas on the sky, weak
lensing also correlates distance estimates, but the increase
in individual variances generally dominates the error
budget. We also considered similar distortions of the
angular-diameter distance, as well as the Hubble constant.
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