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Strings at future singularities
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We discuss the behavior of strings propagating in spacetimes which allow future singularities of either a
sudden future or a Big-Rip type. We show that in general the invariant string size remains finite at sudden
future singularities while it grows to infinity at a Big-Rip. This claim is based on the discussion of both the
tensile and null strings. In conclusion, strings may survive a sudden future singularity, but not a Big-Rip
where they are infinitely stretched.
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According to the claim of Ref. [1] sudden future singu-
larities (a SFS) [2–5] are not strong singularities in the
sense of Tipler and Królak [6]. In particular, geodesic
equations do not feel anything special on the approach to
a SFS (there is no geodesic incompletness) and the only
sign of such singularities may be experienced by the ex-
tended objects which may feel infinite tidal forces. On the
other hand, Big-Rip (BR) [7,8] singularities are the strong
ones and, according to Ref. [1], they are felt by geodesics
and also lead to the destruction of structures.

In this context we discuss explicitly the behavior of
extended objects such as fundamental strings [9] at the
future singularities of either BR or a SFS type. We will
discuss a possibility for a string to cross a SFS with its size
conserved. We shall analyze a possibility to blow-up a
string at BR and to collapse a string to a point at a SFS.

Firstly, it is interesting to remark that at the
Schwarzschild horizon r � rs the metric is singular while
the curvature invariants R, R��R��, R����R���� are finite.
The a SFS is different from the respect that the metric is
nonsingular at sudden future singularity for t � ts, but all
the curvature invariants R, R��R��, R����R���� have a
blow-up due to the blow-up of the Riemann tensor as a
consequence of the divergence of the second derivative of
the scale factor. In fact, the geodesic deviation equation
feel a SFS due to the divergence of the Riemann tensor.

According to string theory a free string which propa-
gates in a curved spacetime sweeps out a world-sheet (a
two-dimensional surface) in contrast to a point particle
whose history is a worldline. The world-sheet action for
such a string in the conformal gauge is given by [10]

S � �
T
2

Z
d�d��abg��@aX�@bX�; (1)

where T � 1=2��0 is the string tension, �0 the Regge
slope, � and � are the (spacelike and timelike, respec-
tively) string coordinates, �ab is a 2-dimensional world-
sheet (flat) metric �a; b � 0; 1�, X���; �� (�; � �
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0; 1; 2; 3� are the coordinates of the string world-sheet in
a 4-dimensional spacetime with metric g��.

The equations of motion and the constraints for the
action (1) are [10]

�X � � ���� _X� _X� � 	�X00� � ����X0�X0��; (2)

g�� _X� _X� � �	g��X0�X0�; (3)

g�� _X�X0� � 0; (4)

where: �. . .�: � @
@� , �. . .�0 � @

@� , and 	 � 1 for tensile
strings, while 	 � 0 for tensionless/null strings [11–13].
The meaning of the constraints (3) and (4) for a null string
is as follows. The first one shows that the string moves with
the speed of light and the second says that the velocity
vector of an element of string is perpendicular to this
element.

An important characteristic for strings is their invariant
size for closed strings defined by [10]

S��� �
Z 2�

0

�����������������������
g��X0�X0�

q
d�: (5)

Expressing general spacetime coordinates as: X0 �
t��;��, X1 � r��; ��, X2 � 
��; ��, X3 � ’��; �� the
equations of motion (2) for a string propagating in a
Friedmann spacetime are:

�t� 	t00 � aa;t�f2�r�� _t2 � 	t02� � r2� _
2 � 	
02�

� r2sin2
� _’2 � 	’02�� � 0; (6)

�r� 	r00 � 2
a;t
a
� _t _r�	t0r0� � krf2�r�� _r2 � 	r02� (7)

�
r

f2�r�
� _
2 � 	
02� �

rsin2


f2�r�
� _’2 � 	’02� � 0;

�
� 	
00 � 2
a;t
a
� _t _
�	t0
0� �

2

r
� _r _
�	r0
0�

� sin
 cos
� _’2 � 	’02� � 0; (8)
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�’� 	’00 � 2
a;t
a
� _t _’� 	t0’0� �

2

r
� _r _’�	r0’0�

� 2 cot
� _
 _’�"2
0’0� � 0; (9)

whereas the constraints (3) and (4) are given by

� _t2 � 	t02 � a2�t�f2�r�� _r2 � 	r02� � a2�t�r2� _
2 � 	
02�

� a2�t�r2sin2
� _’2 � 	’02� � 0; (10)

� _tt0 � a2�t�f2�r� _rr0 � a2�t�r2 _

0 � a2�t�r2sin2
 _’’0 � 0:

(11)

Here a�t� is the scale factor and f2�r� � 1=�1� kr2� with
k � 0;	1—the curvature index. The invariant string size
(5) is

S��� �
Z 2�

0

�����������������������������������������������������������������������������������
�t02�a2f2r02�a2r2
02� a2r2sin2
’02

q
d�:

(12)

One of the simplest string configurations is a circular string
given by the ansatz [12,13]:

t � t���; r � r���; 
 � 
���; ’ � �; (13)

It gives (6)–(9) as

�t� aa;t�f2 _t2 � r2 _
2 � 	r2sin2
� � 0; (14)

�r� 2
a;t
a

_t _r�krf2 _r2 �
r

f2
_
2 � 	

rsin2


f2 � 0; (15)

�
� 2
a;t
a

_t _
�
_r
r

_
� 	 sin
 cos
 � 0; (16)

�’ � 0; (17)

and the constraint (11) is fulfilled automatically, while (10)
reads as

� _t2 � a2f2 _r2 � a2r2 _
2 � 	a2r2sin2
 � 0: (18)

The invariant string size now reads as

S��� � 2�a�t����r��� sin
���: (19)

Let us first discuss briefly the tensile strings and then the
null strings. The flat Friedmann Universe admits a different
circular ansatz (corresponding to the ansatz (13) for 
 � 0)
given by Cartesian coordinates [14]

t � t���; X � R��� cos�;

Y � R��� sin�; Z � const:
(20)

After the application of the conformal time coordinate
��t� �

R
dt=a�t� the equations of motion and constraints

(2)–(4) take the simple form

��� 2
a;�
a

_R2 � 0; (21)
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�R� 2
a;�
a

_� _R�	R � 0; (22)

_� 2 � _R2 � 	R2 � 0: (23)

The scale factor in phantom cosmology which admits a
Big-Rip in conformal time scales as [8]

a��� � ��2=�3j�j�2�; (24)

where the barotropic index � � � j � j <0 for phantom
models (p � ��� 1�%, p—the pressure, %—the energy
density). In terms of the conformal time coordinate the
invariant string size is

S��� � 2�a������R���: (25)

The simple solution of the system (21)–(23) is [14]

���� � exp
�
	

����������������������
3 j � j �2

2� 3 j � j

s
�
�
;

R��� �
����

2

����������������������
3 j � j �2

q
;

(26)

so that the invariant string size reads as ( j � j <2=3)

S��� � �
����������������������
3 j � j �2

q

 exp

�
	

3 j � j�����������������
4� 9�2

p �
�
: (27)

From (24) we see that a Big-Rip singularity a��� ! 1
appears for �! 0. This singularity corresponds to the
limit �! 1 and the ‘‘�’’ sign or �! �1 and the ‘‘�’’
sign in (26). Then, it is clear from (27) that a string size is
infinite in either of these limits. This means a string will be
infinitely stretched at a Big-Rip singularity.

Now, let us discuss tensile strings at a sudden future
singularity. Let us choose the following evolution of the
scale factor of a SFS model, which presumably extends on
both sides of sudden singularity, i.e.,

a�t� � 1�
�
1�

t
tB

�
q
�a0 � 1� �

�
�t
tB

�
n
; �t < 0�

(28)

~a�t� � 1�
�
1�

t
tC

�
q
�a0 � 1� �

�
t
tC

�
n
; �t > 0�

(29)

Here the sudden singularity appears at t � 0, where a0 �
a�0� � const:, and 0< q � 1, 1< n< 2 [2–5]. The evo-
lution begins with a Big-Bang singularity at t � �tB < 0,
faces a SFS at t � 0, and finally reaches a Big-Crunch
singularity at t � tC > 0. We will show that the invariant
string size is finite at a sudden singularity. For simplicity,
we apply asymptotic solutions around t � 0, i.e.,

a�t� � a0 �
q�a0 � 1�

tB
t� . . . ; �t < 0�; (30)
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a�t� � a0 �
q�a0 � 1�

tC
t� . . . ; �t > 0�: (31)

Introducing the conformal time for (30) and (31) we have

� �
1

�
lnj a0 	 �t j; (32)

where � � q�a0 � 1�=tB;C, and the scale factor is

a��� � e��: (33)

Then, one can see that at a SFS, � is finite which means
that the scale factor (33) is finite and so the invariant string
size at a SFS is finite, too. This means a string may cross
smoothly a SFS singularity and eventually approach a Big
Crunch singularity where it may collapse to a zero size.

Let us now come to the discussion of the problem for the
null strings (	 � 0 in (2)–(4)). We will briefly show that
the null string can be considered as a collection of particles
in which � is assigned to a null particle in a collection,
while � is a parameter of a geodesic with a particular value
of �. Formally, X���; �� is a geodesic with an index �.

We note that the left-hand sides of the constraints (3) and
(4) are the constants of motion for a collection of particles
being the null string. The first claim is trivial, while the
second requires the discussion of an absolute derivative of
g�� _X�X0�, i.e.,

d
d�
�g�� _X�X0�� � _X�r��g�� _X�X0�� � _X� _X�r�X0�

� k���L ~k ~��
� � ��r�k��; (34)

where k� � _X� and �� � X0�. Since ~���;�� �


 ~���0; ��, where p��; �� � 
�p0��� is a geodesic at-
tached to an index �, with p0��� � 
����0�

p0��� (
� is a

map generated by a vector field ~k), then according to the
properties of the Lie derivative the first term vanishes. The
second term vanishes due to the relation

k���r�k� � ��r��k�k�� � ��k�r�k�� ���k�r�k�

� �k���r�k�: (35)

In conclusion, the evolution of the null string can always be
reduced to the evolution of the geodesics.

Let us now consider a circular string (13) which is
equivalent to a collection of particles with initial condi-
tions ’��0; �� � �, _’��0; �� � 0. The first integrals of
(14)–(17) for the null strings are

_t 2 �
A

a2�t�
; (36)

_r �
B sin
� P3 cos


a2�t�f�r�
; (37)

_
 �
C

a2�t�r2 ; (38)
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_’ � 0; (39)

where A � P2 � kL2, B � P1 cos�� P2 cos�, C �
L1 cos�� L2 sin� are constants independent of � [1]. In
terms of the cosmic time t we calculate the coordinate
velocity components as

dr
dt
�
B0 sin
� P03 cos


a�t�f�r�
; (40)

d

dt
�

C0

a�t�r2 ; (41)

where B0 � B=jAj1=2, C0 � C=jAj1=2, P03 � P3=jAj
1=2.

Taking a horizontal plane X2 � 
 � 
0 � const: we for-
mally impose an additional initial condition as _
��0; �� �
0, which requires C � 0. For this particular choice of 
 we
have for k � 1, 0, �1,

r�t� � sin
�
D
�Z t

0

dx
a�x�

��
; (42)

r�t� � D
�Z t

0

dx
a�x�

�
; (43)

r�t� � sinh
�
D
�Z t

0

dx
a

��
; (44)

respectively, and D � B0 sin
0 � P03 cos
0.
Now let us come to the problem of the null strings at a

SFS. Since for t � ts all the quantities in the expression for
the invariant string size (19) are finite, then the size of the
string at a sudden future singularity is finite. In all three
cases k � 0;	1 the string is spanned on the surface of
either of the two cones of an angle 
0 each. The cones are
attached to each other with their apexes at r � 0. The
cones have a common symmetry axis given by 
 � 0.
For k � �1 the string oscillates around r � 0 and the
frequency of its oscillations decreases while its invariant
size (19) grows, though not to infinity. For k � 0 the string
escapes from the point r � 0—its coordinate velocities
(40) and (41) decrease while its size grows. For k � �1 the
string escapes from r � 0, its coordinate velocities and size
grow rapidly.

Now let us study the null strings at Big-Rip. We assume
a simple model of evolution of the scale factor which
admits such a singularity [7], i.e., a�t� � aR�tm��j�j � 1�

�j�j � 1�� ttm��
�2=3j�j, where � < 0 and tm is the time of a

Big-Rip. The integral
R
dx=a�x� is convergent in an arbi-

trary small interval before a BR singularity. For k � �1
the frequency of oscillations of the string size is decreas-
ing. Besides, the coordinate velocities (40) and (41)
asymptotically tend to zero at a Big-Rip. For k � 0 the
coordinate velocities (40) and (41) decrease rapidly in
order to finally reach zero. Since a�t� ! 1 at Big-Rip
and all other quantities in the invariant string size (19)
-3
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are finite, it means that the string will be infinitely stretched
at a Big-Rip, i.e., its size S! 1. However, as concluded
from the Eqs. (36)–(39), in the limit a�t� ! 1 all the right-
hand sides of these geodesic equations are zero which
means that the four-velocity dX�=d� tends to zero at a
Big-Rip. This is not the case for the acceleration vector
d2X�=d�2 which, as seen from the geodesic Eqs. (14)–
(17), is not regular due to a blow-up of the scale factor a�t�
and its derivatives at a Big-Rip.

Finally, we briefly discuss strings at some other types of
future singularities described in details in Refs. [15,16].
These singularities appear for the scale factor of the form
a�t� � as expfh0�t� ts�1��g and h0 � const: If 0<�<
1, then a � as � const:, %! 1, j p j! 1 at t � ts
(type III singularity of Ref. [15]). On the other hand, if �<
�1, then a � as, %! 0 (or finite), j p j! 0 (or finite) and
the higher order than two derivatives of the scale factor
diverge at t � ts (type IV singularity of Ref. [16]). In the
former case and for k � �1 the frequency of oscillations
of a string approaching the singularity grows though re-
mains finite at t � ts. What is important from the point of
view of the main task of our discussion is the fact that the
invariant string size (19) remains finite at the singularity.
For k � 0;�1 the coordinate velocities (40) and (41) near
t � ts grow rapidly. The integral

R
dx=a�x� is convergent

on an arbitrary interval of time before a singularity so that
the coordinate velocities and the radial coordinate r are
finite which means that the invariant string size is also
finite at t � ts. In the latter case for k � �1 one has almost
homogeneous and finite frequency of oscillations of a
string near ts. The invariant size remains finite, too. For
k � 0 the coordinate velocities remain almost constant
near ts and the invariant size is finite. For k � �1 one
has a rapid growth of the coordinate velocities—since r
remains finite, then the invariant size also remains finite.

Not restricting the value of the azimuthal coordinate 
 �

��� we have

1

r2
� �Z cos�
� �� �G�2 � k; (45)

where � � arctanP03=B
0 and Z � B0=�C0 sin��. Since (45)

restricts the value of r, then this 
 � 
��� case does not
change a general picture in which the strings are not
infinitely stretched at these future singularities. Exact so-
lutions for ��
� can easily be given but since they do not
contribute a new quality to the discussion we will not
present them here.
101301
In conclusion, we emphasize that bearing in mind the
system of geodesic Eqs. (36)–(39) one can see that the
geodesics may be extended through a sudden type, type III
and type IV singularities discussed in this paper. This is a
consequence of the finiteness of the right-hand sides of
these equations since in all the cases we have studied the
radial coordinate rwas finite which implied the finiteness o
the function f�r�. Then, strings may survive these singu-
larities. On the other hand, at a Big-Rip, geodesic equa-
tions are singular (though the four-velocity is zero) and the
strings will be infinitely stretched.

Finally, it is worth mentioning that the Big-Rip singu-
larity leads to the growth of the energy scale up to the
Planck scale so that the quantum effects seem to be inevi-
table. This means our classical string propagation analysis
may be changed. For example, quantum effects may drive
the universe to a future de Sitter phase instead of a Big-Rip
[15], or these effects may prevent a future singularity
[16,17]. According to our analysis and the earlier studies
of the string propagation in simple cosmological back-
grounds [9,14], it is clear that in the former case strings
propagate smoothly towards the empty future, while in the
latter case they do not show any singular behavior, too.
Besides, in the case of an oscillating scale factor of
Ref. [18], any time the scale factor is finite at future
singularity one should not expect any blow-up of the string
size there. In all of these cases the propagation of the
quantum strings through future singularities may be differ-
ent due to string excitation—the effect known as ‘‘particle
transmutation’’. Actually, this effect was studied recently
in Ref. [19] in the context of the propagation of (both
classical and quantum) strings through a Big-Crunch/
Big-Bang singularity in the ekpyrotic/cyclic scenario
[20]. The classical part of the work given in Ref. [19] is
complementary to our work about classical string propa-
gation at Big-Rip and other future singularities. The quan-
tum part of Ref. [19] may give some general insight into
the quantum string propagation problem through Big-Rip,
sudden future, type III and type IV singularities. The de-
tailed study of this issue will be the matter of a separate
paper.
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