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It has been suggested that one may construct a Lorentz-invariant noncommutative field theory by
extending the coordinate algebra to additional, fictitious coordinates that transform nontrivially under the
Lorentz group. Integration over these coordinates in the action produces a four-dimensional effective
theory with Lorentz invariance intact. Previous applications of this approach, in particular, to a specific
construction of noncommutative QED, have been studied only in a low-momentum approximation. Here
we discuss Lorentz-invariant field theories in which the relevant physics can be studied without requiring
an expansion in the inverse scale of noncommutativity. Qualitatively, we find that tree-level scattering
cross sections are dramatically suppressed as the center-of-mass energy exceeds the scale of non-
commutativity, that cross sections that are isotropic in the commutative limit can develop a pronounced
angular dependence, and that nonrelativistic potentials (for example, the Coloumb potential) become
nonsingular at the origin. We consider a number of processes in noncommutative QED that may be studied
at a future linear collider. We also give an example of scattering via a four-fermion operator in which the
noncommutative modifications of the interaction can unitarize the tree-level amplitude, without requiring
any other new physics in the ultraviolet.
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I. INTRODUCTION

Noncommutative field theories have provoked consid-
erable interest from both the formal [1] and phenomeno-
logical [2] perspectives. In their simplest construction,
such theories promote spacetime coordinates to operators
(indicated below by a hat) that satisfy a nontrivial commu-
tation relation

�x̂�; x̂�� � i���; (1.1)

where ��� is an antisymmetric, constant matrix. The non-
commutative multiplication of operators is represented via
function of ordinary, commuting coordinates by means of a
modified multiplication rule, the star product

f�x� ? g�x� � f�x�e�i=2�@
 
���@
!

g�x�: (1.2)

For example, it is easy to show that the commuting coor-
dinates x� satisfy the star commutation relation

�x� ;?x�� � i���; (1.3)

mimicking the behavior of the operators in Eq. (1.1).
Noncommutative fields theories are related to their com-
mutative cousins via the promotion of ordinary multipli-
cation to star multiplication, and the imposition of
restrictions on the form of the interactions as needed to
maintain the desired local symmetries of the theory [3].

The effects of noncommutative spacetime on rare pro-
cesses [4], collider signals [5], astrophysics [6], and cos-
mology [7] have been discussed in the literature over the
past few years. One notable feature of noncommutative
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field theories based on Eq. (1.1) is that they violate Lorentz
invariance; despite its appearance, the matrix ��� is a
singlet under the Lorentz group, and defines the preferred
directions �ijk�jk and �0i. This has led to the observation
that collider signatures of noncommutative physics should
present a diurnal variation, as the earth’s orientation rela-
tive to these preferred directions varies over time [8]. On
the other hand, noncommutative field theories must con-
tend with very stringent bounds from processes measured
precisely at low energies [9]. For example, in almost every
construction of Lorentz-violating noncommutative QED,
there are contributions to the Lamb shift which force the
scale of new physics to be above�10 TeV [10]. Moreover,
in the simplest formulation of noncommutative gauge
theories (for example, the version of noncommutative
QED first introduced by Hayakawa [11]), one may show
that operators induced at the one-loop level present even
more stringent bounds on the noncommutative scale,
whether the loops are evaluated with a simple cutoff or a
gauge-invariant regulator [12–14]. Noncommutative
gauge theories based on the enveloping algebra approach
[15] contribute to the Lamb shift at tree level, and are thus
subject to the 10 TeV bound. These theories may also be
constrained significantly via loop-induced operators [16],
though in this case the situation is less clear [17]. However
one views the severity of these bounds, it is clear in any
construction of noncommutative field theories based on
Eq. (1.1), the matrix ��� will appear in the low-energy
effective Lagrangian as a Lorentz-violating spurion. By
contrast, all experimental searches for the violation of
Lorentz invariance have yielded negative results to date
[18,19].

These observations provide some motivation for consid-
ering whether noncommutative theories can be constructed
-1 © 2006 The American Physical Society
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which preserve Lorentz invariance ab initio.1 In this paper,
we will revisit a proposal made in Ref. [23] (and studied in
Refs. [24–28]) which approaches this problem by promot-
ing ��� to an operator in Eq. (1.1),

�x̂�; x̂�� � i�̂��; (1.4)

where �̂�� transforms as a tensor under the Lorentz group.
In addition, one assumes the simplest possibility
�x̂�; �̂��� � ��̂��; �̂��� � 0. The star product for this al-
gebra takes the same form as Eq. (1.2), except that it acts,
in general, on functions of six additional commuting coor-
dinates ���

f�x; �� ? g�x; �� � f�x; ��e�i=2�@
 
���@
!

g�x; ��: (1.5)

As argued in Ref. [23], the action will involve integration
over the additional coordinates

L eff �
Z
d6�W���L�x�; ���� (1.6)

so that Leff depends only on ordinary coordinates and has
four-dimensional Lorentz invariance preserved. The
weighting function W��� is a Lorentz-invariant function
of ��� that has finite volume and hence drops off at large
values of the argument. In the mapping from the space of
operators to c-number functions, it was argued in Ref. [23],
that the d6�W��� integration is an appropriate mapping of
the operator trace, which is reasonable to believe plays a
role in the construction of an action. In the present context,
it is only important to note that W��� determines the scale
of the new physics. For example, the choice W��� �
��6���� pushes the scale of noncommutativity to infinity.

Two questions deserve immediate comment: (1) Is there
anything wrong with treating ��� as a set of fictitious
coordinates with nontrivial Lorentz transformation proper-
ties and (2) where do ordinary quantum fields live within
the right-hand side of Eq. (1.6)?

On the first question, it is useful to consider the
Grassman parameters � and �� of ordinary superspace.
These may be thought of as fictitious coordinates that
transform nontrivially under the Lorentz group and are
integrated in the action to produce a Lagrangian that is
invariant under global supersymmetry transformations.
Extending the coordinate algebra by the bosonic coordi-
nates ��� in Eq. (1.6) is neither more nor less justified
mathematically then extending ordinary space to super-
space. On the other hand, Doplicher, Fredenhaeghen, and
Roberts [29] have argued on general grounds that theories
of quantum gravity should lead at low energies to space-
time noncommutativity described by a commutation rela-
tion of precisely the same form as Eq. (1.4), one in which
1An alternative approach is to construct a noncommutative
theory that preserves a deformation of the Lorentz group [20].
For other discussions of Lorentz symmetry in noncommutative
theories, see Refs. [21,22]

096005
the right-hand side is an operator that transforms nontri-
vially under the Lorentz group so that the result remains
covariant.2

On the second question, we may assume that the
Lagrangian L is a function of fields � that are themselves
functions of x� and ���, with all multiplications between
fields promoted to star multiplications. In the supersym-
metric analogy, superfields are functions of all the super-
space coordinates, while ordinary fields appear in the
coefficients of an expansion of the superfields in � and ��.
It was shown in Ref. [23] that an analogous statement can
be made for the fields ��x�; ����

��x; �� � 	�x� 	 �����1����x� 	 ����
���2���
��x� 	 � � � ;

(1.7)

where the ��n� are functions of the ordinary quantum field
	�x�. (Of course, unlike the supersymmetric example, the
expansion here does not truncate.) In Ref. [23], it was
shown that the constraint of gauge invariance allows one
to determine the ��n� as functions of the quantum field 	
and the gauge fields in the theory. This allowed for the
construction of a Lorentz-invariant version of noncommu-
tative QED, one that was valid for fields of arbitrary
charge.

One of limitation of the models discussed in
Refs. [23,27] is that they could only be evaluated as an
expansion in � (or more accurately, after the d6� integra-
tion, as an expansion in momentum divided by the typical
noncommutative energy scale). The phenomenological
study of Lorentz-invariant noncommutative QED in
Ref. [27] focused, therefore, on the effects of the new
higher-dimension operators and presented bounds on a
natural definition of the noncommutative scale

��4
NC �

1
12

Z
d6�������W���: (1.8)

An advantage of this approach is that the form of the
weighting function W��� need not be specified, at least
for lowest-order processes. Comparison of Bhabha scatter-
ing, dilepton and diphoton production to LEP data led the
authors of Ref. [27] to the bound

�NC > 160 GeV 95%C:L: (1.9)

The purpose of the present work is to consider toy and
more realistic examples where Lorentz-invariant noncom-
mutative theories can be evaluated without a low-
momentum expansion. The toy models will consist of the
Yukawa and 	4 theories. Since the expansion in Eq. (1.7)
is not restricted by gauge invariance in these theories, there
is no inconsistency in making the simplest choice that
might allow us to obtain results in closed form
2One can also understand the algebra of interest to us here as a
contraction of the one proposed by Snyder [30]. See Ref. [23] for
details.
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��x; �� � 	�x�: (1.10)

The more realistic theory that we will study is the original
formulation of noncommutative QED [11], which also
does not require a �-expansion for the fields, at the expense
of introducing a restriction that the matter fields have
charges 
1 or 0. This will allow us to revisit the purely
leptonic processes considered in the low-momentum limit
of the alternative formulation discussed in Ref. [27].
Finally, to avoid an expansion in ��1

NC, we will have to
choose a tractable form for the weighting function W���.
Neither Ref. [23] or [24–28] ever specify W���, or show
that a function with the desired properties exists. We will
find the simplest form for this function, based on the
quadratic invariants of ���, that will allow for explicit
calculations at arbitrary external momenta.

Our paper is organized as follows. In Sec. II, we show
that suitable weighting functions exist, and we determine a
simple form that will be used in evaluating the models that
follow. In Sec. III we will look at the behavior of tree-level
scattering cross sections in 	4 and Yukawa theory. We will
see that cross sections experience a notable suppression as
the center-of-mass energy exceeds the typical scale of the
noncommutative interactions and that isotropic, tree-level
processes in the commutative limit can develop a marked
angular dependence. In Sec. IV we will extend our analysis
to noncommutative QED, focusing in particular on Bhabha
scattering, dilepton and diphoton production. We will also
show that the modified momentum dependence of the tree-
level fermion-photon vertex removes the singularity at the
origin of the Coloumb potential. In Sec. V, we show that a
simple theory that violates tree-level unitarity in the com-
mutative limit can be unitarized by the noncommutative
modification to the vertex. In Sec. VI, we summarize our
conclusions.
II. THE WEIGHTING FUNCTION

In this section, we find a suitable explicit form for the
weighting function W��� in Eq. (1.6). In particular, we
would like W��� to be Lorentz invariant and normalizable
[23]. If the new coordinates carried only a single Lorentz
index (i.e., if they transformed like the ordinary coordi-
nates x�) it would not be possible to find such a function:
All Lorentz-invariant functions of x� are necessarily a
function of x�x�, which vanishes along its light cone.
Thus, integration over all four-volume would diverge at
large x� in the direction where x�x� � 0.

As pointed out by Kase, et al., the same is true of
weighting functions W��� that are only functions of
������ [25]. One approach, taken in Ref. [25], is to use
a very manageable function, for example, a Gaussian in
������, and regulate away the unwanted divergence. Here
we will show that simple weighting functions W��� exist
that have finite volume and are not so complicated that they
render explicit calculations intractable. In contrast to a
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coordinate with a single Lorentz index, ��� allows for
the construction of an infinite number of Lorentz-invariant
combinations, for example

������; �������
�����; �������

������
�����; etc:

(2.1)

In general, the directions in which these invariants are
vanishing differ from one to another. Thus, we seek a
function that drops off at large values of all of its arguments
and that depends on a sufficient number of these invariants
so that no flat directions remain.

The simplest possibility is to work only with the two
available quadratic invariants

1
2 ����

�� and 1
8������

�����; (2.2)

where the numerical factors are introduced for later con-
venience. To make integration as easy as possible, we
choose to work with an exponential form for W���. One
might begin by considering the function

Wbc��� � exp
�
�
c
2
j����

��j

�
exp

�
�
b
8
j������

�����j
�
;

(2.3)

where b and c are constants, and the absolute value sym-
bols are introduced to assure that there are no directions in
which the weighting function blows up at infinity.
Unfortunately, the function Wbc��� is not adequate since
integration over all ��� leads to a divergent result.
However, by studying this divergence we will see that there
is a simple way to avoid it.

Let us parametrize the components of ��� as follows:

��� �

0 x y z
�x 0 u �v
�y �u 0 w
�z v �w 0

0
BBB@

1
CCCA: (2.4)

In terms of these variables, the two lowest-order, Lorentz-
invariant forms can be written as:

1
2����

�� � �x2 � y2 � z2 	 u2 	 v2 	 w2;

1
8������

����� � xw	 yv	 zu:
(2.5)

By inspection, the right-hand sides of Eq. (2.5) take a
simple form if we redefine our variables again, in terms
of two sets of spherical polar coordinates:

�x; y; z� ! �r1; �1; 	1�; �w; v; u� ! �r2; �2; 	2�:

(2.6)

The function W���bc can now be written

W���bc � exp��cjr2
1 � r

2
2j� exp��bj ~r1 � ~r2j�: (2.7)

The d6� � d3r1d3r2 integration is now easy to evaluate
since Eq. (2.7) depends only on r1 � j ~r1j, r2 � j ~r2j and the
angle between ~r1 and ~r2. Furthermore, one may do the r2
-3
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integration first, letting the ~r1 direction define the z-axis, so
that the angular integration simplifies to

R
d�1d�2 �R

8�2 � d cos�2. One then finds that

Z
d6�W���bc �

16�2

b

Z
dr1r1

Z
dr2r2 exp��cjr2

1 � r
2
2j�

� �1� exp��br1r2��: (2.8)

The
R
dr1r1

R
dr2 � r2 exp��cjr2

1 � r
2
2j� integration is di-

vergent, while the rest is finite. However, this contribution
also scales as 1=b, while the finite part does not, suggesting
an alternative starting point in which this divergence is
cancelled

W��� � N
�
W���ac �

b
a
W���bc

�
; (2.9)

or explicitly,

W��� � N exp
�
�
c
2
j����

��j

��
exp

�
�
a
8
j������

�����j
�

�
b
a

exp
�
�
b
8
j�����������j

��
; (2.10)

where N is a normalization constant and a � b. The in-
tegral of this weighting function over all � is finite and can
be performed analytically, yielding

Z
d6�W��� �

16�2

a
N
�
�2c� b�

b�4c2 	 b2�
	

2btanh�1 �2c�b�������������
4c2	b2
p

�4c2 	 b2�3=2

	
2btanh�1

������������
b2

4c2	b2

q
�4c2 	 b2�3=2

� �b$ a�
�
: (2.11)

Henceforth, we will use this result to choose a value for N
such that

Z
d6�W��� � 1: (2.12)

Although the form for W��� in Eq. (2.10) is one of many
possibilities, it is by far the simplest, smooth function that
meets our requirements. Other choices that we have con-
sidered do not change our field theoretic results qualita-
tively. Therefore, in the Lorentz-invariant noncommutative
theories that follow, we adopt Eq. (2.10) together with the
simple parameter choice a=2 � b � c � �4, where � sets
the scale of the new physics.
III. TOY MODELS

With a suitable weighting function defined, we now
consider a few simple applications in toy models. These
examples illustrate some of the qualitative features of the
noncommutative vertex modification. We consider first
noncommutative Yukawa theory, defined by the
Lagrangian
096005
L �
Z
d6�W���

�
� �i6@�m� 	�

1

2
	�@�@� 	m2

	�	

	

2
� � 	 ?  	 H:c:�

�
; (3.1)

where 	 is a real scalar field. One star product has been
removed from each term via integration by parts and the
discarding of surface terms. The momentum-space
Feynman rule for the fermion-fermion-scalar vertex is

i
Z
d6�W��� exp

�
i
2
p � � � q

�
; (3.2)

where p and q are the four-momenta of the incoming and
outgoing fermion. Using the same notation introduced in
Sec. II, we may write the vertex as

Z
d3r1d3r2W� ~r1; ~r2� exp�i ~A � ~r1 	 i ~B � ~r2�; (3.3)

where ~A and ~B are functions of the four-momenta given by

~A � �p0 ~q� q0 ~p�=2 and ~B � � ~p� ~q�=2: (3.4)

Equation (3.3) is symmetric under the interchange of ~A and
~B, and reduces to the commutative result, i, in the limit
where both are vanishing. We will see, in every application
to be discussed in this paper, that either ~A or ~B may be set
to zero, by working in an appropriately chosen Lorentz
frame. For concreteness, we will set ~B � 0 and let � � j ~Aj.
Then, using the form for W��� in Eq. (2.10), one may
express the fermion-fermion-scalar vertex as iIv���,
where

Iv��� � �
16�2N
a�

Z 1
0
dr1

Z r1

0
dr2�r2 sin��r1�

	 r1 sin��r2���e
�ar1r2 � e�br1r2�e�c�r

2
1�r

2
2�: (3.5)

This integral is finite. One can see that Iv�0� � 1 and
Iv�1� � 0 by using the fact that

lim
�!0

sin��ri�
�

� ri and lim
�!1

sin��ri�
�ri

� ��ri�: (3.6)

The integral may be done analytically, though the precise
form of the result (given in the appendix) is not particularly
enlightening. Qualitatively, Iv��� is a function with finite
area that drops off quickly as

���
�
p

exceeds the typical scale
of noncommutativity, which is set by the choice of the
parameters a, b, and c. In fact, this result could be antici-
pated from Eq. (3.2), which has the form of a six-
dimensional Fourier transform of the weighting function,
i.e. ~W�!���, where the variable conjugate to � takes a
particular value, !�� � �p�q� � q�p��=4. It is not hard
to see that the integral of ~W�!��� over all ! is simply
W�0�, which is finite. Thus, ~W is a function that we would
expect to drop off at large values of the argument.
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FIG. 1 (color online). Difermion production in the Yukawa
theory, for the canonical parameter choice a=2 � b � c � �4,
and negligible fermion masses.
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One might wonder at this point whether it would have
been easier to specify the unknown function ~W in the
conjugate space from the start. From a model building
perspective, such an approach would be contrived. We
have made the reasonable aesthetic choice that the function
appearing directly in the Lagrangian equation (1.6) be
taken as simple as possible. One might hope that this will
make an eventual physical interpretation of W��� more
transparent. In addition, our weighting function is more
easily applied to noncommutative theories, such as those
requiring an expansion in �, that have a more complicated
vertex structure than in Eq. (3.2). In any case, the qualita-
tive features of our results depend only on the fact that the
weighting function falls off at a well-defined scale.

The simplest process we can study in Yukawa theory is
the scattering f1

�f1 ! f2
�f2, for two distinct types of fer-

mions. This is purely an s-channel process; the two vertices
will have noncommutative exponential factors that depend
on the factors p1 � � � �p1 and p2 � � � �p2. Working in the
center-of-mass frame, the spatial vectors ~pi � � ~�pi and the
quantity that we called ~B in Eq. (3.4) will vanish. The spin-
averaged differential cross section is isotropic, and the full
scattering cross section is given by

� �
4

16�
I4
v��s�

�s� 4m2�2

s��s�m2
	�

2 	m2
	�2

	�
; (3.7)

where

�s �
1

4

���
s
p
�s� 4m2�1=2 and �	 �

82

�m5
	

�3
m2
	
Iv��m2

	
�:

(3.8)

For
���
s
p

larger than the typical energy scale set by the
parameters a, b and c in Iv, the cross section is suppressed
relative to the commutative result. This behavior is illus-
trated in Fig. 1.

The modification to the differential cross section is less
trivial if one considers processes involving fermions of the
same type in the initial and final state. In this case, there are
both s- and t-channel contributions to the amplitude that
receive different noncommutative corrections. Rather than
examining f �f ! f �f scattering in the present example, we
defer this discussion to the next section where we study
Bhabha scattering in QED, which presents a nearly iden-
tical calculation.

Instead, to illustrate the dramatic effects that the non-
commutative vertex modification can have on angular dis-
tributions, we consider tree-level scattering in 	4 theory,
defined by the Lagrangian

L �
Z
d6�W���

�
�

1

2
	�@�@

� 	m2
	�	

�

4!
�	 ? 	��	 ? 	�

�
: (3.9)

One star product has been removed from the interaction
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term via integration by parts. Consider tree-level, 		 !
		 scattering in the center-of-mass frame: no example
could be simpler in the commutative limit. In the non-
commutative case, the momentum-space Feynman rule for
the 	4 vertex has the form

iM�2 �

4!

Z
d6�W���

�
exp

�
�
i
2
�p1 �� �p2	p3 �� �p4�

�

	11other permutations
�
; (3.10)

where the momenta are outwardly directed. Now assume
that p1 and p2 correspond to incident particles with beam
energy E and three-momentum magnitude p. One can
show that each of the 12 terms in Eq. (3.10) can be written
in the same form as Eq. (3.3), with either ~A or ~B identically
zero. Thus, using the symmetry of the vertex function
under ~A$ ~B, one can express each in terms of the function
Iv���, defined in Eq. (3.5), for some choice of argument �.
We find

iM � i

3
�Iv��1� 	 Iv��2� 	 Iv��3��; (3.11)

where

�1 �
���
2
p
Ep�1	 cos�0�

1=2;

�2 �
���
2
p
Ep�1� cos�0�

1=2; �3 � p2 sin�0;
(3.12)

and where �0 is the center-of-mass scattering angle. This
leads immediately to the differential cross section
-5
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d�
dc�0

�
2

288�s

�
Iv

� ���
s
p

2
���
2
p �s� 4m2

	�
1=2�1	 c�0

�1=2

�

	 Iv

� ���
s
p

2
���
2
p �s� 4m2

	�
1=2�1� c�0

�1=2

�

	 Iv

�
1

4
�s� 4m2

	��1� c
2
�0
�1=2

��
2
; (3.13)
with c�0
� cos�0. This result reduces to the commutative

one at threshold, where the argument of Iv vanishes in each
of the three terms. The behavior of this differential cross
section for a variety of

���
s
p

is shown in Fig. 2. The differ-
ential cross section is normalized to half the total cross
section, which is the value of d�=d cos� at any angle in the
limit where the amplitude becomes isotropic. The form of
the results in Fig. 2 can be understood by noting that only
when cos� � 
1 are there contributions to the differential
cross section that are unsuppressed in the large

���
s
p

limit.
The effect of the tree-level noncommutative vertex modi-
fication is therefore to suppress dramatically 		 produc-
tion transverse to the beam direction. We will see similar
modifications to differential cross sections in the more
realistic examples to be considered in the next section.
IV. NCQED

We now consider the application of our approach to
noncommutative QED. As we mentioned earlier, we focus
on the original proposal of Hayakawa [11], which has been
studied as a realistic phenomenological theory by a number
of authors [5]. The Lagrangian is given by
096005
L �
Z
d6�W���

�
� �i6@�m� �

1

4
F��F��

	
e
2
� � 6A ?  	 H:c:�

�
; (4.1)

where, as in Sec. III, we have removed one star product via
integration by parts and the discarding of surface terms. In
this theory, the noncommutative field strength is given by

F�� � @�A� � @�A� � ie�A� ;?A��: (4.2)

Aside from the modification to the ordinary two-fermion–-
one-photon vertex, this theory has photon self interactions.
Unlike the Hayakawa formulation, however, the three-
photon vertex is absent. This interaction is proportional
to sin�pi � � � pj=2�, where the pi are external momenta,
but vanishes upon integration against the weighting func-
tionW���, which is an even function of ���. Here we focus
on dilepton production, Bhabha scattering, and diphoton
production, processes which are unaffected by the new
four-photon vertex at lowest order.

We may write the Feynman rule for the two-fermion–-
one-photon vertex as

ie��
Z
d6�W��� exp

�
i
2
p1 � � � p2

�
� ie��I�p1; p2�;

(4.3)

where p1 and p2 are the momenta of the incoming and
outgoing fermions, respectively. As we will see below, the
function I�p1; p2� may be reexpressed in terms of the
vertex integral Iv��� given in Eq. (3.5), for an argument
� that depends on the process in question.

A. Dilepton production, e	e� ! l	l�

The matrix element for Bhabha scattering that follows
from Eq. (4.3) is:

iM � e2 �u�p3�i��I�p3; p4�v�p4�

�
�ig��
q2 	 i�

�v�p2�i�
�I�p1; p2�u�p1�

� e2 �v�p2�i�
�I�p2; p4�v�p4�

�
�ig��
q02 	 i�

�u�p3�i��I�p1; p3�u�p1�: (4.4)

Here, u and v represent the momentum-space spinor wave
functions for the fermions and antifermions, respectively,
and the propagator momenta are given by q � p1 	 p2

and q0 � p1 � p3. The four vertex functions I�pi; pj� can
be evaluated using the same approach presented in Sec. III.
The functions I�p1; p2� and I�p3; p4� are straightforward to
simplify since the incoming and outgoing particles are
travelling in opposite directions in the center-of-mass
frame, so that ~B � 0 and ~A � s=4. Hence,

I�p1; p2� � I�p3; p4� � Iv�s=4�; (4.5)
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where s is the usual Mandelstam variable. Here, and
throughout this section, we ignore the fermion masses,
which are entirely irrelevant given the collider energies
of interest (for example, those of a TeV scale linear col-
lider). Evaluating the remaining functions, I�p1; p3� and
I�p2; p4�, requires a little more effort. Both are Lorentz-
invariant functions of the given momenta, so that the result
of the integration does not depend on the frame in which it
is performed. For example, we can equate I�p1; p3� to an
integral evaluated in a frame where ~B � 0, simplifying the
calculation. In this case, we can work in the p1 rest frame,
which is related to the center-of-mass frame by a boost

p1 �

E
0
0
p

0
BBB@

1
CCCA! �p1 �

m
0
0
0

0
BBB@

1
CCCA; (4.6)

where

� �

� 0 0 ���
0 1 0 0
0 0 1 0
��� 0 0 �

0
BBB@

1
CCCA; (4.7)

where � � �1� �2��1=2 with � � p=E. On the other
hand, �p3 has the spatial components
�0; p sin�0;��p�1� cos�0��, where �0 is the center-of-
mass scattering angle. After taking the limit m! 0, the
two vectors ~A and ~B become �0; 0;�E2�1� cos�0�=2� �
�0; 0; t=4� and �0; 0; 0�, respectively. Hence,

I�p1; p3� � I�p2; p4� � Iv�t=4�: (4.8)

Note that the simplification of I�p2; p4� is accomplished
using the approach just described, but by evaluating the
integral instead in the p2 rest frame.

Squaring the matrix element and summing (averaging)
over the final (initial) fermion spin states gives

jMj2 � 2e4

�
I4
v�s=4�

�
t2 	 u2

s2

�
	 2I2

v�s=4�I2
v�t=4�

u2

st

	 I4
v�t=4�

�
u2 	 s2

t2

��
; (4.9)

where the Mandelstam variables are defined by

s � �p1 	 p2�
2; t � �p1 � p3�

2;

u � �p1 � p4�
2:

(4.10)

The same results for e	e� ! �	�� can be obtained
easily by discarding the t-channel contribution in
Eq. (4.9), again ignoring all fermion masses. The spin-
averaged, squared matrix element is:

jMj2 � 2e4I4
v�s=4�

�
t2 	 u2

s2

�
: (4.11)

The differential cross section for both processes can be
096005
obtained by multiplying the results above by the proper
phase space factor:

d�
d cos�0

�
jMj2

32�s
: (4.12)

Equations (4.11) and (4.12) allow us quickly to place a
bound on the noncommutativity scale. Noting that at the
highest LEP II energies (� 189 GeV), the cross section for
dimuon production agrees with the standard model predic-
tion up to 5% experimental error bars [27], it is reasonable
to require that I4

v�s=4� * 0:9 which leads to the bound

�> 172 GeV 95%C:L: (4.13)

This is consistent with the bound on �NC found in
Ref. [27], and quoted in Eq. (1.9). Note that we cannot
adopt the same definition of the noncommutative scale as
Ref. [27] because Eq. (1.8) is vanishing for the present
choice of weighting function.

B. Diphoton production, e	e� ! ��

Diphoton production is particularly interesting in this
model since it is different from canonical noncommutative
theories (there is no three-photon vertex) and from the
theory described in Ref. [27] (there is no two-photon–-
two-fermion vertex). The matrix element for diphoton
production can be written as:

iM � e2 �v�p2�i��I�p2; p4�

�
i�6q	m�

q2 �m2 	 i�
i��I�p1; p3�u�p1��


��p4��


��p3�

	 e2 �v�p2�i��I�p2; p3�

�
i�6q0 	m�

q02 �m2 	 i�
i��I�p1; p4�u�p1��


��p3��


��p4�:

(4.14)

Here, p1 (p2) is the momentum of the incoming fermion
(antifermion), while p3 and p4 are the photon momenta; u
and v are the momentum-space spinor wave functions for
the fermion and antifermion, �� represents a photon po-
larization vector, and the propagator momenta are given by
q � p1 � p3 and q0 � p1 � p4. Again we may simplify
the factors of I�pi; pj� by boosting to appropriate Lorentz
frames. One finds, in addition to Eq. (4.8), that

I�p1; p4� � I�p2; p3� � Iv�u=4�; (4.15)

from which it follows that

d�
d cos�0

�
��
s

�
I4
v�t=4�

�
u
t

�
	 I4

v�u=4�
�
t
u

��
: (4.16)

This cross section shows the same suppression in direc-
tions transverse to the beam that we encountered in the
case of 	4 theory. This is displayed in Fig. 3, for a linear
e	e� collider with

���
s
p
� 1:5 TeV, for a range of non-
-7
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FIG. 3 (color online). Differential cross section for diphoton
production at a linear collider with
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commutative scales �. The standard model result is recov-
ered in the large � limit, and the figure shows discernible
deviations that could, in principle, be extracted via a fit to
the eventual data.

C. Coulomb potential

It is interesting to note that the high-momentum modi-
fication of the photon-fermion-fermion vertex alters the
Coulomb potential at short distances. We evaluate the
potential by studying the nonrelativistic reduction of the
t-channel scattering amplitude of two distinguishable fer-
mions. For each vertex, pi � � � pf is such that � � j ~Aj �
mj ~qj=2 and j ~Bj � j ~pi � ~qj, where ~q is the spatial momen-
tum transfer. We therefore may discard ~B in the nonrela-
tivistic reduction, since it is higher order in pi=m� 1. In
momentum space, the usual form for the nonrelativistic
potential is modified by an additional factor of I2

v�mq=2�:

V�r� �
e2

4�2ir

Z 1
�1

dq
1

q
exp�iqr�I2

v�mq=2�: (4.17)

Normally, one completes this calculation by performing a
complex contour integration, with the contour closed in the
upper half plane. In this case, one cannot argue that the
contour at infinity has a vanishing contribution to the
result, due to the additional function in the integrand. It
is straightforward to evaluate this integral numerically.
Here we will simply state the important qualitative fea-
tures. At large distances, the Coulomb potential is not
altered; this region corresponds to small q for which
I2
v�mq=2� � 1. On the other hand, as one approaches the

origin, one finds that V�r� remains nonsingular. Writing
096005
Eq. (4.17) as

V�r� �
e2

4�2r

Z 1
�1

dq
sinqr
q

I2
v�mq=2�; (4.18)

one may use the fact that limr!0 sinqr=r � q to see that

V�0� �
e2

4�2

Z 1
�1

dqI2
v�mq=2� �

2�
�m

Z 1
�1

d�I2
v���:

(4.19)

The last integral is finite and is O��2�=��m��, for our
parameter choice a=2 � b � c � �4. Hence, the singu-
larity at the origin is not present, a result that one might
attribute to the fuzziness of the noncommutative space. It is
important to note that this result is independent of the
detailed form of W��� and would be obtained for any
weighting function with finite volume in momentum space,
since such a function provides an O��� ultraviolet cutoff in
Eq. (4.17).
V. FOUR-FERMION INTERACTIONS

In the theories that we have considered, the Lorentz-
invariant, noncommutative modification to the tree-level
vertices leads to a suppression in scattering cross sections
at energies above the typical scale of the new physics. It is
not unreasonable to guess that, at least in some theories, a
violation of unitarity in the commutative limit may be
cured by the additional high-momentum suppression of
the noncommutative vertex. In this subsection, we will
give one example where this is the case, working at tree
level.

Consider a theory of two distinguishable fermions,  1

and  2, with the nonrenormalizable interaction Lagrangian

L int �
1

M2 �
� 1 ?  1�� � 2 ?  2�: (5.1)

We may assume that the fermions have masses m1 and m2,
though we will only be interested in the behavior of the
scattering cross sections at high energies, where these
masses are irrelevant.

The possible tree-level, two-into-two scattering pro-
cesses are fermion-antifermion annihilation, and the scat-
tering of fermions and/or antifermions of a different type.
With the interaction written as in Eq. (5.1) (again with one
star product removed), the relevant differential cross sec-
tions in the center-of-mass frame and in the high-energy
limit are given by

d�
dc�0

� i � i !  j � j� �
s

32�M4 I
2
v�s�1� c�0

�1=2=�2
���
2
p
��;

(5.2)
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d�
dc�0

� i j !  i j� �
s�1� c�0

�2

128�M4 I2
v�s�1� c

2
�0
�1=2=4�;

(5.3)

and

d�
dc�0

� i � j !  i � j�

�
s�1� c�0

�2

128�M4 I2
v�s�1� c�0

�1=2=�2
���
2
p
��; (5.4)

for i � j. Clearly, for any �0 � 0 or �, these differential
cross sections are suppressed in the large

���
s
p

limit: the
exponential damping of Iv above the noncommutative
scale wins over the s=M4 growth of the commutative result.
This conclusion remains unchanged when one integrates
over the center-of-mass scattering angle �0. Provided that
the scale of noncommutativity is not far in the ultraviolet,
one can prevent an unlimited growth in the total cross
section that would exceed the unitarity bounds. To quantify
this, one may consider the partial-wave decomposition

�
2
d�
d�

�
1=2
�

1���
s
p

X1
J�0

�2J	 1�PJ�cos�0�MJ; (5.5)

where the partial-wave amplitudes must satisfy the unitar-
ity constraint jMJj< 1 [31]. In all of the examples above,
we find that s-wave unitarity provides the tightest bound,
which numerically is consistent with the inequality

M * 0:4� (5.6)

for our canonical parameter choice a=2 � b � c � �4.
Thus, if M is not far below the scale of noncommutative
physics, one need not worry that this theory will violate
unitarity at tree level.

VI. CONCLUSIONS

In this paper, we have revisited a proposal for construct-
ing Lorentz-invariant, noncommutative field theories.
Canonical noncommutative field theories involve a
Lorentz-violating parameter, while nature shows no indi-
cation that Lorentz-invariance is broken. Experimental
limits on the amount of Lorentz violation that is tolerable
in the low-energy effective theory force the typical energy
scale of the noncommutative interactions to be above the
center-of-mass energies that can be probed directly in
planned collider experiments. This motivated the proposal
in Ref. [23] to formulate a Lorentz-conserving alternative
to the canonical models.

As we have reviewed earlier, this proposal involves
extending the coordinate algebra by promoting the non-
commutativity parameter of the canonical theories to a
fictitious coordinate. The mapping of this algebra into a
field theory is again accomplished through a star product,
but the new coordinates are integrated in the action with a
096005
weighting factor, which sets the scale of the noncommu-
tative physics. The resulting four-dimensional effective
theory remains Lorentz invariant and a function of ordinary
coordinates only. Unlike previous phenomenological work
based on this approach, we have considered theories in
which the prescription described for constructing a
Lorentz-invariant noncommutative theory could be imple-
mented and studied without recourse to a low-momentum
expansion. In particular, this allows us to study how cross
sections behave as typical energies exceed the noncommu-
tative scale, as we have done in both toy models (Yukawa
and 	4 theory) and the more realistic case of noncommu-
tative QED for fields in the lepton sector, where the matter
have charges 
1 or 0.

Interestingly, we find that cross sections drop quickly as
the center-of-mass energy exceeds the noncommutative
scale. Roughly speaking, the noncommutative vertex
modification smears out the pointlike interaction so that
at high center-of-mass energies the incoming scatterer sees
less and less of the target. Equivalently, the prescription for
integrating over the fictitious � coordinates with the
weighting function W��� introduces form factors in the
tree-level vertices of the theory. As we saw in a number of
cases, this also has consequences for the angular distribu-
tions of scattering processes, since the various contribu-
tions to a scattering amplitude with differing angular
dependence in the commutative limit may each receive
different noncommutative corrections. The modifications
to the QED processes of dilepton production, Bhabha
scattering, and diphoton production were all presented.
While Ref. [27] evaluated the lowest-order effects of non-
commutativity on these processes in one version of non-
commutative QED (which is appropriate for determining
the collider bounds on the model), the results presented
here would be useful for a qualitative comparison to the
data if, for example, a 1.5 TeV International Linear
Collider (ILC) were to discover and study noncommutative
physics at a scale comparable to its center-of-mass energy.

Finally, we noted that a modification to a tree-level
interaction that suppresses a given cross section at high
center-of-mass energies may alter one’s conclusions as to
whether the cross section ever violates the constraints from
unitarity of the S-matrix. We demonstrated this in the case
of a simple four-fermion interaction. Since our vertex
modification introduces an exponential suppression factor
at high

���
s
p

, then a theory whose cross section grows only as
a power

���
s
p

in the commutative limit, will not grow indef-
initely in the noncommutative case. Using the constraint
from partial-wave unitarity, we obtained a bound on the
coefficient of the four-fermion interaction so that the the-
ory would remain unitary for arbitrarily large

���
s
p

. Whether
this could be an avenue for constructing a new type of
Higgsless theory is an interesting question, but one that
first requires a more tractable, all-orders formulation of
noncommutative standard model.
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APPENDIX

The integrals in Eq. (3.5) may be evaluated, yielding

Iv��� �
16�2N
a�

�exp���
2

4b �
����
�
p

Erfi� �
2
��
b
p �

2c
���
b
p 	

�

c2

X1
0

n	 1

2n	 1

�

�
� b2c��1�

b
2c�

2n	1 	 � b2c�
2n	2

�1	 b2

4c2�
2	n

�
1F1�2	 n; 3=2;

� �2=�4c	 b2=c��� � �b$ a�
�
; (A1)

where Erfi is an imaginary error function, and 1F1 is a
confluent Hypergeometric Function of the first kind. This
function is plotted in Fig. 4.
a=2 � b � c � �4.

FIG. 4 (color online). Plot o
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