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Interactions of multiquark states in the chromodielectric model
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We investigate 4-quark �qq �q �q� systems as well as multiquark states with a large number of quarks and
antiquarks using the chromodielectric model. In the former type of systems the flux distribution and the
corresponding energy of such systems for planar and nonplanar geometries are studied. From the
comparison to the case of two independent q �q-strings we deduce the interaction potential between two
strings. We find an attraction between strings and a characteristic string flip if there are two degenerate
string combinations between the four particles. The interaction shows no strong Van-der-Waals forces and
the long range behavior of the potential is well described by a Yukawa potential, which might be
confirmed in future lattice calculations. The multiquark states develop an inhomogeneous porous structure
even for particle densities large compared to nuclear matter constituent quark densities. We present first
results of the dependence of the system on the particle density pointing towards a percolation type of
transition from a hadronic matter phase to a quark matter phase. The critical energy density is found at
"c � 1:2 GeV=fm3.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is the theory for
color charged quarks and gluons. This theory has been
tested successfully in the regime of large momentum trans-
fer such as in deep inelastic scattering, where perturbative
methods can be used due to asymptotic freedom. It is a
common belief that QCD should be able to describe all
systems ruled by strong interactions. These cover a wealth
of different regimes ranging from the dynamics of quasi
free quarks and gluons in a quark gluon plasma (QGP) at
high temperatures or densities, over the formation of had-
rons out of quarks to the interactions between those color
neutral hadrons. However, in this latter region of small
relative momenta, where the confinement phenomenon
plays a dominant role, no convincing analytical techniques
have been established yet. The only calculations from first
principles are restricted to QCD lattice simulations, where
the results are limited due to today’s computing power.

Therefore one still has to rely on models, that describe
the interactions between quarks and gluons bound to had-
rons phenomenologically and that include confinement.
Such models are, for example, the well known MIT bag
model [1,2], where quarks are confined by a given external
cavity or the quark molecular dynamics model, [3–5],
where quarks follow the Hamiltonian dynamics subject
to a linear rising potential between quarks (q) and anti-
quarks � �q�. Another approach is the model of the dual super
conductor known also dual Abelian Higgs model or dual
Ginzburg-Landau model [6,7] where confinement is
achieved by monopole condensation [8,9] and an accom-
panying magnetic supercurrent. The model of the stochas-
tic vacuum relies on the calculation of Wilson loops in a
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Gaussian approximation [10–12] which leads to a linearly
rising q �q-potential.

In this work we choose the framework of the chromodi-
electric model (CDM) [13–15]. Unlike the MIT bag
model, CDM has the benefit, that bags with a smooth
surface are created self-consistently and dynamically out
of the underlying field equations, due to the presence of
colored quarks.

The CDM has already been used to calculate properties
of the nucleon and its low lying resonances like masses,
magnetic moments and the axial-vector/vector coupling
constant ratio [16]. In [17–19] a description of q �q-strings
was given, and in [20] the parameters of the CDM were
adjusted to reproduce results of lattice calculations [21,22].
In the same work, the flux tube structure of a baryon like
qqq-bag has been studied. Further, within the model, the
interactions between q �q-strings [23] and the nucleon-
nucleon interaction in vacuum and in nuclear matter [24–
28] has been discussed. In another approach the model has
been used in a transport theoretical framework to describe
the dynamics of quarks bound in nucleons and strings
[29,30]. In [31] the disintegration of q �q-pairs in strong
color electric fields has been observed. A full molecular
dynamical simulation of hadronization out of a gas of
quarks and gluons has been presented in [32].

In this paper we will analyze the interactions between
the color electric flux tubes for a wide class of different
quark configurations. In a previous paper [20] we have
given the structure of meson like q �q-states and baryon
like qqq states. The model has been successfully adjusted
to reproduce lattice results for both the q �q-potential and the
transverse shape of the flux tubes. It is an open question,
how the flux tubes of the basic white two- and three-
particle clusters interact with each other. In order to under-
stand the interactions we extend our previous analysis to
-1 © 2006 The American Physical Society
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configurations with more than three particles. The easiest
of such systems, the qq �q �q -system, already develops two
distinct bags, that may interact with each other. We can
study those systems for different spatial quark configura-
tions. Besides this, the system is still simple enough to be
treated on the lattice. In fact there are lattice results for the
four-particle system in SU(2) [33] and also in SU(3) [34].
Where possible, we will compare our results with those
obtained on the lattice. Knowing the interactions between
the flux tubes of color neutral objects, it is an interesting
issue, how this interaction governs the transition from a
system of distinct white hadrons to a system of interacting
colored quarks in a quark plasma. It is an old prediction of
QCD, that there is a rapid transition for increasing tem-
perature [35]. This transition to the quark gluon plasma
(QGP) has been explicitly seen for vanishing baryon
chemical potential as a steep rise of the thermodynamic
pressure of the system at a temperature T �
�170–180� MeV [36]. For nonzero baryo-chemical poten-
tial, lattice calculations suffer from technical problems and
cannot be easily performed up to now. See [37,38], where
the transition temperature was explored for small chemical
potential. However, for increasing baryon densities one
expects that the hadrons start to overlap and the quarks
are free over a much larger volume and a transition to a
quark gas might occur as well. In contrast, in our treatment
of the CDM we have only static configurations and there-
fore we do not describe quark systems at nonzero tempera-
ture. But it is possible to vary the quark density and study
many-quark systems and the behavior of the very dense
flux tubes.

The paper is organized in the following way. In Sec. II
we introduce briefly the chromodielectric model, give the
equations of motion for the underlying fields as well as the
corresponding field energies. We solve these equations
numerically in three spatial dimensions. We also discuss
the color structure of the model and its connection to the
SU(3) color algebra. Section III is devoted to the long
range behavior of fields of q �q-strings, which extends the
discussion of the bulk properties of strings in [20]. We will
show the characteristic exponential decay of all fields with
the distance from the string center. In Sec. IV we show the
interactions between two q �q-strings of various lengths and
with relative orientations to each other. We first show our
results for the color electric fields in Sec. IVA and the
distribution of the energy density in Sec. IV B. The dis-
tortion of the one q �q-string under the influence of the other
one is shown explicitly. For simplicity, we concentrate on
the discussion of strings that are parallel or antiparallel to
each other. In this case, all particles are lying in a single
plane. However, as the calculations are done in three
dimensions, we are able to study particle configurations
too, that are extended in three space dimensions. We will
show the results of the calculations for these tetrahedronic
configurations as well. In Sec. IV C we give the interaction
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potential of the two strings as calculated from field ener-
gies. Again we concentrate on the potential for plane
configurations but we will discuss also a wide range of 3-
dimensional configurations. We will extract the static
string interaction potential which can be compared to
lattice calculations. In Sec. V we present first results on
static multiparticle systems. We show the heterogeneous
structure of the emerging flux tubes and analyze the scaling
of the multiquark properties with the particle density. A
qualitative description of the deconfinement phase transi-
tion is given. Finally we discuss our results in Sec. VI and
give our summary.
II. THE CHROMODIELECTRIC MODEL

As there is no confinement in quantum electrodynamics,
one believes that confinement is due to the non-Abelian
nature of QCD. Although the detailed mechanism of con-
finement has not been revealed within QCD, there is strong
evidence for it from lattice QCD. The most prominent
result is the linear rising potential between a static quark
antiquark pair at zero temperature [39,40] and at finite
temperature [41]. In addition, the formation of long, string
like flux tubes between a q �q-pair has been seen both in
SU(3) [42,43] and in SU(2) [21], where the results are
much more precise for numerical reasons. Despite the
fact that the structure of the QCD vacuum is highly com-
plicated, its long range behavior might be transparent. In
the CDM it is assumed that this vacuum behaves as a
perfect dielectric medium described by a vanishing dielec-
tric constant �vac. Dual to a normal superconductor, where
magnetic fields are expelled from the superconducting
phase, in CDM the color electric fields are expelled from
the QCD vacuum. In the presence of color charged quarks,
the resulting color fields are compressed into flux tube like
excitations of the vacuum. In [24,44,45] a renormalization
group derivation was given for the lattice colordielectric
model, which has a scalar confinement field, and keeps
strongly coupled non-Abelian fields in the large distance
limit. CDM is formulated in terms of two Abelian color
fields A�;a only and an additional scalar confinement field
�. This scalar field is designed to already include the non-
Abelian effects of the gluon sector. There are indications
that in the long range limit only the Abelian components
contribute to the observable quantities: ’t Hooft suggested
in [8] the maximal Abelian gauge for projecting out a
Cartan subgroup believed to be relevant for infrared as-
pects of QCD. In [46–48] further support for the Abelian
dominance was found due to the mass generation of off-
diagonal gluons. In [49,50] the string tension in the
Abelian approximation was reproduced within some per-
cent deviation from the full value.

Following this reasoning, CDM is formulated in a
Cartan subgroup of QCD reducing the independent color
fields to a set of two commuting field A�;a with a 2 f3; 8g.
These two fields are connected to the Gell-Mann matrices
-2



FIG. 1. The color charge �q3; 2
���
3
p
q8� with respect to the color

fields A3;8 for the three colors r, g, b.
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�3;8 which commute with each other in the standard rep-
resentation. Confining effects are merged into the dielectric
coupling of these gluon fields to the dielectric medium
generated by the confinement field �. The CDM
Lagrange density can now be given as

L � Lg �L�; (1a)

Lg � �
1
4����F

a
��F��;a � gsja�A�;a; (1b)

L� �
1
2@��@

���U���; (1c)

F��;a � @�A�;a � @�A�;a; a 2 f3; 8g; (1d)

where A�;a � ��a; ~Aa� is composed out of the color elec-
trostatic potential �a and the vector potential ~Aa.

In the following we are interested especially in the
interactions of the electric flux tubes, thus we have omitted
the dynamic term for the quark degrees of freedom. Quarks
enter into the model only via the external color current
j�;a � ��a; ~|a� with a coupling strength gs. Furthermore
we treat the quarks as infinitely heavy, static sources.
Therefore the color current vanishes ~|a � 0. The color
charge density �a� ~x� �

P
kq

a
kw� ~x� ~xk� is given as a sum

over all quarks with two color charges qa and a spatial
distribution w� ~x�. In principle the quarks are pointlike
objects, but for numerical reasons we assign a Gaussian
distribution w� ~x� � �2�r2

0�
�3=2 exp�� ~x2=2r2

0� with a small
width r0 � 0:02 fm, which is on the order of the spacing of
the numerical grid used in the calculations. The grid spac-
ing chosen is small compared to all physical sizes like the
flux tube radius.

In the Abelian approximation the quarks still have three
different colors. These are expressed as three-dimensional
unit vectors in the fundamental representation of color
space as jci 2 fjri; jgi; jbig. The color charges are then
given by the diagonal entries of the corresponding gener-
ators ta � �a=2, i.e. qa � hcjtajci. Formulated differently,
the two color charges �q3; q8� are given by the weight
vectors of QCD [4]. The numerical values of the color
charges can be read off from Table I and are depicted in
Fig. 1.

The model inherits a U�1� �U�1� gauge symmetry and
a global symmetry corresponding to finite rotations in
color space [20] which is a remnant of the original SU(3)
symmetry of QCD. Only the Lagrange density and the
energy density, which is stated explicitly later on, are
TABLE I. The color charges qa of the three colors with respect
to the two Abelian color fields. The charge of the anticolors are
given by the negative of the color charges.

Color q3 q8

Red 1=2 1=�2
���
3
p
�

Green �1=2 1=�2
���
3
p
�

Blue 0 �1=
���
3
p
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invariant under these rotations but not the color fields
themselves.

The color field tensor F��;a (a 2 f3; 8g) in Eq. (1d)
defines the color electric and magnetic fields ~Eai �
�F0i;a � ��r�a � @t ~A

a�i and ~Bai � �
1
2 "ijkF

jk;a �

�r� ~Aa�i respectively. With the definition of the medium
fields ~Da � ���� ~Ea and ~Ha � ���� ~Ba the equations of
motion following from Eq. (1) are given by

r � ~Da � gs�
a; (2a)

r� ~Ha � @t ~D
a � gs ~|

a; (2b)

r� ~Ea � @t ~B
a � 0; (2c)

r � ~B � 0; (2d)

�@2
t �

~r2
���U0��� � �1

4�
0���Fa��F��;a: (2e)

With ~|a � 0 and the assumptions that all time derivatives
vanish exactly and ~Aa � 0, the magnetic field is ~Ba � 0
and the equations of motion (e.o.m.) can be cast into the
following form:

r � �����r�a� � �gs�a; (3a)

r2��U0��� � �
1

2

�0���

�2���
~Da � ~Da: (3b)

The energy of the system for static configurations is given
by

Etot � Eel � Evol � Esur; (4a)

Eel �
1

2

Z
d3r ~Ea � ~Da; (4b)

Evol �
Z
d3rU���; (4c)

Esur �
1
2

Z
d3r�r��2; (4d)

where we have labeled the different energy parts as total
-3
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energy, electric energy, volume energy, and surface energy,
respectively, as explained in [20].

The confinement field is exposed to a quartic self-
interaction

U��� � B� a�2 � b�3 � c�4: (5)

Two specific forms with different parameters B, a, b, c are
shown in Fig. 2. The generic form of U develops two
(quasi-) stable points, which separates the two distinct
phases of the model. The first defines the vacuum expec-
tation value of the scalar field� � �vac and is associated to
the energy density of the confined phase with U��� � 0.
The second at � � 0 is associated to the deconfined phase
with an energy density U�0� � B. We refer to the former
phase as the nonperturbative vacuum and to the latter as the
perturbative vacuum. Given the generic form of the poten-
tial U and the vacuum value �vac, there are only two other
independent parameters describing U. We choose the per-
turbative value B � U�0� and the curvature mg �

U00���j�vac
of the potential at �vac, where the primes denote

derivatives with respect to�.mg behaves as the mass of the
confinement field � and can be interpreted as the mass of a
glueball, as all nonperturbative gluonic effects are col-
lected in the scalar field of our model. Another possible
interpretation is to relate the mass of the confinement field
to the mass of the off-diagonal gluons generated in the
maximal Abelian gauge [46,48]. The parameters a, b, c
appearing in Eq. (5) can be expressed as

a �
1

2

m2
g�

2
vac � 12B

�2
vac

; (6a)

b � �
m2
g�2

vac � 8B

�3
vac

; (6b)

c �
1

2

m2
g�2

vac � 6B

�4
vac

; (6c)
 0
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FIG. 2. The scalar potential U��� for the two different parame-
ter sets PS1 and PS2 from [20] and stated explicitly in Table II
further down.
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with the additional constraint, that a � 0 to ensure that
there is no relative maximum at � � 0.

The perturbative and the nonperturbative phases differ
not only with respect to the corresponding energy densities
U�0� � B and U��vac� � 0, respectively, but also in their
dielectric behavior. In the former, the dielectric constant
��� � 0� � 1 allows for freely propagating fields,
whereas in the latter ���vac� � �vac 	 1 and the electric
fields are suppressed. �vac � 0 would lead to perfect
screening of the color fields and the nonzero but small
value of �vac is introduced for numerical reasons [20]. The
dielectric function ���� is designed to interpolate
smoothly between the two values and we choose the fol-
lowing parameterization:

��s� �

8><>:
1� k3s3 � k4s4 � k5s5; 0 
 s 
 1
1; s < 0
�vac; s > 1

; (7)

with s � �=�vac and with coefficients

k3 �
1
2�29�vac � 20�

k4 � �15� 23�vac�

k5 �
1
2�19�vac � 12�

9>=>; ���!�vac!0

8><>:
k3 � �10
k4 � 15
k5 � �6

; (8)

In the limit �vac ! 0 the nonperturbative vacuum behaves
as a perfect dielectric medium and all electric fields are
expelled out of regions where � � �vac. Note, however,
that �vac � 0 is numerically not feasible. As discussed in
[20] there are different possibilities to parameterize ����.
With the polynomial form chosen here, the results as
shown below do not depend on the exact value of �vac,
once it is smaller than �vac < 10�3. In this work we choose
�vac � 10�4.

The fields�a and� and the corresponding field energies
are calculated numerically according to Eqs. (3) and (4)
using the multigrid FAS-algorithm given in [20,51,52].

The dependence of the numerical results on the model
parameters was studied in detail in [20]. Different sets of
parameters were given that reproduce the Cornell potential
for a q �q-pair and simultaneously the profile of the color
electric string. The Cornell potential was found in heavy
quarkonium spectroscopy [53–56] and was reproduced on
the lattice both in SU(2) [21] and in SU(3) [39] and is given
by

Vc�R� � 2CFE0 � CF
	
R
� 
R: (9)

We focused on reproducing the string tension 
 �
980 MeV and the Coulomb coefficient 	 � 0:3. Here R
is the distance between the quark and the antiquark and
CF � 1=3 is the corresponding color factor in the Abelian
approximation. The constant and finite term E0 is due to
the nonzero width of the particles. The transverse profile
was calculated on the lattice [21], in the framework of the
dual color superconductor [6,57] and in the Gaussian sto-
chastic model [11,12]. The profile is rather well described
-4
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FIG. 3. The logarithmic profile of the string. Shown is the
profile of the confinement field � � �vac � � [solid line,
cf. Eq. (11)] and of the 3-component of the electric field ~D3.
The slope of the ~D3-field is much steeper and is equal to that of
the third power �3 of the confinement field (dotted line).

TABLE II. In the first 5 columns we show the CDM parameter sets used in the description of
q �q-strings and qqq-baryons, in the last 4 columns we list the resulting values for the string
tension 
, the Coulomb-parameter 	 and the shape parameters of the profile, i.e. the width �g
and the steepness parameter n as explained in the text.

No. B1=4 [MeV] mg [MeV] �vac�fm
�1� gs �vac 
 [ MeV

fm ] CF	 �g [fm] n

I 260 1000 1.29 2.0 10�4 980 0.18 0.33 2.3
II 240 1500 1.13 1.8 10�4 980 0.12 0.34 3.1
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by a Gaussian-like parameterization

fg��� � Ng exp�� ln2��=�g�
n�; (10)

with a half width �g  0:3 fm and a steepness parameter
ranging from n � 2:3 to n � 3:2. In Table II we give two
of the parameter sets used in [20], together with the given
key quantities of the q �q-string.

All basic quantities of the Cornell potential and the
profile of the q �q-string agree either with lattice results or
with results obtained in heavy meson spectroscopy, except
for the Coulomb constant 	 which is somewhat small in
our results.

III. LONG RANGE BEHAVIOR OF q �q-STRINGS

In [20] we performed a detailed analysis of q �q-strings
with the main focus on the bulk properties of the strings
such as the string tension 
 and the width of the strings �g.
The profile of the energy density, which we determine
numerically by solving the Eqs. (3), was well described
by a generalized Gaussian form as in Eq. (10). On a linear
scale the deviations of the numerical results to the
Gaussian fit were hardly seen. However, this parameteri-
zation does not reproduce the long range behavior of the
string fields far away from the string axis. Instead both the
electric fields ~Da and the confinement field � follow an
exponential as can be seen in Fig. 3. It should be noted that
the exponential tail of the string fields does not influence
the results obtained in [20]. This exponential behavior can
be explained quite naturally, if one assumes, that the elec-
tric fields die out on a much shorter characteristic length
scale than the confinement field. With this assumption the
source term in the right hand side of Eq. (3b) vanishes. For
small deviations

� � �vac � � (11)

of the confinement field from its vacuum value we can
make a Taylor expansion of U��� around �vac leading to
U���  1

2m
2
g��� �vac�

2.
For strings with very large q �q-separations R we can

recast Eq. (3b) into

1

�
@
@�

�
�
@�
@�

�
�m2

g� � 0; (12)

where � is the coordinate transverse to the string axis and
where we have used cylindrical symmetry. The regular
096004
solution of this equation is

���� � �0K0�mg��  �0

������������
�

2mg�

s
e�mg�; (13)

where K0�x� is the modified Bessel function of the second
kind and the second relation holds for large � and �0 is
some constant. The parameter mg is therefore directly
connected to the screening mass m� � mg of the confine-
ment field or to its screening length � � 1=mg. The electric
field is ~Da � ���� ~Ea. In the chosen parameterization the
function ���� itself and its first two derivatives at� � �vac

are proportional to the numerically small number �vac. For
small deviations � � �vac � � we expect

���� � �0��=�0�
3 �O��vac�; (14a)

Da��� � �0��=�0�
3E � �0

������������
�

2mg�

s 3

e�mD�E; (14b)

mD � 3mg; (14c)

where �0 is a proportionality constant and E is the electric
field which varies only slowly with �. The screening mass
of the electric displacement is therefore mD � 3m� �

3mg and the field is screened on a characteristic length
-5
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scale � � 1
3�. This justifies a posteriori to neglect in

Eq. (12) the source term on the right-hand side of
Eq. (3b). We have added in Fig. 3 the third power �3 of
� (dotted line) which shows the same slope as D�a�3�

(dashed line). To check this result numerically we have
fitted the above analytical solutions in Eqs. (13) and (14b)
to both the confinement field � and the electric displace-
mentDa obtained in our numerical calculations leaving the
parameters m� andmD as fit parameters. In Fig. 4 we show
the results for different model parameters mg and for
different string lengths R. The dependence of m� and mD
on mg for fixed R is obvious. For fixed mg the fitted values
approach roughly the expected valuesm� � mg andmD �

3mg, respectively, for growing string lengths R. Actually
the fitted values undershoot the theoretical values consis-
tently, which might be due to the final extent of the
numerical box and the numerical boundary conditions � �
0 on the box boundary.

Both the confinement field � and the electric displace-
ment Da follow an exponential far away from the string
axis. They vanish on characteristic screening lengths with
 800
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FIG. 4. The fitted values of m� (upper panel) and mD (lower
panel) for different model parameters mg and for different string
lengths R.
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� � �3mg�
�1 < � � m�1

g . This is somewhat similar to a
dual type I color superconductor, where � and � describe
the penetration depth of the color field and the correlation
length of the Higgs field. In [42,58] a lattice analysis of the
string fields in Abelian projection was made and a similar
result � & � was obtained. However, it should be noted,
thatmD � 3mg depends on the specific behavior of ���� at
� � �vac and might be modeled differently. In contrast
m� � mg follows from the e.o.m. as long as the Da-field
can be neglected in Eq. (3b).

IV. STRING INTERACTIONS

In the CDM strings or flux tubes develop between two
oppositely charged quarks, or more generally, between a
number of particles with vanishing total net color charge.
In the case of four particles, there must be two quarks and
two antiquarks to ensure color neutrality. For the discus-
sion of string interactions the network of flux tubes does
depend strongly on the configuration in coordinate space
but also on the configuration in color space. In the latter
there are two distinct possibilities. First, all quarks can be
of the same color jci and the corresponding antiquarks
have the anticolor j �ci, and thus the color content is
�cc �c �c�. Second, there is one string with color content c �c
and another one with c0 �c0 with c � c0, so that the color
content is �cc0 �c �c0�. This latter configuration is not possible
in SU(2), where the two members of the fundamental
doublet are simultaneously the antiparticles to each other.
In this work we concentrate on the former color configu-
ration to compare our results to those obtained in SU(2)
lattice calculations [33,59,60] and in the model of the dual
color superconductor [61].

In coordinate space the orientations of the flux tubes
depend on the actual distributions of colors and anticolors.
We first discuss the simple case of four particles with
colors cc �c �c placed on the corners of a rectangle with
length R and width D as shown in the upper left part of
Fig. 5. If all quarks q are lying on the left side and the
antiquarks �q on the right side the ground state of flux tubes
will be like in configuration A in the same figure indepen-
dent of R and D. In this configuration we have two strings
of length R with the electric flux pointing in the same
direction. In varying D we can examine the interaction
energy of two strings of given length R and thus obtain the
static string potential for this particular distribution. In [23]
the potential between two q �q-strings was deduced with a
dynamical setup, albeit with the oversimplifying assump-
tion, that the electric fields of two strings add coherently,
thus neglecting the intrinsic four-particle interactions.

If in contrast the positions of a quark and an antiquark
are interchanged, there exist two different possibilities. As
the energy of a single q �q-string is a monotonically rising
function of separation R [20,22,54], the lowest four-
particle energy is obtained by minimizing the total string
length. Consequently if R>D, the flux tubes point upside
-6
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ground state of the two possible flux tubes, dashed lines for a
possible excited state.
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down as in configuration B in Fig. 5, whereas, if R<D, the
flux tubes point from left to right as in configuration B0. In
the CDM the ground state of the flux tubes is found within
the model itself by solving the e.o.m. (3), without further
input. If one increases D with fixed R, the strings will flip
from configuration B to B0 whenD � R, and one can study
the string-flip interaction energy. In addition, a dynamical
string flip can lead to the dissociation of a J= and thus to
J= suppression in relativistic heavy ion collisions [31].

We define the interaction between two strings as the
difference between the 4-particle energy E4 and the sum
of the energies Es1

� Es2
of two independent strings s1 and

s2 with minimal energy. In the case of four particles
q1q2 �q1 �q2 we calculate the sum of the energies Eq1 �q1

and
Eq2 �q2

of the strings �q1 �q1� and �q2 �q2� separately and com-
pare it to the sum of the energies Eq1 �q2

and Eq2 �q1
of the

competing pairs �q1 �q2� and �q2 �q1�. In the absence of any
interactions, the lower value defines the ground state en-
ergy of the strings s1 and s2 (solid lines in Fig. 5), the
higher an excited state (dashed lines in Fig. 5). As the
energy of a q �q-string rises monotonously, we do not have
to solve the equation of motion for both configurations but
only for that with the minimal total string length. The
interaction potential V4 is then given by

V4 � E4 � �Es1
� Es2

�; (15a)

Es1
� Es2

� min
�Eq1 �q1

� Eq2 �q2

Eq1 �q2
� Eq2 �q1

: (15b)

To illustrate, how the two strings of the ground state
influence each other we can define the spatial distribution
of the interaction energy v4 as

v4�~r� � "4� ~r� � �"s1
�~r� � "s2

�~r��; (16)
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where the energy densities " are given as the integrands of
Eqs. (4b)–(4d). One comment about the special configu-
ration where the particles are located on the corners of a
square is needed. If the two strings are of type B=B0 in
Fig. 5, both configurations are degenerate for R � D, that
is the sums of energies Eq1 �q1

� Eq2 �q2
and Eq1 �q2

� Eq2 �q1
are

equal. In that case we calculate the interaction energy
density as

v4�~r� � "4�~r� �
1
2��"q1 �q1

�~r� � "q2 �q2
�~r�� � �"q1 �q2

� ~r�

� "q2 �q1
�~r���; (17)

i.e. we compare the four-particle density with an incoher-
ent superposition of the 2-string configurations B and B0.
Of course this matters only in the description of the energy
density and not of the potential energy V4.

Given the exponential behavior of the strings far away
from the string axis [cf. Eqs. (13) and (14)], one might
estimate the interaction between two separated strings in
the following way: Assume both strings point along the x
axis with their axes shifted by �D=2 away from the string
axis. For sufficiently large D, the approximations made in
Sec. III are valid and the equation for the confinement field
is linearized as in Eq. (12). The confinement field of the
two-string configurations at jyj 	 D then simply is a linear
superposition of two single strings, i.e.

��y� � �1�y� � �2�y� with (18a)

�1=2 �
�0����������������������

mg�
D
2 � y�

q e�mg�y�D=2�; (18b)

with �0 some constant. As the screening length � of the
electric field is substantially smaller than that of the con-
finement field, � < �, the electric fields do not contribute
much to the total energy density ", which consequently is
dominated by the scalar potential U���  1

2m
2
g�

2. The
distribution of the interaction energy v4 [see Eq. (16)]
can be expressed with Eq. (18) as

v4�y� �
1

2
m2
g��2�y� � �2

1�y� � �
2
2�y��

 2m2
g�

2
0

e�mgD

mgD
 v0

e�mgD

mgD
; (19)

with v0 some constant and where we have used jyj 	 D.
The strings at a distance D therefore interact with a
Yukawa potential, which will be verified numerically later
on.

A. Electric field ~D

We start our numerical analysis by discussing the elec-
tric field lines of two 4-particle configurations with square
symmetry in Fig. 6, where the particles are located at the
corners of a square (R � D � 1 fm). In this and the fol-
lowing figures we have a planar particle configuration,
although the calculations are done in three dimension.
-7
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FIG. 7. The difference �� � ��� ��1 � �2��=�
[cf. Eq. (18)] for a type A configuration of two parallel strings
of length R � 1 fm. The plot shows a cut along the y axis
transverse to the string axes through the center of the configu-
ration.

FIG. 6 (color online). The electric displacement ~D for � �
���� (solid lines) and for � � 1 (dashed lines). The strings have
a length R � 1 fm and their distance is D � 1 fm. The upper
and the lower plot show a parallel and an antiparallel orientation,
respectively. The confinement mechanism of the CDM pushes
the field lines into well defined flux tubes. For the antiparallel
case the electric flux is distributed symmetrical into types B and
B0.
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The figures show a cut along the plane z � 0 of the
particles. If not stated otherwise, the calculations for the
next figures were done using parameter set PS1 from
Table II. In the upper panel, the strings are parallel to
each other (type A of Fig. 5) and in the lower panel, the
strings are antiparallel to each other (type B=B0 in Fig. 5).
In both figures the field lines are shown both for the case
��~r� � const � 1, i.e. for the color fields obeying the
ordinary electromagnetic Maxwell equations (dashed
lines), and for ���� ~r�� as calculated from Eqs. (3) (solid
096004
lines). All field lines are chosen to start on a circle around
each quark (filled dots) with equal angular separation and
consequently end on the antiquarks (open dots). For both
orientations the field lines in the CDM calculations are
compressed into well defined flux tubes stretching from
quarks to antiquarks, as opposed to the � � 1 case, where
the field lines extend in all directions. The flux tubes of the
antiparallel configuration (lower panel) split symmetrically
into two parts connecting each quark with both antiquarks.
Therefore we have a superposition of the two 2-string
configurations B and B0 of Fig. 5. Because of the symmetry
of the configuration, there is no electric field at all in the
center at ~r � 0.

B. Energy distribution

To analyze the validity of our assumptions in Eqs. (18)
and (19) we show the relative difference �� �
��� ��1 � �2��=� [see Eq. (18)] for a configuration of
two 1 fm long parallel strings in Fig. 7. As expected, the
difference approaches 0 for increasing D, i.e. the scalar
field in the center between two strings is a linear superpo-
sition of two isolated strings for sufficiently large D. Note,
that �� becomes concentrated at jyj 	 D for large D, i.e.
the fields of the strings cancel each other at the centers of
each string.

We expect that two strings of given length, that are
asymptotically far apart from each other (D� R), do
only weakly interact. If they approach gradually (D 
R), parts of the flux tubes overlap and both the scalar
confinement field as well as the electric fields are distorted
from their asymptotic shapes. We show the energy den-
sities "� ~r� of these distorted fields in Fig. 8. We choose a
string length R � 1 fm. In the upper panel, the two strings
are parallel to each other (type A) and in the lower panel
-8
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they are antiparallel aligned (type B=B0). From left to right
the string distance D decreases from D � 1:5 fm to D �
0:5 fm. The symbols for the quarks are the white dots,
those for the antiquarks the black and white dots. The
contour lines are equidistant in energy density in the range
" � �0:4 GeV=fm3 . . . 2:4 GeV=fm3� in steps of �" �
0:4 GeV=fm3.

For large separations (D � 1:5 fm>R) there are two
nearly unperturbed strings independent of the orientation
of the strings. In this case the string configurations A and B0

are indistinguishable. Only if the flux tubes get in contact
with each other (D � 1 fm � R), the two orientations
behave differently. For the parallel case, one finds only a
slight attraction between the flux tubes showing up in the
distortion towards the center of the two strings. Also the
energy density in the center of each string is lowered a little
bit.

However, for the case of antiparallel strings, the flux
splits up in the two directions and is the same superposition
096004
of types B and B0 as already seen in Fig. 6. We note, that
this reorientation of the flux tubes is found just by solving
the equations of motion (3). No external input such as the
orientation of a Dirac-string as in the dual color supercon-
ductor model [61] is needed. The CDM therefore incorpo-
rates the feature of string flip as used in the string-flip
model [62–65]. For the situation of antiparallel strings,
the string flip is not a discontinuous process but a smooth
transition. For large separations (D � 1:5 fm), there is
already a small part of the energy flux that stretches to
the transverse direction. The same is true for D � 0:5 fm
with interchanged roles of types B and B0. The 4-particle
flux tube network is therefore a superposition of types B
and B0 with continuously varying relative strength.

If the two strings approach even further (D � 0:5 fm<
R) the two parallel flux tubes melt into an extended flux
tube and form a single bag (Fig. 8, upper right panel). We
observe the contact of the two pairs of likewise charged
particles which will lead to a repulsive Coulomb interac-
-9



FIG. 9 (color online). Four particles on the corners of a tetra-
hedron. All pairwise distances are equal to R � 2 fm. Shown is
the equipotential surface ��~r� � 0:3. Quarks and antiquarks are
marked as dark and light spheres, respectively. The lines are the
direct links between each quark/antiquark pair and are given to
show the distortion of the interacting flux tubes. The upper and
the lower plot give different views of the same configuration.
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tion. For the antiparallel situation however, the string-flip
from type B0 to B has nearly completed and the flux tubes
point upside down (Fig. 8, lower right panel). The flux tube
pattern now shows two flux tubes of length D<R.
Because of this, the definition of the strings is somewhat
ambiguous. We start in varying the distanceD between two
R � 1 fm long q �q-strings and finally end up with two
q �q-strings of length D. Note that in this whole section
we denote with the string length the particle distance that
we keep fixed, if not stated otherwise explicitly.

Of course, four particles do not have to be in a plane
necessarily. As our numerical realization does all calcula-
tions in three dimensions we can easily describe flux tubes
stemming from any arbitrary 3-dimensional particle con-
figuration. As one example we show the flux tubes of four
096004
particles placed on the corners of a tetrahedron with pair-
wise distance R � 2 fm. We choose this large particle
separation to clearly show the resulting flux tube network.
In the 3-dimensional illustration in Fig. 9 the equipotential
surface of the dielectric function � � 0:3 is shown. In the
center of a q �q-string �  0:8 for both parameter sets given
in Table. II (see [20]). Therefore the value � � 0:3 is
characterizing the surface of the flux tube. The figure dis-
plays two different views of the same configuration, the
first a perspective view of the system and the second a
projection along the z axis. Quarks and antiquarks are
marked as black and white spheres, respectively. The
four lines are the shortest links between each quark/anti-
quark pair. In this highly symmetrical configuration again
the flux of each quark is split up into two equal parts
pointing towards both antiquarks, resulting in four equal
flux tubes. The centers of the flux tubes are bent slightly
towards the center of the configuration, as already seen
before in the planar configuration. Moving one q �q-string
out of this symmetric configuration would cause two of the
four flux tubes to break in favor of the other two. The string
flip is therefore seen in the 3-dimensional configurations as
well.

C. Interaction potentials

The energy of a q �q-system scales with the particle
distance R according to the Cornell-potential given in
Eq. (9). In the previous section we have shown the energy
distribution of two such interacting strings as well as the
difference of the 4-particle state to the incoherent super-
position of two equivalent q �q-strings. From the integral of
the energy density we get the total energy E4 in Eq. (4) and
from the corresponding difference of energies in Eq. (15)
we extract the interaction potential V4. For the following
calculation we keep the individual string length R and the
relative orientation fixed, and vary only the distance D
between the string centers.

The total energy E4 of two R � 1 fm long flux tubes is
shown in Fig. 10. The orientation is parallel in the upper
panel and antiparallel in the lower panel. The total energy
(solid line) is separated in the different energy parts ac-
cording to Eq. (4). Here we have subtracted from the total
energy the energy E1 of two infinitely separated
q �q-strings. In the parallel case this is identical to the
potential V4, as there is no string flip. For clarity we have
separated the curves for the three energy fractions by equal
offsets of 0.1 GeV (upper panel) and 0.5 GeV (lower
panel), respectively.

The total energy saturates for distances D> 1:5 fm, i.e.
the strings cease to interact. If they approach each other, we
find for the parallel strings a stable distance atD  0:4 fm.
For smaller distances the two likewise charged particles
experience the Coulomb repulsion, which is seen only in
the electric part of the energy (dashed line). The volume
part of the energy (dashed-dotted line) exhibits a small
-10
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maximum when the two flux tubes get in contact. When
they approach each other, the tails of the strings overlap
and the two-string configuration takes on a larger effective
volume than two isolated strings. As a consequence, the
volume energy rises while the electric energy drops down.

For the antiparallel strings the energy behaves similar
for D * 1 fm. However, for smaller distances the string
flip takes place and the energy behaves nearly as two flux
tubes that shrink with D.

In Fig. 11 we present the interaction potential V4 for
different string lengths R. The orientation is parallel in the
upper panel and antiparallel in the lower panel. The generic
form does not change with R, but both the position of the
minimum and the depth of the potential change with R. For
the parallel strings the minimum of the potential is moving
with increasing R to larger separations D. For string
lengths R exceeding 1 fm the location of the minimum
basically stays constant. It reaches a stable point at D 
096004
0:4 fm which is roughly the same size as the radius of the
single flux tubes (see Table II). Qualitatively this potential
resembles the nucleon-nucleon interaction with a short/
long range repulsion/attraction and a dip of the order of
100 MeV.

The potential of the antiparallel strings exhibits a char-
acteristic kink at D � R, which is due to the string flip. At
this point the orientation of the strings flip from configu-
ration B to B0. The results obtained in this work differ both
qualitatively and quantitatively from that in [23]. In the
older work it was assumed, that the electric fields of the to
strings might be added linearly, thus neglecting the 4-body
interactions of the color charges. In addition, the parame-
ters chosen there led to flux tubes with a radial width of
�g  1 fm, which is much larger than our value �g 
0:4 fm (cf. Table II). Consequently, the string interaction
in the work of Loh et al. has a range of about 1 fm. Also
there was no stable point in the potential as is seen in our
work in Fig. 11.

In Fig. 12 we have isolated the potential minimum for
different string lengths R. In the parallel case (open tri-
-11
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angles) the minimum scales linearly with the string length.
This can be understood, as for long parallel strings the
profile does not change along the flux tube axis. Thus the
energy gain per string length should be constant when the
two strings get in contact.

For the antiparallel configuration at D � R but also for
the tetrahedron configuration, when all pairwise particle
distances are the same, we can parameterize the 4-particle
potential in the spirit of the 2-particle Cornell potential
Vc�R� (9):

V� � 4CFE0 �

�
4

R
�

2���
2
p
R

�
CF	� 4
4R� 2Vc�R�

� ��2�
���
2
p
�
CF	
R
� �4
4 � 2
�R; (20a)

Vtetra � 4CFE0 �

�
4

R
�

2

R

�
CF	� 4
4R� 2Vc�R�

� �4
4 � 2
�R: (20b)

Here the first term in each bracket is due to the four
attractive q �q-pairs and the second to the two pairs qq
and �q �q . The constant terms cancel each other exactly.
The Coulomb interaction is only partially reduced in the
square configuration and completely canceled in the tetra-
hedron geometry.

In the above parameterization 
4 is an effective 4-
particle string tension, whereas 
 denotes the standard
q �q-string tension from Eq. (9). Naively one might estimate

4 in the following way. As we have seen in Fig. 8 (lower
middle panel) and in Fig. 9, the flux tubes of the antipar-
allel square configuration and of the tetrahedron configu-
ration do not overlap for string lengths R> 1 fm. The
electric flux from each quark is therefore split into two
equal flux tubes pointing to the two antiquarks. It was
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shown in [20], that in the CDM the string tension scales
with gs

�������
CF
p

, i.e. with the charge of the particle. For the two
symmetric configurations the 4-particle string tension
therefore should be half of the q �q-string tension 
4 �

=2. In this case the linear confinement terms in
Eq. (20a) and (20b) vanish as well.

In this simplified picture, the potential V� of the planar
antiparallel configuration should scale Coulomb-like and
that for the tetrahedron should vanish very rapidly, com-
pared to the former one. The result of the CDM calcula-
tions is shown in Fig. 12. For both the antiparallel
configuration (solid squares) and the tetrahedron (solid
triangles), the potential V4;min scales linearly with the string
length for R> 1 fm. Neither a Coulomb-like nor a rapid
cancellation is observed. Thus the 4-particle potential is
not a trivial combination of q �q-potentials in the sense of
the generalized Cornell potentials as given in Eqs. (20).

The string-string potential was also analyzed in SU(2)
lattice theory for antiparallel configurations in [33]. The
qualitative behavior of the potential is the same as in our
model, although the absolute values of the potential V4 are
consistently smaller than ours. However, it should be noted
that the parameters of our model used in this work are not
adjusted to the 4-quark problem, but are fixed to the
q �q-properties only. In a very recent SU(3) lattice calcula-
tion of the 4-particle system [34] a multi-Y flux tube
picture was proposed, such that the total string length is
minimized. This is similar to the Y-like flux tube picture of
the 3-quark system. In our model this would be possible
with another color content like e.g. r�rg �g, which is devoted
to future work.

Next we turn to the long range behavior of the potential
V4�D�. From Eqs. (19) we expect a Yukawa potential for
sufficiently far separated strings. In Fig. 13 we show the
negative of the potential V4 for different string lengths R in
-12
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a parallel orientation with parameter set PS1. The dotted
lines are the best fits of a Yukawa-type potential Vyuk�D� �
V0 exp��msD�=�msD� as expected from Eq. (19) to the
CDM potentials, with ms and V0 being fit parameters. For
096004
D * R the potential follows nicely the Yukawa behavior.
From Eqs. (19) we expect also, that the screening mass ms
is given by the curvature mg of the scalar potential U at
� � �vac. To test this we show the dependence of ms on
mg in Fig. 14. From top to bottom, the relative orientation
of the strings is parallel, antiparallel and transverse (tetra-
hedron like). We have extracted the screening mass from
the fit for different string lengths R and for the two pa-
rameter sets PS1 and PS2 from Table II. The parameter mg

takes on the value mg � 1000 MeV (PS1) and mg �

1500 MeV (PS2), respectively. The error bars shown in
the plot result from variations of the fit interval ofD used in
the fit. We note, that V4�D� is difficult to extract numeri-
cally, as it is an exponentially small difference between to
large energies [see Eq. (15)]. It should be noted also, that it
is numerically more difficult to calculate the potential V4

for large string lengths R due to the limited numerical box
size but also for parameter set PS2 due to the strongly
pronounced maximum of the potential U (see Fig. 2).
Therefore the error bars are larger for longer strings but
also for parameter set PS2. However, within the errors a
good agreement of the screening mass to ms � mg is seen.
This behavior is almost not dependent on the string length
R but also not on the relative orientation. In the dual
Ginzburg-Landau model a Yukawa-type potential was
found with a screening mass ms � 1430 MeV [61], which
is consistent with our results. Following our above inter-
pretation of mg, one might compare these numbers to the
glueball mass which has been calculated on the lattice
between 1500 MeV 
 mg 
 1700 MeV [66,67]. Another
possibility is to compare mg with the mass moff 

1200 MeV of the off-diagonal gluons given on the lattice
as well [48]. The detailed verification of the Yukawa
potential between two strings, as proposed in our descrip-
tion via the CDM, should be a task for future lattice
calculations.
V. MULTI-QUARK SYSTEMS

In this section we present CDM results of overall color-
less multiquark systems, with the particle number being
larger than 4. Such states might in principle exist and a
number of possibilities like the pentaquark [68,69], the H-
dibaryon [70] and strangelets [71–73], were eagerly dis-
cussed in the literature. Moreover we want to look for a
possible transition if the quark number density becomes
large as e.g. in the interior of dense neutron stars or in the
highly compressed phase in relativistic ion collisions. We
study unordered ensembles of quarks and antiquarks with a
varying number of particles. The particles are placed in a
given volume which is sufficiently smaller than the nu-
merical box in order to reduce boundary effects.

The color of the particles are chosen according to two
different schemes. In the first we first pick a color c 2
fr; g; bg. This color is assigned to a quark q and simulta-
-13



FIG. 15 (color online). Flux tube structure of systems with baryon number Nb > 0 (upper panel) and with vanishing baryon number
(lower panel) for different particle densities. We show the equipotential surface of the dielectric function �b � 0:4 characterizing the
surface of the flux tubes. Color codes for the particles are red/green/blue and cyan/magenta/yellow for the quarks and antiquarks,
respectively. The particle numbers for the upper row from left to right are N � �63 126 255� and for the lower row N � �64 128 256�
corresponding to particle densities n � �0:5; 1:0; 2:0� fm�3.
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neously the corresponding anticolor �c is assigned to an
antiquark �q. This q �q-pair is thrown randomly into the
volume. We repeat this procedure until a given number
Nm of q �q-states is reached. In this way we get a system
with vanishing net baryon number, although baryonic and
antibaryonic clusters might be formed. In the second
scheme, we assign the three colors r, g, b to three quarks
only and throw them into the volume until a given number
Nb of baryonic qqq states is reached. In this scheme the
baryon number isNb > 0. Finally we vary the total number
of quarks N � 2Nm and N � 3Nb, respectively, to study
the behavior of the quark system for different particle
densities n � N=V. For each particle density n we choose
many different spatial configurations to calculate average
quantities as the energy per particle and the bag volume per
particle. For this rather qualitative analysis we restrict
ourselves to the parameter set PS1. For percolation studies,
such as the quark density dependence of the mean bag size,
or the formation of a single supercluster, we would need
more statistics. This analysis is devoted to future work.

In Fig. 15 we show the resulting flux tube structures for
the baryonic (upper panel) and the mesonic case (lower
panel), respectively. In the latter one one can find all
possible color neutral subsystems, namely q �q-states,
qqq-states and �q �q �q as well as subsystems with larger
numbers of quarks and antiquarks. For these figures the
particles were thrown into a cubic box with a size V �
096004
�5 fm�3. To visualize the flux tubes in three-dimensional
space, we show the position of the particles as small
spheres and the equipotential surface of the dielectric
function at a value � � �b � 0:4 characterizing the sur-
face of the flux tubes or bags. The number of quarks in the
baryonic case (upper panel) in Fig. 15 from left to right is
N � 63, 126, 255 corresponding to particle densities n �
�0:5; 1:0; 2:0� fm�3 or baryon densities nb � n=3 �
�1:0; 2:0; 4:0� � n0 with n0 � 0:17 fm�3 being nuclear
matter density. The number of quarks and antiquarks in
the mesonic case (lower panel) from left to right isN � 64,
128, 256 leading approximately to the same particle den-
sities as in the baryonic case.

The formation of well defined bags is clearly seen. For
small particle numbers the system is dominated by long,
nearly linearly shaped flux tubes. In the baryonic ensemble
the smallest clusters are qqq-states, whereas in the mes-
onic ensemble the smallest clusters are in principle
q �q-states, qqq-states and �q �q �q -states. For denser systems
the average number of particles per bag grows but still
distinct isolated bags are formed. Even for the n �
1:0 fm�3 systems (the two centered figures) the flux tube
structure is maintained. The individual and still separated
forms are very complex objects and can be interpreted as
multiquark excitations of hadronic particles much akin to
the old bootstrap picture of higher lying resonance states
[74,75]. The nonperturbative vacuum is replaced by a
-14



FIG. 17 (color online). 654 quarks randomly distributed in a
sphere with radius r � 2:5 fm and volume V. The nonperturba-
tive phase (� � �vac) is pushed out of the sphere completely and
Vpert  V. The bag surface is defined by � � �b � 0:4.
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spaghetti like perturbative vacuum and both vacua still
balance each other. In the systems with n � 2:0 fm�3

(the two figures at the right) nearly all particles are gath-
ered in one single but highly deformed bag. The transition
from a small particle density with distinct bags and a small
number of particles per bag to a large particle density with
only one supercluster and a large number of particles per
bag is similar to a percolation transition which was pro-
posed to occur for the quark hadron transition [76–78].

In the following we analyze this interplay between the
perturbative and the nonperturbative vacuum more quanti-
tatively. To reduce numerical boundary effects, we reduce
the volume, where the particles are thrown in, to a spherical
region with volume V � 4

3�r
3 and radius r � 2:5 fm. In

Fig. 16 we show the energy per particle as a function of
particle density in a double logarithmic plot. The upper and
096004
the lower plot show a baryonic and a mesonic system,
respectively. The solid squares are the values for the total
energy per particle averaged over many configurations for
each density. The error bars denote the statistical standard
deviation for the ensembles of configurations. Clearly, the
statistical fluctuations of the energy is largest for the small-
est densities. For comparison, we show the electric part of
the energy (solid triangles) and the equivalent energy per
particle E0=N for the pure Maxwell case, i.e. for � � 1
everywhere (open dots). The fluctuations for the energy per
particle are largest for small densities n, as the particles get
more and more homogeneously distributed in space with
growing density. Both the average total energy and the
electric energy follow roughly a power law, whereas the
free energy E0=N stays constant. We can estimate the
scaling of the total energy as follows. The energy of a
cluster scales linearly with the size L of the cluster. For a
given particle configuration, the clusters form themselves
by minimizing the total energy. Each colored quark builds
up a flux tube to the nearest oppositely colored antiquark or
subcluster. Thus we can estimate the cluster size by the
average particle distance of the system, i.e. L � n�1=3. The
total energy per particle is therefore Etot=N / n�1=3. We
have fitted the total energy per particle to the ansatz
Etot=N � cn in the range n 
 1 fm�3. The result for
the fit parameter was  � �0:35 and  � �0:36 for the
baryonic and the mesonic system, respectively, which is
close to the expected result  � �1=3. The fit to the low
density region overshoots slightly the high density results
(n > 3 fm�3), indicating that the assumption of isolated
long flux tubes is not valid anymore. Instead, for very large
-15
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densities, the whole volume is filled with particles homo-
geneously and the nonperturbative phase is pushed out of
the volume V. The dielectric function is therefore � & 1
everywhere inside V and the electric energy should be the
same as for the equivalent free case. Indeed, the electric
part of the energy (triangles) approaches the free energy
(open dots) for densities n > 5 fm�3.

Another interesting quantity is the specific bag volume
per particle vpert � Vpert=N. For small n one finds domi-
nantly bags with two or three particles. The size of the bags
per particle decrease with the average particle distance, i.e.
with increasing n, until with still further increasing density
the bags start to overlap and melt together. The decrease of
the bag volume per particle slows down or might even turn
over to an increase with increasing n in the same way as we
have seen in the bump of the volume energy for the melting
q �q-system in Fig. 10. At a critical density nc, when the
melting of the bags is completed and the nonperturbative
096004
phase is pushed out of the volume V completely, the total
perturbative volume can not increase anymore and Vpert �

const � V as shown in Fig. 17. With further increasing
density vpert decreases as n�1. This critical density nc
marks the transition to a system of deconfined quarks and
antiquarks.

We measure the total bag volume as that part in space,
where � � �b. To show the dependence of the bag volume
on �b we choose the two values �b � 0:4 and �b � 0:6,
where �b � 0:4 (�b � 0:6) is a surface somewhat more in
the exterior (interior) of the bag. Therefore the bag volume
measured in this way is larger for �b � 0:4 than for �b �
0:6. The result is shown in Fig. 18 for the baryonic (top)
and the mesonic case (bottom) for �b � 0:4 (squares) and
�b � 0:6 (triangles). Again the error bars indicate the
standard deviation of the specific volume for the different
measured configurations at each density. The bag volume
-16
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per particle shows exactly the anticipated result. It de-
creases with increasing n for small densities. For
0:3 fm�3 
 n 
 3 fm�3 the specific bag volume vpert de-
velops a plateau for �b � 0:4 and rises again for �b � 0:6.
We find the critical density nc, i.e. the point where vpert

decreases again, at around nc  3:0 fm�3. This corre-
sponds to a baryon density nb � nc=3  6n0, i.e. 6 times
nuclear matter density or a meson density of approximately
nm � nc=2 � 1:5 fm�3. We note, that even at the highest
density n � 10 fm�3 the mean particle distance is much
larger than the intrinsic particle size r0 of the particles, so
that the color charges do not cancel out each other by
overlapping.

It was one of the results of the work in [20], that the
volume energy Evol and the electric energy Eel of a
q �q-string nearly balance each other. This holds for larger
particle densities as well until the system reaches the
deconfinement transition. In Fig. 19 we show the ratio
Evol=Eel as a function of the particle density for a baryonic
(top) and a mesonic system (bottom). It is constant within
10% (neglecting the first point with large uncertainties in
the mesonic system) for densities n & 3:0 fm�3 but falls
down for higher densities once the system is in the decon-
fined phase. The bag volume and therefore the volume
energy Evol are maximal but the electric self-energy asso-
ciated with the particles increases with the particle density.

Finally we show the total energy density " � Etot=V as a
function of the particle density in Fig. 20 for both baryonic
(squares) and mesonic (triangles) systems. It follows nicely
a polynomial behavior (dashed line) over the whole density
range. Remarkably, it is indistinguishable for (static) me-
sons and baryons. At the critical density nc � 3:0 fm�3 it
has a value "c � 1:2 GeV=fm3. Because of the uncertainty
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in the exact value of the critical density nc we give a band
for the critical energy density between 1:0 GeV=fm3 and
1:3 GeV=fm3. This is in good agreement with the critical
energy density found on the lattice [79], where it was found
to be between 0:5 GeV=fm3 and 1:0 GeV=fm3.

We note, that there are basically no differences in
Figs. 16, 18, and 19 between baryonic and mesonic sys-
tems. Apparently all effects are driven by the particle
density, no matter which kind of particles (quarks and
antiquarks or only quarks) are studied.
VI. SUMMARY AND DISCUSSION

The description of the interactions of quarks and gluons,
both at high temperatures/densities and in vacuum, from
first principles is still an open task to solve. The chromodi-
electric model offers a tool to describe in a transparent way
these interactions while including the confinement phe-
nomenon dynamically within the same framework.

Within the chromodielectric model particles group
themselves into color neutral bags with the means of color
electric flux tubes. In this work we studied the interactions
of these flux tubes with each other. We have seen both on
the level of the electric fields and on the level of the energy
density, that the flux tubes attract each other. Depending on
the relative orientation of the strings, the flux tubes either
melt gradually together or change the direction of the
electric flux via a characteristic string flip. This should
also be seen in future lattice SU(3) calculations for many
heavy quarks.

The attraction is seen also in the interaction potential
between the strings. The depth as well as the range of the
interaction changes with the length of the strings. The
interaction depth in the order of a few hundred MeV is
relatively strong compared to a rather old analysis made in
lattice SU(2) calculations but also compared to a similar
analysis within the dual color superconductor model. In the
case of the string-flip situation the potential can not be
described by a simple incoherent superposition of flux
tubes, but shows a real multiparticle effect. The long range
behavior of the potential can be well described by a
Yukawa-type potential. The exponential decay of the in-
teraction is expressed by a screening mass between the flux
tubes which is rather insensitive to the relative orientations
of the strings and to their length. The screening mass scales
with the mass parameter mg introduced in the scalar self-
interaction of the confinement field. It is a future task to
check the model continuously against upcoming results
performed on the lattice. On the other hand the Yukawa
interaction should be tested in detailed future four-quark
lattice calculations. Only recently we have become aware
of a lattice study about the interaction of four- and five-
quark systems [34,80].

In the studies of the multiparticle systems we have ex-
plored the structure of the corresponding flux tubes. The
nonperturbative phase is pushed out of the system with
-17
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increasing particle density. Even for large particle densities
compared to nuclear matter constituent quark density, the
systems show a heterogeneous structure rather than a ho-
mogeneous transition. This situation resembles a typical
percolation transition from a hadron to a quark gas. At low
particle densities the energy scaling with the particle den-
sity is characteristic for a system of strings whose energy
scales with the size of the strings. By increasing the particle
density, the flux tubes or quark bags start to overlap and to
melt into each other. The transition region between isolated
hadronic objects and a single large supercluster, where the
quarks behave as deconfined particles, is found to be
between n � 1 fm�3 and n � 3 fm�3. The critical energy
096004
density of the transition to the deconfined phase is given
between " � 1:0 GeV=fm3 and " � 1:3 GeV=fm3. This
transition shall be examined in the future more carefully
in a more detailed percolation analysis. There one could
measure, for example, the onset of the supercluster, or the
distribution of the bag size with respect to its volume or to
the number of particles belonging to it, all as a function of
the particle density.
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G 15, 561 (1989).

[64] C. J. Horowitz and J. Piekarewicz, Phys. Rev. C 44, 2753
(1991).

[65] M. Boyce and P. J. S. Watson, Nucl. Phys. A580, 500
(1994).

[66] C. J. Morningstar and M. J. Peardon, Phys. Rev. D 56,
4043 (1997).

[67] C. Michael, Nucl. Phys. A655, c12 (1999).
[68] D. Diakonov, V. Petrov, and M. V. Polyakov, Z. Phys. A

359, 305 (1997).
[69] T. Nakano et al. (LEPS), Phys. Rev. Lett. 91, 012002

(2003).
[70] R. L. Jaffe, Phys. Rev. Lett. 38, 195 (1977); 38, 617(E)

(1977).
[71] C. Greiner, D.-H. Rischke, H. Stöcker, and P. Koch, Phys.
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