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Implementation of the multiple point principle in the two-Higgs doublet model of type II
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The multiple point principle (MPP) is applied to the nonsupersymmetric two-Higgs doublet extension
of the standard model (SM). The existence of a large set of degenerate vacua at some high energy scale
caused by the MPP results in a few relations between Higgs self-coupling constants which can be
examined at future colliders. The numerical analysis reveals that these MPP conditions constrain the mass
of the SM-like Higgs boson to lie below 180 GeV for a wide set of MPP scales � and tan�.
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I. INTRODUCTION

The success of the Standard Model (SM) strongly sup-
ports the concept of spontaneous SU�2� �U�1� symmetry
breaking. The mechanism of electroweak symmetry break-
ing, in its minimal version, requires the introduction of a
single doublet of scalar complex Higgs fields and leads to
the existence of a neutral massive particle—the Higgs
boson. Over the past two decades the upper [1] and lower
[1–3] theoretical bounds on its mass have been established.
Nevertheless there are good reasons to believe that the SM
with the minimal Higgs content is not the ultimate theo-
retical structure responsible for electroweak symmetry
breaking since it is unable to answer many fundamental
questions. For example, if the SM is embedded in a more
fundamental theory characterized by a much larger energy
scale (e.g. the Planck scale MPl � 1019 GeV) than the
electroweak scale, then the Higgs mechanism suffers
from a stability crisis. Indeed, due to the quadratically
divergent radiative corrections, the Higgs boson tends to
acquire a mass of order of the largest energy scale. Low-
scale supersymmetry (SUSY) stabilizes the scale hier-
archy, removing quadratic divergences. The unification of
gauge coupling constants, which takes place in these mod-
els at high energies [4], is commonly considered as a
manifestation of the ultimate underlying theory (e.g. su-
perstring theory) accommodating gravity. However, the
cosmological constant in SUSY models where supersym-
metry is softly broken diverges quadratically, and enor-
mous fine-tuning is required to keep its size around the
observed value [5]. Theories with flat [6] and warped [7]
extra spatial dimensions allow one to explain the hierarchy
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between the electroweak and Planck scales. They also
provide new insights into gauge coupling unification [8]
and the cosmological constant problem [9].

In this article we exploit the most economical approach
addressing the hierarchy problem—the multiple point
principle (MPP) [10], which does not require many new
particles or extra dimensions to resolve this problem. MPP
postulates the coexistence in Nature of many phases al-
lowed by a given theory. It corresponds to a special (mul-
tiple) point on the phase diagram of the considered theory
where these phases meet. At the multiple point the vacuum
energy densities of the neighboring phases are degenerate.

The multiple point principle applied to the pure SM
exhibits a remarkable agreement with the top-quark mass
measurements. According to the MPP, the Higgs effective
potential of the SM

Veff��� � �m2����2 �
����

2
�4; (1)

which depends only on the norm of the Higgs field � �
���; �0�, has two rings of minima in the Mexican hat with
the same vacuum energy density [11]. The radius of the
little ring equals the electroweak vacuum expectation value
(VEV) of the Higgs field. The second vacuum was as-
sumed to be near the Planck scale � � MPl.

The mass parameter in the effective potential (1) has to
be of the order of electroweak scale ensuring the phenom-
enologically acceptable Higgs vacuum expectation value
for the physical (first) vacuum. Since at high scales the �4

term in Eq. (1) strongly dominates the �2 term the deriva-
tive of Veff��� near the Planck scale takes the form:

dVeff���
d�

����������MPl

�

�
2���� �

1

2
��

�
�3; (2)

where �������, gt���, gi���� �
d����
d log� is the beta-function

of ����, which depends on ���� itself, gauge gi��� and
top-quark Yukawa gt��� couplings. Then the degeneracy
of the vacua means that at the second vacuum the Higgs
-1 © 2006 The American Physical Society
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self-coupling and its derivative must be zero to very high
accuracy.

When the Higgs self-coupling tends to zero at the Planck
scale, the corresponding beta-function vanishes only for a
unique value of the top-quark Yukawa coupling. Thus by
virtue of MPP ��MPl� and gt�MPl� are determined. One can
then compute quite precisely the top-quark (pole) and
Higgs boson masses using the renormalization group
flow (see [11]):
Mt � 173� 4 GeV; MH � 135� 9 GeV: (3)
Shifting the Higgs field VEV in the second vacuum down
from the Planck scale by a few orders of magnitude de-
creases the values of the top-quark and Higgs masses,
spoiling the agreement with the experimental data. The
hierarchy between the electroweak and Planck scales
might also be explained by MPP within the pure SM, if
there exists a third degenerate vacuum [12].

The relationships between different couplings required
by MPP could arise dynamically. For example a mild form
of locality breaking in quantum gravity, due to baby uni-
verses say [13], may precisely fine-tune the couplings so
that several phases with degenerate vacua coexist [14].
However a necessary ingredient of most models unifying
gravity with other gauge interactions is supersymmetry. At
the same time couplings in SUSY models are adjusted by
the supersymmetry so that all global vacua are degenerate
providing another possible origin for the MPP. In previous
papers [15,16] the MPP assumption has been adapted to
models based on (N � 1) local supersymmetry-
supergravity, that allowed an explanation for the small
deviation of the cosmological constant from zero.

As the low-energy limit of an underlying SUSY theory
the SM looks rather artificial. Indeed in order to give
masses to all bosons and fermions in a manner consistent
with supersymmetry at least two Higgs doublets must be
introduced. It seems unnatural to assume that one of them
remains light while another acquires a huge mass of the
order of the cut-off scale � (� & MPl). Therefore in this
article we study the nonsupersymmetric two Higgs doublet
extension of the SM [2,17] supplemented by the MPP
assumption, bearing in mind supersymmetry as a possible
origin of the MPP. In the next section the SUSY inspired
two Higgs doublet model of type II is outlined and the
vacuum stability conditions in this model are specified. In
Sec. III the MPP conditions are formulated and the ensuing
relations between the Higgs self-couplings due to the MPP
assumption are established. The Higgs spectrum in the
MPP inspired two Higgs doublet model is discussed in
Sec. IV. The restrictions on the Higgs self-couplings and
the SM-like Higgs boson mass caused by the MPP are
explored in Sec. V. Section VI contains our conclusions
and outlook.
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II. HIGGS BOSON POTENTIAL AND VACUUM
STABILITY CONDITIONS

The most general renormalizable SU�2� �U�1� gauge
invariant potential of the the two Higgs doublet model is
given by

Veff�H1; H2� � m2
1���H

y
1H1 �m2

2���H
y
2H2

� 	m2
3���H

y
1H2 � h:c:
 �

�1���

2
�Hy1H1�

2

�
�2���

2
�Hy2H2�

2 � �3����H
y
1H1��H

y
2H2�

� �4���jH
y
1H2j

2 �

�
�5���

2
�Hy1H2�

2

� �6����H
y
1H1��H

y
1H2�

� �7����H
y
2H2��H

y
1H2� � h:c:

�
; (4)

where

Hn �
��n

�H0
n � iA

0
n�=

���
2
p

� �
:

It is easy to see that the number of couplings in the two
Higgs doublet model (2HDM) compared with the SM
grows from two to ten. Furthermore, four of them m2

3,
�5, �6 and �7 can be complex, inducing CP-violation. In
what follows we suppose that mass parameters m2

i and
Higgs self-couplings �i of the effective potential (4) de-
pend only on the overall sum of the squared norms of the
Higgs doublets, i.e.

�2 � �2
1 ��2

2;

�2
i � Hyi Hi �

1

2
	�H0

i �
2 � �A0

i �
2
 � j��i j

2:

The running of these couplings is described by the 2HDM
renormalization group equations (see [18,19]) where the
renormalization scale is replaced by �.

At the physical minimum of the scalar potential (4) the
Higgs fields develop vacuum expectation values

h�1i �
v1���

2
p ; h�2i �

v2���
2
p (5)

breaking the SU�2� �U�1� gauge symmetry and generat-
ing masses for the bosons and fermions. The overall Higgs

norm h�i �
�����������������
v2

1 � v
2
2

q
� v � 246 GeV is fixed by the

Fermi constant. At the same time the ratio of the Higgs
vacuum expectation values remains arbitrary. Hence it is
convenient to introduce tan� � v2=v1.

In general the interactions of the Higgs doublets H1 and
H2 with quarks and leptons result in nondiagonal flavour
transitions [20]. In particular these interactions contribute
to the amplitude of K0 � �K0 oscillations and give rise to
new channels of muon decay like �! e�e�e�. The
common way to suppress flavour changing processes is
-2
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FIG. 1. The running of �1, �2 and ~� below MPl for �i�MPl� �
0, Mt � 175 GeV and �3�MZ� � 0:117 for (a) tan� � 2 and
(b) tan� � 50. The solid, dashed and dash-dotted lines corre-
spond to �1, �2 and ~� respectively. The running of ~� is not
shown for tan� � 2 because ~� becomes complex when �1 < 0.
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to impose a certain discrete Z2 symmetry that forbids
potentially dangerous couplings of the Higgs fields to
quarks and leptons [20]. Phenomenologically viable two-
Higgs doublet models obtained in such a way are classified
according to the interactions of H1 and H2 with fermions.
Our initial motivation encourages us to focus on the Higgs-
fermion couplings inherited from the minimal supersym-
metric standard model, which correspond to the Model II
two Higgs doublet extension of the SM. The Lagrangian of
the 2HDM of type II is invariant under the following
symmetry transformations1:

H1 ! �H1; dRi ! �dRi; eRi ! �eRi; (6)

which forbid the couplings �6 and �7 in the Higgs boson
potential (4). The discrete symmetry (6) also requires
m2

3 � 0. But usually a soft violation of the symmetry (6)
by dimension-two terms is allowed, since it does not lead
to Higgs-mediated tree-level flavor changing neutral cur-
rents. Henceforth we set �6 � �7 � 0 but retain a non-
vanishing value for m2

3.
The invariance under the symmetry transformations (6)

ensures that only one Higgs doublet (H1) interacts with the
down-type quarks and leptons, whereas the second one
couples only to up-type quarks [2,17]. As a result, the
running masses of the t-quark (mt), b-quark (mb) and
�-lepton (m�) in the 2HDM of type II are given by

mt�Mt� �
ht�Mt�v���

2
p sin�; mb�Mt� �

hb�Mt�v���
2
p cos�;

m��Mt� �
h��Mt�v���

2
p cos�; (7)

where Mt is the top-quark pole mass. Since the running
masses of the fermions of the third generation are known,
Eq. (7) is used to derive the Yukawa couplings ht�Mt�,
hb�Mt� and h��Mt�, which play a crucial role in the 2HDM
renormalization group flow.

Let us consider possible sets of global minima of the
scalar potential of the 2HDM of type II with vanishing
energy density at a high scale ��� and thereby degen-
erate with the electroweak scale vacuum. If we ignore the
running of the Higgs self-couplings around this MPP scale
�, then the most favorable situation occurs when

�1��� � �2��� � �3��� � �4��� � �5��� � 0: (8)

In this case, for any vacuum configuration

hH1i � �1
0
1

� �
; hH2i � �2

sin�
cos�ei!

� �
; (9)

where �2
1 ��2

2 � �2, the quartic part of the effective
potential (4) goes to zero. Here, the gauge is fixed so that
1Here dRi and eRi denote the right-handed down-type quark
and lepton fields.
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only the real part of the lower component of H1 gets a
vacuum expectation value.2

But the 2HDM renormalization group flow then leads to
the instability of the vacua (9). In fact for moderate values
of tan� the Higgs self-coupling �1 becomes negative just
below the MPP scale [see Fig. 1(a)]. The renormalization
group running of �2 exhibits the opposite behavior, be-
cause of the large and negative top-quark contribution to
the corresponding beta-function. This means that, near the
MPP scale, there is a minimum with a huge and negative
energy density (���4) where h�2i � 0 and h�1i & �.

The renormalization group flow of �1 only changes at
very large tan� [see Fig. 1(b)]. The absolute value of the
b-quark and �-lepton contribution to ��1

, being negligible
at the moderate values of tan�, grows with increasing
tan�. At tan��mt�Mt�=mb�Mt� their negative contribu-
2The U�1� gauge invariance allows us to eliminate the imagi-
nary part of the top component of H2 as well.

-3
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account that the corresponding Higgs self-couplings differ
from zero in any phenomenologically acceptable SUSY exten-
sion of the SM.
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tion to the beta-function of �1 prevails over the positive
contributions coming from the loops containing Higgs and
gauge bosons. The negative sign of ��1

results in �1���>
0 if the overall Higgs norm � is less than �.

However the positive sign of �1 does not ensure the
stability of the vacua (9). Substituting the vacuum configu-
ration (9) into the quartic part of the 2HDM scalar potential
and omitting all bilinear terms in the Higgs fields one finds
for any � below the MPP scale:

V�H1; H2� �
1

2
�
�������������
�1���

q
�2

1 �
�������������
�2���

q
�2

2�
2

� �
��������������������������
�1����2���

q
� �3���

� �4���cos2���2
1�2

2; (10)

Since the Higgs self-coupling �5 is taken to be zero at the
scale �, it is not generated at any scale due to the form of
the 2HDM renormalization group equations [18,19]. The
Higgs scalar potential ((10)) attains its minimal value for
cos� � 0 if �4 > 0 or cos� � �1 when �4 < 0. Around
the minimum the scalar potential can be written as

V�H1; H2� �
1

2
�
�������������
�1���

q
�2

1 �
�������������
�2���

q
�2

2�
2 � ~�����2

1�2
2;

(11)

where

~���� �
��������������������������
�1����2���

q
� �3��� �minf0; �4���g:

If at some intermediate scale the combination of the Higgs
self-couplings ~���� is less than zero, then there exists a
minimum with negative energy density causing the insta-
bility of the vacua at the electroweak and MPP scales.
Otherwise the Higgs effective potential is positive definite
and the considered vacua are stable.

In Fig. 1(b) the Higgs self-couplings �1��� and �2��� as
well as the combination ~���� are plotted as a function of �
for a large value of tan�. It is clear that the vacuum
stability conditions, i.e.

�1��� * 0; �2��� * 0; ~���� * 0 (12)

are not fulfilled simultaneously. The value of ~���� tends to
be negative for �<�. So the above considerations dem-
onstrate the failure of the original assumption (8), which
therefore can not provide a self-consistent realization of
the MPP in the 2HDM.
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III. MPP CONDITIONS

At the next stage it is worth relaxing the conditions (8)
and permitting �1��� and �2��� to take on nonzero val-
ues.3 Again the Higgs self-coupling �5��� remains zero at
all scales. In order to avoid a huge and negative vacuum
energy density in the global minimum of the 2HDM type II
effective potential, the vacuum stability conditions (12)
should be satisfied for any � in the interval: v & � &

�. In this case both terms in the quartic part of the scalar
potential (11) are positive. In order to achieve the degen-
eracy of the vacua at the electroweak and MPP scales, they
must go to zero separately at the scale �. For finite values
of �1��� and �2��� the first term in the quartic part of the
scalar potential (11) can be eliminated by the appropriate
choice of Higgs vacuum expectation values

�1 � � cos	; �2 � � sin	; tan	 �
�
�1

�2

�
1=4
;

(13)

at which V�H1; H2� attains its minimal value if the vacuum
stability conditions (12) are fulfilled. The vanishing of the
second term in Eq. (11) requires a certain fine-tuning of the
Higgs self-couplings at the MPP scale, namely ~���� � 0.
In order to get ~���� � 0 at least one other Higgs self-
coupling, �3��� or �4���, has to take on a nonzero value at
the MPP scale. If the fine-tuning between the Higgs self-
couplings mentioned above takes place, then the Higgs
scalar potential (11) tends to zero at the MPP scale inde-
pendently of the phase ! in the vacuum configuration (9).

At the first glance of Eq. (10), it even appears possible to
get a set of degenerate vacua in which the energy density
vanishes for any value of angle �. This should correspond
to

�3��� � �
�������������������������
�1����2���

q
; �4��� � 0: (14)

Nevertheless the situation is not as promising as it first
appears. The stability of the vacuum configuration (9)
requires that the Higgs effective potential does not go to
negative values in close vicinity to the MPP scale for � *

�. In other words at the scale � there has to be a local
minimum in which all partial derivatives of the 2HDM
scalar potential go to zero. The degeneracy of the vacua at
the MPP scale implies that they should vanish for any
choice of � and !. Near the vacuum configuration parame-
terized by Eq. (9) and (13) the derivatives of V�H1; H2� are
proportional to
-4
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@V�H1; H2�

@�i
/

1

2
��1

tan�2	�
1

2
��2

tan2	� ��3

� ��4
cos2�: (15)

These partial derivatives tend to zero for any angles �when
��4
� 0. However for �4��� � 0 the beta-function of �4 at

the scale � is given by

��4
�

1

�4
�2
	3g2

2���g
2
1��� � 12h2

t ���h
2
b���
 (16)

where g2 and g1 are the SU�2� and U�1� gauge coupling
constants. It is always positive and thereby spoils the
stability of the vacua given by Eq. (9) and (13). Thus our
attempt to adapt the MPP idea to the 2HDM with �4��� �
0 fails.

For nonzero values of �1��� and �2��� the self-
consistent implementation of the MPP can only be ob-
tained if �3��� � 0 and �4��� � 0. In order to ensure
the degeneracy of the physical and the MPP scale vacua
and to satisfy the vacuum stability constraints (12), the
combination of the Higgs self-couplings ~���� and its
derivative must vanish simultaneously at the scale �.
Then the 2HDM effective potential possesses a set of local
minima:

hH1i �
0

�1

� �
; hH2i �

�2

0

� �
(17)

when �4���> 0 and

hH1i �
0

�1

� �
; hH2i �

0
�2ei!

� �
(18)

if �4��� is less than zero, in which the vacuum energy
density tends to zero. The Higgs field norms �1 and �2 in
the vacuum configurations ((17) and (18)) are determined
by the equations for the extrema of the 2HDM scalar
potential, whose solution is given by Eq. (13). We should
notice here that the existence of the minimum (17) does not
necessarily require the vanishing of �5���. Similar vacua
with vanishing energy density can also be obtained for
nonzero values of this Higgs self-coupling, if it satisfies
the constraint: j�5���j< �4���. At the minimum (17) the
SU�2� �U�1� symmetry is broken completely and the
photon gains a mass of the order of �. Although this is
not in conflict with phenomenology, since an MPP scale
minimum is not presently realized in Nature, the scenario
with �4���< 0 is more in compliance with the MPP
philosophy, simply because it results in a larger set of
degenerate vacua. In the minima (18) the photon remains
massless and electric charge is conserved.

From the above considerations it becomes clear that the
vacuum configurations (18) represent the largest possible
set of local degenerate minima of the Higgs effective
potential, which can be obtained in the 2HDM at the
MPP high energy scale � for nonzero values of �1���
and �2���. The constraint on �4��� and the relationships
095005
between different Higgs self-couplings8><
>:
�5��� � 0; �4���< 0

~���� � d~����
d�

�����������
� 0;

(19)

leading to the appearance of the degenerate vacua, should
be identified with the MPP conditions. The conditions (19)
have to be supplemented by the vacuum stability require-
ments (12), which must be valid everywhere from the
electroweak scale to the MPP scale. Any failure of either
the conditions (19) or the inequalities (12) prevents the
consistent realization of the MPP in the 2HDM, when
�1��� � 0 and �2��� � 0.

Differentiating ~� near the MPP scale, replacing the
derivatives �0i��� by the corresponding one-loop beta-
functions and setting ~�0��� to zero, one obtains two rela-
tions between the gauge, Yukawa and Higgs self-couplings
coupling constants at the MPP scale:

�3��� � �
�������������������������
�1����2���

q
� �4���; (20)

�2
4��� �

6h4
t ����1���

�
�������������
�1���

p
�

�������������
�2���

p
�2

�
�6h4

b��� � 2h4
������2���

�
�������������
�1���

p
�

�������������
�2���

p
�2
� 2�1����2���

�
3

8
�3g4

2��� � 2g2
2���g

2
1��� � g

4
1����: (21)

The first of them follows from ~���� � 0, whereas the
second one comes from the vanishing of the derivative of
~���� near the MPP scale. We note that, in the minimal
SUSY model, the MPP conditions (19) are satisfied iden-
tically at any scale lying higher than the superparticle
masses.
IV. HIGGS SPECTRUM

Keeping in mind that Eq. (20) and (21) relate different
couplings at the scale � we can now explore the Higgs
spectrum in the vicinity of the physical vacuum of the MPP
inspired 2HDM of type II. The Higgs sector of the two
Higgs doublet extension of the SM involves eight states.
Two linear combinations of ��1 and ��2 are absorbed by the
W� bosons after the spontaneous SU�2� �U�1� symmetry
breaking at the electroweak scale. A linear combination of
A1 and A2 become the longitudinal component of the Z
boson. The others form two charged and three neutral
scalar fields. One of the neutral Higgs bosons is CP-odd.
The charged and CP-odd scalars do not interfere with each
other and theCP-even states, because of the electric charge
conservation and CP-invariance. They gain masses

m2
�� � m2

A �
�4

2
v2; m2

A �
2m2

3

sin2�
; (22)
-5
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where m�� and mA are the masses of the charged and
pseudoscalar Higgs bosons. The direct searches for the
rare B-meson decays (B! Xs	) place a lower limit on
the charged Higgs scalar mass in the 2HDM of type II [21]:

m�� > 350 GeV; (23)

which is also valid in our case.
In the basis

h1 � H0
1 cos��H0

2 sin�;

h2 � �H
0
1 sin��H0

2 cos�
(24)

the mass matrix of theCP-even Higgs fields is expressed as
(see [22])

M2 �
M2

11 M2
12

M2
21 M2

22

 !
�

@2V
@�2

1
�

@2V
@�@�

1
�

@2V
@�@�

1
�2

@2V
@�2

0
@

1
A;

M2
11 �

�
�1cos4�� �2sin4��

�
2

sin22�
�
v2;

M2
12 � M2

21

�
v2

2
���1cos2�� �2sin2�� � cos2�� sin2�;

M2
22 � m2

A �
v2

4
��1 � �2 � 2��sin22�;

(25)

where � � �3 � �4. Equations for the extrema of the
Higgs boson effective potential are used to eliminate m2

1
and m2

2 from Eq. (22) and (25). The top-left entry of the
CP-even mass matrix provides an upper bound on the
lightest Higgs scalar mass-squared. The masses of the
two CP-even eigenstates obtained by diagonalizing the
matrix (25) are given by

m2
H;h �

1

2
�M2

11 �M
2
22 �

����������������������������������������������
�M2

22 �M
2
11�

2 � 4M4
12

q
�: (26)

With increasing mA the lightest Higgs boson mass grows

and approaches its maximum value
���������
M2

11

q
for m2

A � v2.
As follows from Eq. (22) and (25), the spectrum of the

Higgs bosons in the 2HDM of type II supplemented by the
MPP assumption is parameterized in terms ofmA, tan� and
four Higgs self-couplings �1, �2, �3 and �4. Three other
Higgs self-couplings �5, �6 and �7 vanish due to the MPP
conditions (19). At the scale � the couplings �3��� and
�4��� can be expressed in terms of �1���, �2���, gi���
and hj���. The gauge couplings at the MPP scale are fixed
by gi�MZ�, which are extracted from the electroweak pre-
cision measurements. The running of the Yukawa cou-
plings is mainly determined by tan�. Thus, for a given
scale �, the evolution of the Higgs couplings are governed
by �1���, �2��� and tan�. Therefore the Higgs masses and
couplings depend on five variables

�1���; �2��� � tan�; mA: (27)
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It means that, owing to the MPP, the model suggested in
this article has fewer free parameters compared to the
2HDM with an exact or softly broken Z2 symmetry.
Therefore it can be considered as the minimal nonsuper-
symmetric two Higgs doublet extension of the SM.

V. NUMERICAL ANALYSIS

The constraints on the Higgs masses in the 2HDM with
an unbroken Z2 symmetry (with m2

3 � 0) have been exam-
ined in a number of publications [19,23,24]. An analysis
performed assuming vacuum stability and the applicability
of perturbation theory up to a high energy scale (e.g. the
unification scale) revealed that all the Higgs boson masses
lie below 200 GeV [24]. Stringent restrictions on the
masses of the charged and pseudoscalar states were found.
They do not exceed 150 GeV. This upper bound is consid-
erably less than the lower experimental limit on m�� (23)
obtained in the 2HDM of type II. This shows that 2HDM
with unbroken Z2 symmetry is inconsistent with experi-
mental data.

The aim of our study is to analyze the MPP scenario in
the 2HDM of type II (m2

3 � 0) and compare it with that in
the SM. As part of the analysis sufficiently large values of
tan� should be taken. The motivation for this is quite
simple. The top-quark Yukawa coupling at the electroweak
scale approaches its SM value for tan�� 1. If simulta-
neously tan� is much less than mt�Mt�=mb�Mt� the
b-quark and �-lepton Yukawa couplings remain small
and can be disregarded. Since in the considered limit the
beta-functions of ht in the SM and 2HDM coincide, the
renormalization group flows of the top-quark Yukawa cou-
pling in these models are then identical and the main
differences in the spectra are caused by the Higgs
couplings.

For the numerical analysis we adopt the following pro-
cedure. At the first stage we fix the values of tan� ( tan� �
10) and the MPP scale (� � MPl). Then using the 2HDM
renormalization group equations we calculate the gauge
and Yukawa couplings at the scale �. For each given set of
�1��� and �2���we define �3��� and �4��� in accordance
with Eq. (20) and (21), evolve the renormalization group
equations down, determine the values of all Higgs self-
couplings at the electroweak scale (� � 175 GeV) and
study the Higgs spectrum as a function of the pseudoscalar
mass. After that we investigate the dependence of the
Higgs masses on �1��� and �2���. At the next stage we
vary the value of tan� from 2 to 50 and MPP scale within
the interval: 10 TeV & � & MPl. Finally the sensitivity of
the Higgs masses to the choice of �3�MZ�, mt�Mt� and
renormalization scale � is examined.

The results of our numerical study are summarized in
Tables I and II and Figs. 2 and 3. The MPP assumption
constrains �1��� and �2��� very strongly at moderate and
large values of tan�. In Fig. 2 different curves restrict the
allowed range of the corresponding Higgs self–couplings
-6



TABLE I. The lightest running Higgs mass for mA �
400 GeV, Mt � 175 GeV and �3�MZ� � 0:117 (mh is given in
GeV and calculated at the scale � � 175 GeV).

� tan� �1��� �2��� mh

� � MPl tan� � 10 1.0 0.005 137.8
3.5 0.005 137.9
0.25 0.005 138.5
1.0 0.008 138.2
1.0 0.001 136.8

tan� � 2 1.6 0.05 118.1
3.2 0.05 128.3
0.85 0.05 116.7
1.6 0.08 127.4
1.6 0.02 114.9

tan� � 50 1.0 0.01 140.9
3.0 0.01 141.6
0.1 0.01 141.8
0.04 0.1 148.4
0.01 4.0 170.7

� � 10 TeV tan� � 10 0.25 0.25 142.0
0.45 0.45 166.6
0.10 0.10 115.3
0.25 0.45 168.2
2.4 0.25 134.7

tan� � 2 0.3 0.3 103.2
0.65 0.65 116.6
0.16 0.16 95.6
0.3 0.7 131.5
4.0 0.3 72.4

tan� � 50 0.3 0.3 150.2
0.64 0.64 188.9
0.01 0.01 89.0
0.1 4.0 321.9
4.0 0.1 114.6
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where �2
4��� 
 0. Outside the allowed range �4��� is

complex and the Higgs effective potential (4) is nonher-
mitian. If the MPP scale is situated at very high energies
(e.g. � ’ MPl) then only extremely small values of
�2��� ’ 0:01 are permitted for most of the large tan�
region. The ratio of �1��� to �2��� is also limited so that
�1��� � �2��� since sin2	 is bounded from below [see
Fig. 2(a) and 2(b)]. These restrictions are substantially
TABLE II. The Higgs spectrum for � � MPl, tan� � 10,
�1�MPl� � 1 and �2�MPl� � 0:005 (all masses are given in
GeV).

mA 400 400 400 400 400 400 200 1000

mt 165 165 165 165 165 170 165 165
� 175 MZ 400 175 175 180 175 175
�3�MZ� 0.117 0.117 0.117 0.119 0.115 0.117 0.117 0.117
mh��� 137.8 143.3 131.4 137.0 138.6 146.6 136.7 137.9
mH��� 400.8 400.8 400.8 400.8 400.8 400.9 202.4 1000.3
m� � ��� 406.7 406.7 406.7 405.2 407.8 411.0 213.1 1002.7
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relaxed at tan�� 1 and at very large values of tan� close
to the upper limit coming from the validity of perturbation
theory at high energies. When tan� is of the order of
mt�Mt�=mb�Mt� the Higgs self-coupling �2��� can be
even much larger than �1��� as the low values of sin2	
are not ruled out by the MPP in this case [see Fig. 3(a)].

The restrictions on the Higgs self-couplings arising out
of the MPP become weaker in the scenarios with a low
MPP scale. The allowed regions of �1��� and �2���
enlarge because of the increase in the top-quark Yukawa
coupling contribution to the right hand side of Eq. (21). As
before, the admissible ranges of �1��� and �2��� expand
at moderate and very large values of tan� [see Fig. 2(c),
2(d), and 3(b)].

The applicability of perturbation theory up to the scale �
and the requirement of the stability of the degenerate vacua
constrain the Higgs self-couplings further. While �2���
can vary from zero to its upper bound [see Fig. 2(a) and
2(c)], the Higgs self-coupling �1��� is limited from below
and above for most of the tan� region. When the values of
�1��� are too large they either violate perturbativity or
make the term �1��� � �2��� in Eq. (21) so large that
�2

4��� tends to be negative. Values of �1��� which are
too small either reduce the top-quark Yukawa contribution
to the right hand side of Eq. (21), so that �2

4��� turns out to
be negative, or result in the changing of the sign of ~����
during the renormalization group flow giving rise to vac-
uum instability. The allowed intervals of �1�MPl� are in-
dicated in Table I for tan� � 10 and �2�MPl� � 0:005, for
tan� � 2 and �2�MPl� � 0:05 and for tan� � 50 and
�2�MPl� � 0:01. Also Table I shows the admissible ranges
of �1��� � �2��� for � � 10 TeV and the three different
values of tan�. One can see that the lower bound on �1���
weakens at very large values of tan� ’ mt�Mt�=mb�Mt�
and in the scenarios when the MPP conditions (19) are
fulfilled at low energies.

The restrictions on the Higgs self-couplings discussed
above and the choice of m2

3 needed to respect the lower
limit on the charged scalar mass (23), deduced from the
nonobservation of B! Xs	 decay, maintain a mass hier-
archy in the Higgs sector of the MPP inspired 2HDM.
Indeed the MPP, in conjunction with the requirements of
vacuum stability and validity of perturbation theory, keep
�iv

2 and the CP-even mass matrix elements M2
11 and M2

12
well below v2 for a wide set of tan� ( tan��
mt�Mt�=mb�Mt�) and � * 10 TeV. Then the pseudoscalar
mass has to be substantially larger than v in order to
suppress the branching ratio B! Xs	. As a consequence
the masses of the heaviest scalar, pseudoscalar and charged
Higgs bosons are confined around mA while the lightest
CP-even Higgs state has a mass of the order of the elec-
troweak scale, i.e.:

m2
h ’ M

2
11 �

M4
12

m2
A

�O
�2
i v

4

m4
A

 !
: (28)
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FIG. 3. The MPP restrictions on �1��� � �2��� for tan� � 50
versus sin2	 for (a) � � MPl and (b) � � 10 TeV. The allowed
part of the parameter space lies below the curves.
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FIG. 2. The MPP bounds on (a) �2��� and (b) �1���, for � � MPl, as a function of sin2	. The corresponding bounds on (c) �2���
and (d) �1��� for � � 10 TeV are also shown. The solid and dash-dotted curves represent the limits on the Higgs self-couplings for
tan� � 10 and tan� � 2 respectively. The allowed range of the Higgs self-couplings lies below the curves.
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The results of the numerical analysis given in Table I
indicate that, for a wide range of tan� (2 & tan�� 50),
the lightest Higgs boson mass is less than 180 GeV for any
reasonable choice of the scale � * 10 TeV. Furthermore,
because of the large splitting among the Higgs boson
masses, the lightest Higgs scalar has the same couplings
to fermions, W and Z-bosons as the Higgs particle in the
SM.

In order to illustrate how the MPP requires a value for
mh around the top-quark mass, let us assume that the MPP
conditions (19) are fulfilled at the electroweak scale and
�1��� � �2��� � �0. Then in the decoupling limit, when
mA � �iv, the lightest Higgs scalar mass is given by

m2
h ’ �0v2cos22�: (29)

From Eq. (29) and the results of the numerical studies
given in Table I, it becomes clear that the mass of the
lightest Higgs particle grows with increasing �0 and tan�.
The allowed range of the Higgs self-couplings is con-
strained by the MPP assumption. In the interval 1�
tan�� mt�Mt�=mb�Mt� the MPP constraint (21) implies
that �2

0 �
3
4 �h

4
t �

3
4g

4
2 �

1
2g

2
2g

2
1 �

1
4g

4
1�. As a result we get

an upper limit on the mass of the lightest Higgs boson

m2
h &

��������������������������������������������������������
3�m4

t � �2cos4�W � 1�M4
Z�

q
’

���
3
p
m2
t ; (30)

which is set by the top-quark mass. Here �W is the
Weinberg angle.

A remarkable prediction for the mass of the SM-like
Higgs boson appears if the MPP scale � is taken to a very
high energy. For large tan�, the admissible region of the
-8
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Higgs self-couplings shrinks drastically [see Fig. 2(a)] and
only small enough values of �2���, �3��� and �4��� are
allowed. Therefore the running of �2 resembles the renor-
malization group flow of � in the SM with ���� � 0.
Since, at large tan�, the lightest Higgs boson mass is
predominantly determined by the term proportional to
�2v

2 in the top-left entry of the CP-even Higgs mass
matrix (25), �1��� affects mh only marginally and the
MPP prediction for the Higgs mass in the SM is almost
reproduced when � is close to the Planck scale (see Table I
and II). The main ambiguity in the calculation of the SM-
like Higgs boson mass is related to the uncertainty of the
top-quark mass measurements.4 When the running top-
quark mass changes from 165 GeV to 170 GeV mh in-
creases by 10 GeV (see Table II). The mass of the lightest
Higgs scalar is less sensitive to the choice of the scale �
down to which the 2HDM renormalization group equations
are assumed valid. It leads to only a 6 GeV uncertainty.
Ultimately, for � � MPl and relatively large values of
tan�, we find:

mh � 137� 12 GeV: (31)

The range of variation in the mass of the SM-like Higgs
boson enlarges at moderate and very large values of tan�.
At tan� ’ mt�Mt�=mb�Mt� the mass of the lightest Higgs
scalar increases because the strict upper limit on �2��� is
loosened, due to the large contribution to the beta-
functions of the Higgs self-couplings coming from the
loops containing the b-quark and the �-lepton. Now the
prediction (31) represents the lower bound on mh for � �
MPl, while the restriction on the lightest Higgs scalar mass
from above tends to the upper bound on mh in the SM—
180 GeV. At moderate values of tan� the mass of the
lightest Higgs particle decreases. As a result, at tan� �
2, one can easily get mh � 114 GeV without any modifi-
cation of the MPP, such as that suggested for the SM in
[25].

With a lowering of the MPP scale, the allowed range of
mh expands. At tan� � 50 and � � 10 TeV the SM-like
Higgs boson mass can be even as heavy as 300 GeV if
�2��� � �1��� (see Table I). However if tan� is not so
large ( tan�� mt�Mt�=mb�Mt�), mh remains lower than
180 GeV because of the stringent limit on �2��� [see
Fig. 2(c)]. The upper bound on mh is even stronger for
moderate tan�, where a considerable part of the parameter
space is excluded by the unsuccesful Higgs searches at
LEP.

VI. CONCLUSIONS

We have constructed a new minimal nonsupersymmetric
two Higgs doublet extension of the SM by applying the
MPP assumption to the SUSY inspired 2HDM. According
4Unlike in the SM, the top-quark mass is not predicted by MPP
in the 2HDM of type II
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to the MPP, �5 vanishes, preserving CP-invariance. Four
other Higgs self-couplings obey two relationships (19) at
some scale �� v leading to the largest possible set of
degenerate vacua in the SUSY inspired 2HDM. Usually the
existence of a large set of degenerate vacua is associated
with an enlarged global symmetry of the Lagrangian. The
2HDM is not an exception. When m2

3, �5, �6 and �7 in the
Higgs effective potential (4) vanish, the Lagrangian of the
2HDM is invariant under the transformations of an
SU�2� � 	U�1�
2 global symmetry. The additional U�1�
symmetry is nothing else than the Peccei-Quinn symmetry
introduced to solve the strong CP problem in QCD [26].
The mixing term m2

3�H
y
1H2� in the effective potential (4),

which is not forbidden by the MPP, breaks the extra U�1�
global symmetry softly so that a pseudo-Goldstone boson
(the axion) does not appear in the particle spectrum. At
high energies, where the contribution of the mixing term
m2

3�H
y
1H2� can be safely ignored, the invariance under the

Peccei-Quinn symmetry is restored giving rise to the set of
degenerate vacua (18). The MPP predictions for �i (19)–
(21) can be tested when the masses and couplings of the
Higgs bosons are measured at the future colliders.

In the large tan� limit, when 2HDM approaches the SM,
the allowed range of the Higgs self-couplings is severely
constrained by the MPP conditions (19) and vacuum stabil-
ity requirements (12). As a consequence, for most of the
large tan� ( tan� * 2) region the Higgs spectrum exhibits
a hierarchical structure. While the heavy scalar, pseudo-
scalar and charged Higgs particles are nearly degenerate
around mA, and the latter should be greater than 350 GeV
owing to the stringent limit on the m�� (23) coming from
the searches of the rare B-meson decays, the mass of the
SM-like Higgs boson mh does not exceed 180 GeV for any
scale � * 10 TeV. The theoretical bound on mh obtained
here is quite stringent. For comparison the lightest Higgs
boson in the 2HDM with a softly broken Z2 symmetry can
be even heavier than 400 GeV [27] for � ’ 10 TeV. So a
fairly stringent constraint onmh arises from the application
of the MPP to the 2HDM of type II.

The bounds on mh become even stronger if the MPP
conditions are realized at high energies. In this case the
MPP prediction for the Higgs mass obtained in the SM is
reproduced. But, in contrast to the SM, lower values of
mh ’ 115 GeV may be easily obtained in the MPP inspired
2HDM when tan� approaches 2. The restrictions on the
Higgs self-couplings and the mass of the lightest Higgs
particle are less stringent at very large values of tan� ’
mt�Mt�=mb�Mt�.
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