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Weak scale supersymmetry is often said to be fine-tuned, especially if the matter content is minimal.
This is not true if there is a large A term for the top squarks. We present a systematic study on fine-tuning
in minimal supersymmetric theories and identify low-energy spectra that do not lead to severe fine-tuning.
Characteristic features of these spectra are: a large A term for the top squarks, small top squark masses,
moderately large tan�, and a small � parameter. There are classes of theories leading to these features,
which are discussed. In one class, which allows a complete elimination of fine-tuning, the Higgsinos are
the lightest among all the superpartners of the standard model particles, leading to three nearly degenerate
neutralino/chargino states. This gives interesting signals at the LHC—the dilepton invariant mass
distribution has a very small endpoint and shows a particular shape determined by the Higgsino nature
of the two lightest neutralinos. We demonstrate that these signals are indeed useful in realistic analyses by
performing Monte Carlo simulations, including detector simulations and background estimations. We also
present a method that allows the determination of all the relevant superparticle masses without using input
from particular models, despite the limited kinematical information due to short cascades. This allows us
to test various possible models, which is demonstrated in the case of a model with mixed moduli-anomaly
mediation. We also give a simple derivation of special renormalization group properties associated with
moduli mediated supersymmetry-breaking, which are relevant in a model without fine-tuning.
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I. INTRODUCTION

What is the physics at the TeV scale and how can we test
it? These questions become more pressing as we approach
the LHC era, which will start within two years. It is
extremely important now to consider what we expect to
see at these energies, especially because the LHC is a
hadron collider experiment, in which relations between
experimental data and the underlying theory are not so
simple. Knowing what we are looking for would certainly
help to identify the physics at the TeV scale and may even
be necessary, as the determination of the TeV physics at the
LHC and other experiments will most likely take the form
of a slow elimination process.

There are already several hints on possible physics at the
TeV scale. They come from combining a theoretical crite-
rion of naturalness and precision measurements of electro-
weak observables and rare flavor- and CP-violating
processes. Among these, the combination of naturalness
and the electroweak data seems to give the most unambig-
uous hint, because these constraints cannot be satisfied
simply by imposing approximate symmetries already
present in the standard model gauge and matter sector.
Interpreted naively, the precision electroweak data suggest
the existence of a light Higgs boson, with the contributions
to the electroweak observables from other physics highly
suppressed [1]. Naturalness then implies that there must be
a new weakly-interacting physics at a TeV scale or below,
which cuts off quadratically divergent contributions to the
Higgs mass-squared parameter arising from loops of the
standard model particles.
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Weak scale supersymmetry is an ideal candidate for the
new physics. Loops of superparticles cancel the quadratic
divergences from those of the standard model particles.
The new interactions for the superparticles are necessarily
weak, as they are related to the standard model interactions
by supersymmetry. Moreover, the mass of the lightest
Higgs boson is predicted to be small, MHiggs & 200 GeV
in most (even extended) theories, which is very much
consistent with the precision electroweak data. With the
introduction of R parity and the assumption of flavor
universality for the superparticle masses, weak scale su-
persymmetry can provide a fully consistent framework for
physics of electroweak symmetry breaking.

Postulating weak scale supersymmetry alone, however,
does not much narrow down signatures at the LHC.
Depending on the relative sizes for the soft
supersymmetry-breaking parameters, one can have drasti-
cally different signatures at the LHC. The number of
relatively model-independent signals is also small, making
it difficult to discriminate supersymmetry from other TeV-
scale physics. A generic signal of weak scale supersym-
metry is large missing transverse energy in association
with jets and/or isolated leptons. Such a signal, however,
arises in almost any theory where the lightest TeV-scale
particle is stable and neutral, which is suggested by the
existence of the dark matter of the universe. It is then an
important task to narrow down the parameter space of
weak scale supersymmetry further and to perform a de-
tailed study of the LHC signals there. One of the important
goals of such a study is to identify generic signals associ-
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ated with a particular parameter region so that the non-
observation of those signals will allow us to exclude the
region.

How should we choose regions among the huge parame-
ter space of weak scale supersymmetry? An obvious way is
to assume a particular supersymmetry-breaking model,
such as the minimal supergravity or gauge mediation
model, based on the simplicity of the model. This selects
a slice in the parameter space of soft supersymmetry-
breaking parameters, which depends only on a few free
parameters. These studies have been performed by many
authors, for example, in [2–8]. In this paper we take a
different criterion to choose the region. We use the hint
from naturalness to the maximal amount and consider what
are generic implications of it on the spectrum of super-
particles and on LHC signals. Fortunately, or unfortu-
nately, generic parameter regions of weak scale
supersymmetry satisfying existing experimental con-
straints do not lead to the correct scale for electroweak
symmetry breaking without significant fine-tuning. This
information, therefore, can be used to constrain the pa-
rameter space of soft supersymmetry-breaking parameters
and thus to narrow down possible signatures at the LHC.
Of course, the input from naturalness alone does not lead to
unambiguous signatures in a wide variety of possible
supersymmetric theories. In this paper we focus our atten-
tion to the case where the matter content at the weak scale
is minimal, i.e. given by that of the minimal supersymmet-
ric standard model (MSSM).

What are generic implications of fine-tuning on the
spectrum of superparticles in a theory with the minimal
matter content? As discussed in Ref. [9], the fine-tuning
problem of minimal supersymmetry can be solved without
extending its matter content if the trilinear scalar term (A
term) for the top squarks is large and the holomorphic
supersymmetry-breaking term (�B term) for the Higgs
doublets is small. This allows us to evade the LEP II bound
on the Higgs boson mass with relatively small superpar-
ticle, specifically top squark, masses. Then, if soft
supersymmetry-breaking parameters are generated (effec-
tively) at low energies, the sensitivity of the electroweak
scale to the fundamental parameters of the theory can be
very mild. One of the consequences of such a scenario is
that the top squarks are relatively light and have a large
mass splitting between the light and heavy ones. Another
important consequence is that the Higgsinos are rather
light, with the masses smaller than about 190 GeV
(270 GeV) for fine-tuning better than� 20% (10%), which
is because naturalness requires any contribution to the
Higgs boson squared mass to be small, including the super-
symmetric contribution. We argue that these features are
robust and appear quite generically in a minimal super-
symmetric theory without significant fine-tuning.

This argument provides a strong motivation to consider
the case in which the lightest neutral Higgsino is the light-
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est supersymmetric particle (LSP). While it is not a neces-
sary consequence of solving the supersymmetric fine-
tuning problem, the Higgsino LSP in fact arises in a large
class of theories in which the pattern of soft
supersymmetry-breaking parameters described above is
naturally obtained. It is, therefore, quite important to per-
form an LHC study for the case of the Higgsino LSP and
identify possible signatures. An important consequence of
the Higgsino LSP scenario is that there are three nearly
degenerate neutralino/chargino states, ~�0

1, ~�0
2 and ~��1 , with

~�0
1 being the LSP. We show that this structure can give

interesting signatures at the LHC in the dilepton invariant
mass distribution arising from the decay ~�0

2 ! ~�0
1l
�l�. We

discuss in what sense these are characteristic signatures of
the Higgsino LSP, and under what circumstances the sig-
nals can be used in realistic analyses.

To demonstrate the usefulness of the signatures, we need
to choose specific parameter points and perform
Monte Carlo simulations, including detector simulations
and standard model background. We do this in the model
discussed in Refs. [9–11], where the desired pattern of the
soft supersymmetry-breaking masses, a large A term and a
small �B term, are obtained while evading the existing
experimental constraints such as the one from b! s�. We
show that the dilepton invariant mass distribution from
~�0

2 ! ~�0
1l
�l� is indeed useful to test the Higgsino nature

of the LSP and to extract the information on a small mass
difference between ~�0

1 and ~�0
2. We also show that important

parameters of the model, the overall mass scale and the �
parameter, are determined by various other endpoint analy-
ses. In fact, we show that these parameters are overcon-
strained, so that we can test some of the model predictions.
We perform these analyses for an integrated luminosity of
30 fb�1, but essentially the same conclusion is obtained
with 10 fb�1. The technique presented here can also be
used in a larger class of theories having similar super-
particle spectra.

The organization of the paper is as follows. In Sec. II, we
present a systematic study on naturalness in general super-
symmetric theories, especially focusing on the case where
the matter content at the weak scale is minimal. We give
general criteria that natural supersymmetric models with
the minimal matter content must satisfy, and present char-
acteristic patterns for the superparticle spectrum arising
from these models. In Sec. III, we discuss LHC signals of
the Higgsino LSP scenario, which naturally arises in a class
of models that do not suffer from fine-tuning. We find that a
combination of the endpoint and the shape of the dilepton
invariant mass distribution provides a powerful tool to test
the scenario. In Sec. IV, we perform Monte Carlo simula-
tions to demonstrate that these signals are indeed useful in
a realistic situation. We also present an analysis that allows
us to determine the masses of the gluino, squarks, and the
two lightest neutralinos in the Higgsino LSP scenario,
without relying on details of the underlying model. We
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1In the case that ln�Mmess=m~t� is large, for example, in gravity
mediated models, the expression in Eq. (4) is not reliable and we
should sum up the leading logarithms using renormalization
group equations. This case will be addressed in the next
subsection.
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illustrate that these information can be used to test and/or
discriminate between possible models. Discussion and
conclusions are given in Sec. V. In the Appendix, we
give a simple derivation of special renormalization group
properties of moduli mediated supersymmetry-breaking
models, which are relevant in the model studied in Sec. IV.

II. SUPERSYMMETRY AND NATURALNESS

One of the principal motivations for weak scale super-
symmetry is to provide a solution to the naturalness prob-
lem of the standard model. This has, however, been put in a
subtle position after nondiscovery of both superparticles
and a light Higgs boson at LEP II. In a generic parameter
region motivated by simple supersymmetry-breaking mod-
els, fine-tuning of order a few percent is required to re-
produce the correct scale for electroweak symmetry
breaking while evading the constraints from LEP II. This
problem, called the supersymmetric fine-tuning problem,
has attracted much attention recently, and several solutions
have been proposed, e.g., in [9,10,12–22]. In this section
we reconsider the problem and see what are generic im-
plications of it, especially in the context of theories with
the minimal matter content. One of our emphases here is on
the fact that the supersymmetric fine-tuning problem may
simply be a problem of the supersymmetry-breaking
mechanism and not necessarily that of minimal supersym-
metry itself.

A. Large At and small �B in minimal supersymmetry

We begin our discussion by considering fine-tuning in
the Higgs potential in general weak scale supersymmetric
theories. Let h be the Higgs field whose vacuum expecta-
tion value (VEV) breaks the electroweak symmetry. In
minimal supersymmetry, h is a linear combination of the
two Higgs doublets, Hu and Hd. The potential for h is
given by

V � m2
hjhj

2 �
�h
4
jhj4; (1)

where m2
h is negative and �h is positive. By minimizing it,

we obtain v2 � hhi2 � �2m2
h=�h and M2

Higgs � �hv2,
where MHiggs is the mass of the physical Higgs boson, so
that

M2
Higgs

2
� �m2

h: (2)

We thus find that jm2
hj cannot be large for a light Higgs

boson: jm2
hj

1=2 & 140 GeV (90 GeV) for MHiggs &

200 GeV (130 GeV).
What is m2

h in supersymmetric theories? For moderately
large tan� � hHui=hHdi, e.g. tan� * 2, m2

h can be written
as

m2
h � j�j

2 �m2
Hu
jtree �m2

Hu
jrad; (3)

where � is the supersymmetric mass for the Higgs dou-
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blets, and m2
Hu
jtree and m2

Hu
jrad represent the tree-level and

radiative contributions to the soft supersymmetry-breaking
mass squared forHu. The dominant contribution tom2

Hu
jrad

arises from top-stop loop:

m2
Hu
jrad ’ �

3y2
t

8�2 �m
2
Q3
�m2

U3
� jAtj2� ln

�
Mmess

m~t

�
; (4)

where yt is the top Yukawa coupling, m2
Q3

and m2
U3

soft
supersymmetry-breaking masses for the third-generation
doublet quark, Q3, and singlet up-type quark, U3, and At
the trilinear scalar interaction parameter for the top squarks
(our definition for the A parameters is such that a scalar
trilinear coupling is given by the product of the Yukawa
coupling and the A parameter, e.g., L � �ytAt~q3 ~u3Hu �
h:c:). The quantity Mmess represents the scale at which
squark and slepton masses are generated, and m~t the scale
of the top squark masses determined by m2

Q3
, m2

U3
and At.

Note that Mmess can be an effective scale different from the
true scale of scalar mass generation in a case that the theory
possesses special relations among various parameters.

For fine-tuning to be absent, each term in the right-hand-
side of Eq. (3) should not be much larger than the left-
hand-side, which is related to the physical Higgs boson
mass by Eq. (2). Let us first consider m2

Hu
jrad. The amount

of fine-tuning from this term is given by M2
Higgs=2m2

Hu
jrad,

so that requiring the absence of fine-tuning worse than ��1

leads to the condition

m2
~t &

2�2

3y2
t

M2
Higgs

�1� x2

2 ��
�1 lnMmess

m~t

� �700 GeV�2
1

1� x2

2

�
20%

��1

��
3

lnMmess

m~t

�� MHiggs

200 GeV

�
2
; (5)

where we have setm2
Q3
’ m2

U3
’ m2

~t for simplicity, and x �
jAtj=m~t. This has the following implication on the proper-
ties of the supersymmetry-breaking sector [18]. Unless
Mmess is extremely small, e.g. Mmess & 10 TeV, the ab-
sence of fine-tuning, defined by ��1 � 20%, requires
m~t & 700 GeV, where we have used MHiggs & 200 GeV
as suggested by the precision electroweak data. This im-
plies that a naive low-scale mediation model, leading to the
‘‘minimal gauge mediated mass relation’’ m2

~t =m
2
~e �

g4
3=g

4
1, is unlikely to solve the fine-tuning problem because

it gives too light right-handed sleptons. For a lighter Higgs
boson, we obtain severer bounds on m~t: for MHiggs ’

140 GeV, for example, we find m~t & 700 GeV even for
��1 ’ 10%. Note that the condition of Eq. (5) applies
independently of any other considerations.1
-3
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Light top squarks suggested by Eq. (5) leads to a tension
with the LEP II bound on the Higgs boson mass, MHiggs *

114:4 GeV [23], since in the MSSM having MHiggs larger
than the Z boson mass, mZ, requires radiative corrections
arising from top-stop loop, which grow with the top squark
masses [24]. A simple way to avoid the conflict is to
introduce an additional contribution to the Higgs boson
mass other than that in the MSSM. An example of such
theories can be found in Ref. [18], where the required
properties for the supersymmetry-breaking sector are real-
ized by strong gauge dynamics breaking supersymmetry at
a scale of �10	 100� TeV. What if we do not introduce
any other contribution to MHiggs than that in the MSSM? In
this case it is unlikely that MHiggs can be larger than
130 GeV, so Eq. (5) leads to a severer bound

m2
~t & �450 GeV�2

1

1� x2

2

�
20%

��1

��
3

lnMmess

m~t

�
: (6)

While this bound is strong, it still leaves a room for evading
the LEP II constraint on MHiggs without introducing severe
fine-tuning. As discussed in [9], this happens if At is large,
tan� is (moderately) large, and Mmess is small. In particu-
lar, it is crucial to have large At, compared with m~t, to
evade the Higgs boson mass bound while keeping ��1

modest.
In Fig. 1, we plot minimal values of m~t � �m

2
Q3
�1=2 �

�m2
U3
�1=2, m~tjmin, that give MHiggs * 114:4 GeV as a func-

tion of At=m~t. The other parameters are fixed to be
0

 200

 400

 600

 800

 1000

 1200

 1400

-4 -3 -2 -1  0  1  2  3  4

tanβ = 15

m
t

178.5 G
eV

µ = 170 GeV mA = 250 GeV
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FIG. 1. Minimal values of m~t � �m
2
Q3
�1=2 � �m2

U3
�1=2 giving

MHiggs * 114:4 GeV as a function of At=m~t. The other parame-
ters are fixed to be 500 GeV for the gaugino and sfermion masses
other than m2

Q3
and m2

U3
, �500 GeV��At=m~t� for the A parameters

other than At, tan� � 15,� � �170 GeV, andmA � 250 GeV.
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500 GeV for the gaugino and sfermion masses other than
m2
Q3

and m2
U3

, �500 GeV��At=m~t� for the A parameters
other than At, tan� � 15, � � �170 GeV, and mA �
250 GeV, where mA is the mass of the pseudoscalar
Higgs boson. The dependence of the results on the fixed
parameters is not significant, as long as tan� is sufficiently
large, e.g., tan� * 10. In the figure we plotm~tjmin for three
different values of the top quark mass, mt � 166:9, 172.7
and 178.5 GeV, corresponding to the central value and the
2� range of the the latest experimental data:mt � 172:7

2:9 GeV [25]. The calculation here has been performed
using FeynHiggs2.2 [26] (for earlier analyses for the Higgs
boson mass in the MSSM, see e.g. [27]). If we instead use a
code based on the pure DR scheme, such as SuSpect 2:3
[28], we obtain slightly different values of m~tjmin: for
jAt=m~tj 	 2 the differences are of order 50 GeV but for
jAt=m~tj � 1 the DR scheme calculation can give m~tjmin

larger than that in the figure by about 200 GeV. These
differences give an estimate for the size of higher order
corrections. Throughout the paper, our sign convention for
� and the soft supersymmetry-breaking parameters fol-
lows that of SUSY Les Houches Accord [29].

The figure clearly shows that in order to have light top
squarks suggested by Eq. (6) the existence of a substantial
At term (jAt=m~tj * 1) is required. For mt � 172:7 GeV,
the existence of At with jAt=m~tj * 1 can allow m~t as small
as �200	 400� GeV while m~t should be larger than �
1:2 TeV for jAt=m~tj � 1. Another important point is that
for jAt=m~tj 	 2, which gives the minimal value of m~tjmin,
the sensitivity ofm~tjmin to the value ofmt is mild, while for
jAt=m~tj � 1 the sensitivity is huge. This implies, for ex-
ample, that if mt turns out to be smaller than ’ 170 GeV
theories with jAt=m~tj � 1 at the weak scale will pretty
much be ‘‘excluded.’’

We conclude that to have natural electroweak symmetry
breaking in supersymmetric theories with the minimal, i.e.
MSSM, matter content, the existence of a substantial At
term at the weak scale is crucial. Another important ingre-
dient is a moderately large tan�, e.g. tan� * 5, to have a
sufficiently large tree-level Higgs boson mass, which re-
quires the holomorphic supersymmetry-breaking mass
squared for the Higgs doublets, the �B term, to be (sig-
nificantly) smaller than 2j�j2 �m2

Hu
�m2

Hd
. In fact, these

ingredients dominantly control the amount of fine-tuning
in almost any theory with the MSSM matter content. To
demonstrate this, we will now analyze the situations in the
case of high scale supersymmetry-breaking and in gauge
mediation models from the viewpoint of the size of At at
the weak scale. For earlier analyses of fine-tuning in these
models, see e.g. [30].

B. High scale supersymmetry breaking and gauge
mediation

Let us first consider the minimal supergravity
(mSUGRA) scenario [31]. We start by considering the
-4



 100

 150

 200

 250

 300

 350

 400

 450

 500

-200  0  200  400  600  800

M
1/

2

m0

tanβ=15,  A  =0,mSUGRA

1%

2%

5%

stau m
ass bound

chargino mass bound

Higgs boson mass bound

stau LSP

(114.4GeV)

0.5%

µ > 0

[GeV]

[G
eV

]

0

 100

 150

 200

 250

 300

 350

 400

 450

 500

-200  0  200  400  600  800

0.5%

1%

2%

5%

sto
p 

m
as

s b
ou

nd

chargino mass bound

stau m
ass bound

stau LSP

H
iggs boson m

ass bound

(114.4G
eV

)

M
1/

2

m0 [GeV]

[G
eV

]

tanβ=15,  A  =-3|mmSUGRA µ > 00 0|,

FIG. 2 (color online). Contours of ��1 on the m0 �M1=2 plane for the constrained mSUGRA with A0 � 0 (left) and A0 � �3jm0j
(right). The sign of � is chosen to be positive. The constraints from direct superparticle search, the Higgs boson mass bound, and the
stau LSP are also shown.

2The region with m2
~t < 0 has been discussed recently in [22] in

the context of finding a relation among soft supersymmetry-
breaking parameters which reduces fine-tuning. Our approach
here is different: we do not assume any special relations among
the supersymmetry-breaking masses, e.g., between the gaugino
and squark masses. We then do not find a region with ��1 better
than � 10%.

SUPERSYMMETRY, NATURALNESS, AND SIGNATURES . . . PHYSICAL REVIEW D 73, 095004 (2006)
constrained mSUGRA, in which the soft supersymmetry-
breaking parameters are specified by the universal gaugino
mass M1=2, universal scalar mass squared m2

0, universal A
term A0, and the �B term at the unification scale, Munif �
1016 GeV. While this scenario is sometimes criticized due
to a lack of a strong theoretical motivation, it is not so bad
in term of fine-tuning, compared with other models such as
gauge mediation models. This is because we can obtain a
reasonable size of At=m~t at the weak scale, so that the top
squark masses can be made smaller compared with the
models giving smaller values of At=m~t at the weak scale.

In Fig. 2 we plot values of the fine-tuning parameter ��1

in the constrained mSUGRA for two different choices of
A0: A0 � 0 and A0 � �3jm0j. The parameter ��1 is de-
fined by the fractional sensitivities of the electroweak VEV,
v ’ 174 GeV, to the fundamental parameters of the theory,
with generic sensitivities of v to the parameters appropri-
ately corrected [32]. We plot the contours of ��1 on the
m0 �M1=2 plane for �> 0, where m0 � sgn�m2

0�jm
2
0j

1=2.
The values of � and �B at Munif are determined by v and
tan�, and we take tan� � 15. We find that for A0 � 0 the
fine-tuning is worse than 2%, while for A0 � �3jm0j it can
be as mild as 5% for M1=2 ’ 150 GeV and m2

0 ’

�200 GeV�2. This can be understood as follows. For A0 �
0, renormalization group equations give low-energy values
for At and m~t that satisfy At=m~t 	�1. While this value of
jAt=m~tj is not totally negligible, it is still not large enough
to give MHiggs * 114:4 GeV with top squark masses
smaller than about 600 GeV (see Fig. 1). This gives a
high sensitivity of v to yt (the top-stop contribution to
m2
Hu

), leading to ��1 & 2%. The situation can be made
better by introducing nonvanishing A0 at Munif . While the
sensitivity of low-energy At to A0 is rather weak, A0 �
�3jm0j can give a low-energy value of At=m~t about �1:8,
which allowsm~t as small as ’ 250 GeV to evade the Higgs
boson mass bound, and thus ��1 as large as 5%. Herem~t is
defined by m~t � �m2

Q3
m2
U3
�1=4. In fact, larger values of A0

do not help in reducing fine-tuning because of a shrinking
095004
of the phenomenologically acceptable parameter region,
and we obtain ��1jmax � 5% in the constrained
mSUGRA.

In the case of the constrained mSUGRA described
above, ��1 is determined by the sensitivity of v to yt
and �, which implies that the dominant source of fine-
tuning comes from the sensitivity of m2

Hu
to the top-stop

loop contribution. We can make this sensitivity weaker by
deviating from the constrained mSUGRA. A simple way of
doing this is to make m2

Hu
and m2

Hd
differ from m2

0 at Munif .
Practically, this implies that we can take low-energy values
of � and mA as free parameters. Then, for certain values of
� andmA, which corresponds to choosing certain values of
m2
Hu

and m2
Hd

at Munif , we find that the sensitivity of v to yt
can be made weaker due to renormalization group proper-
ties of the soft supersymmetry-breaking parameters. This is
illustrated in the left panel of Fig. 3, where we plot the
contours of ��1 on the m0 �M1=2 plane, with � �
190 GeV, mA � 250 GeV and A0 � �3jm0j. We find
that fine-tuning can be made as mild as ��1 ’ 8%. A
similar reduction of tuning can also occur in the region
with m2

~t < 0 at Munif , which is allowed if we violate the
universality of M1=2 and/or m2

0 to avoid the slepton mass
bound. This is illustrated in the right panel of Fig. 3 for
�> 0, where we plot ��1 as a function of the gaugino
mass, M1=2, and the squark mass, m~q � sgn�m2

~q�jm
2
~qj

1=2, at
the unification scale Munif . The other parameters are
chosen as m2

~l
� �500 GeV�2 for the sleptons, A0 �

�jm~qj, and m2
Hu
� m2

Hd
� �100 GeV�2 at Munif . We find

that fine-tuning can be as mild as ��1 ’ 8%.2
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FIG. 3 (color online). Contours of ��1 on the m0 �M1=2 plane in the mSUGRA model with � � 190 GeV and mA � 250 GeV
fixed at the weak scale and A0 � �3jm0j at Munif (left). Contours of ��1 on the m~q �M1=2 plane with �> 0 and m2

~l
� �500 GeV�2,

A0 � �jm~qj and m2
H � m2

Hu
� m2

Hd
� �100 GeV�2 at Munif , where m2

~q and m2
~l

are the squark and slepton masses, respectively, (right).
In both cases tan� � 15.
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How much can we reduce fine-tuning in a theory with
high scale supersymmetry breaking? It is possible, after all,
that the soft supersymmetry-breaking parameters are not
calculable (easily) if they are generated through physics at
the gravitational scale. Suppose, for example, that grand
unification is realized in five dimensions and supersymme-
try is broken on a brane on which the active gauge group is
only SU�3�C � SU�2�L �U�1�Y [33]. Suppose also that all
the gauge, matter and Higgs fields propagate in the bulk, so
that they all feel supersymmetry breaking through the
operators ZW �W ��	2 , �Z� Zy��y��	4 and
ZyZ�y��	4 , where Z is the supersymmetry-breaking
field, W � the gauge field-strength superfields, and � the
matter and Higgs chiral superfields. (The � and �B terms
can also be generated through ZyHuHd � h:c:�	4 and
ZyZHuHd � h:c:�	4 ). Then, if there is a flavor symmetry
in the bulk and on the supersymmetry-breaking brane, the
generated supersymmetry-breaking masses can be flavor
universal. The flavor symmetry is broken only on the other
brane on which the Yukawa couplings are located. This
setup leads to soft supersymmetry-breaking masses that are
completely general other than the fact that they are flavor
universal. In particular, there is no imprint on the super-
particle masses from the underlying gauge unification.

It is, therefore, important to figure out the maximum
value of ��1 one can obtain in generic high scale
supersymmetry-breaking scenarios. We first note that there
is a ‘‘model-independent’’ source of the sensitivity of v to
the fundamental parameters—the sensitivity of v to the
gluino mass,M3, at Munif . This is because M3 always gives
contributions that make m~t grow at the infrared, which
always pushes down the value of m2

Hu
at the weak scale.

Since the sign of the contributions is definite, we cannot
weaken this sensitivity by complicating renormalization
group evolutions for a fixed value of M3. Now, there is a
lower bound on M3 at Munif arising from the requirement
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that a sufficiently large At=m~t is obtained at the weak scale,
without making At at Munif extremely large and thus in-
troducing a large sensitivity of v to At. We find
M3�Mmess� * 150 GeV, which leads to a factor of � 10
stronger fractional variation of v when we vary M3 at
Munif : @ lnv=@ lnM3 � 10. We conclude that, without a
special relation(s) among various soft supersymmetry-
breaking parameters, the maximum value of ��1 in high
scale supersymmetry breaking is

��1
maxjMmess	Munif

� 10%: (7)

This occurs in parameter regions in which jAt=m~tj �
O�1:5	 2:5�, j�j & 250 GeV and M~g * 450 GeV, where
M~g is the gluino mass at the weak scale. In particular, the
best points in Fig. 3 both occur at At=m~t ’ �1:8 and m~t �

�m2
Q3
m2
U3
�1=4 ’ 250 GeV. The electroweak VEVs satisfy

tan� * 5, and the Higgs boson mass is bounded by
MHiggs & 120 GeV.

If we want to improve fine-tuning further, we must
consider a theory that gives smaller values of Mmess, at
least effectively, because an ultimate reason for the 10%
tuning in Eq. (7) is the large logarithm ln�Mmess=m~t� ’
ln�Munif=m~t�. An important class of theories giving small
Mmess is gauge mediation models [34,35]. In these models,
however, the size of A terms at Mmess is small, so that
jAt=m~tj & 1 at the weak scale. This requires large top
squark masses to evade the Higgs boson mass bound, and
thus leads to severe fine-tuning. In Fig. 4 we plot the
contours of ��1 as a function of F=Mmess and Mmess for
�> 0, in the minimal gauge mediation models with
nmess � 1 and 4 pairs of messenger fields in the 5� 5�

representation of SU�5� � SU�3�C � SU�2�L �U�1�Y .
Here, Mmess and F are the supersymmetric and
-6
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supersymmetry-breaking masses for the messenger fields,
respectively. We find that fine-tuning cannot be better than
2% over the entire parameter region.

C. Large At and small �B with low-scale Mmess

Discussions in the previous subsections show that the
fine-tuning problem in minimal supersymmetry is solved if
soft supersymmetry-breaking parameters are generated at a
low scale with jAtj substantially (a factor of 	1:5 or so)
larger than m~t. It is, however, not so easy to achieve this in
a simple manner. Suppose, for example, that the super-
particles obtain masses through direct couplings to the
sector that dynamically breaks supersymmetry at a scale
� � O�10 TeV�. This will generate both A terms and
nonholomorphic supersymmetry-breaking squared masses,
~m2, through operators of the form �Z� Zy��y��	4 and
ZyZ�y��	4 , where Z is the supersymmetry-breaking
(composite) chiral superfield and � the quark, lepton and
Higgs superfields. Flavor universality of the soft masses
can be ensured by imposing a flavor symmetry on these
couplings. Now, the strengths of these operators can be
estimated using naive dimensional analysis [36]. We then
find that the nonholomorphic masses are much larger than
the A terms, ~m2 � ��=4��2 and A � �=16�2, leading to
an unwanted result of jAt=m~tj � 1=4�� 1. A possible
way of avoiding this is to generate the operators given
above in a perturbative regime at one and two loops,
respectively, for example, by using messenger-matter mix-
ing in gauge mediation. This leads to Mmess in the O�10	
100 TeV� region, allowing fine-tuning to be relaxed to the
�10	 20�% level with a modest logarithm of
ln�Mmess=m~t� ’ �3	 6�.

From the viewpoint of obtaining a large A term at low
energies, the simplest possibility is to have the operators
�Z� Zy��y��	4 (and ZyZ�y��	4 ) at tree level with
O�1� coefficients in units of the ‘‘cutoff’’ scale. Such a
situation arises naturally if supersymmetry is broken asso-
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ciated with an extra dimension(s) with the size of order
�10 TeV��1 [37–41] and if matter and/or Higgs fields
propagate in the extra dimension(s). Consider that the
MSSM gauge, quark and lepton superfields propagate in
an extra dimension compactified on S1=Z2 with the length
�R. The two Higgs doublets are located on a brane, and the
Yukawa couplings and the � term are introduced there.
Then, if the boundary conditions for these fields are twisted
by the SU�2�R symmetry with an angle �, the theory just
below 1=R is the MSSM with the soft supersymmetry-
breaking parameters given by [40]

M1;2;3 �
�
R
; m2

Q;U;D;L;E �

�
�
R

�
2
; Au;d;e � �2

�
R
;

(8)

m2
Hu;Hd

� 0; �B � 0; (9)

where M1;2;3 are the gaugino masses, and m2
Q;U;D;L;E and

Au;d;e the flavor universal squark and slepton masses and A
terms, respectively. Taking �=R to be a few hundred GeV
and 1=R � O�10 TeV�, this gives a perfect spectrum for
electroweak symmetry breaking: the messenger scale is
low, Mmess ’ 1=R, jAt=m~tj is slightly smaller than 2 at
the weak scale, and there is no strong hierarchy between
the colored and noncolored superparticles. The origin of
the small twist, � � �0:01	 0:1�, will lie in the dynamics
of radius stabilization, as the SU�2�R twist in boundary
conditions is equivalent to the supersymmetry-breaking
VEV in the radion supermultiplet [42]. A trade-off of this
theory is that we lose a conventional picture of the super-
symmetric desert, and thus a simple understanding of
successful supersymmetric gauge coupling unification
[43], although it might arise, for example, through some
conformal property above 1=R with the conformality vio-
-7
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lation effect associated somehow with the zero-mode rep-
resentations.3 In our view, the virtue of supersymmetric
theories with a TeV extra dimension(s) lies in the fact that
we can easily obtain large A terms at low scales. While the
accommodation of the desert is nontrivial, we think that
these theories provide a much more natural solution to the
so-called little hierarchy problem [44] compared with any
other nonsupersymmetric theories.

It is possible to obtain a picture similar to the one
described above without losing the conventional super-
symmetric desert. In a theory where the moduli [45] and
anomaly mediated [46] contributions to supersymmetry
breaking are comparable [47–50], the mediation scale of
supersymmetry breaking, Mmess, can be effectively low-
ered without having a real physical threshold atMmess [48].
The soft supersymmetry-breaking parameters at Mmess are
then given essentially by those of boundary condition
supersymmetry breaking or (equivalently) moduli medi-
ated supersymmetry breaking. (For a simple understanding
of this property, see the Appendix.) One of the challenges
to make a natural theory using this property is to have a
sufficiently small �B term to obtain a sufficiently large
tan�. Because of a large gravitino mass required to employ
anomaly mediation, it is rather difficult to achieve the
desired level of a (very) small �B term.

A model having all the desired features to have natural
electroweak symmetry breaking keeping the supersymmet-
ric desert has been given in Refs. [9,10]. The effective
messenger scale, Mmess, is lowered to the TeV region, a
large At term with At=m~t 	�1:4 is obtained, and a large
enough tan�, tan� * 5, is accommodated by making �B
small due to the renormalization group focusing effect and
the elimination of the classical contribution. In the minimal
setup, the soft supersymmetry-breaking parameters similar
to those of Eqs. (8) and (9) are obtained at Mmess �
O�TeV�:

M1;2;3 � M0; m2
Q;U;D;L;E �

M2
0

2
; Au;d;e � �M0;

(10)

m2
Hu;Hd

� 0; �B � 0; (11)

where M0 is a parameter of order a few hundred GeV.4
3In such a scenario, the observed differences of the three low-
energy gauge couplings should arise mainly from the differences
of the gauge couplings in the bulk, and not from operators
localized on a brane(s). Otherwise, the soft supersymmetry-
breaking parameters in Eq. (8) would receive large corrections
from brane operators, and the colored superparticles would
become much heavier than the noncolored ones, leading to the
pattern which is not desirable in terms of electroweak symmetry
breaking.

4Note that the sign convention for the supersymmetry-
breaking masses adopted here, i.e. that of Ref. [29], is different
from those in Refs. [9–11]. In particular, the sign of the A terms
is opposite.
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Depending on the mechanism of � and �B term genera-
tion, the parameter B � �B=� may have a nonzero value
of order M0=4�. As shown in Ref. [9], this theory does not
suffer from fine-tuning, i.e. ��1 � 20%, and the region
giving ��1 � 20% is consistent with the experimental
constraints, such as the one from b! s�, as long as the
sign of � is positive [11].5 The essential point, again, is to
generate a large jAt=m~tj and moderately large tan� with a
small (effective) messenger scale, Mmess 	 TeV. Note that
small effective Mmess is achieved here by having special
relations among various supersymmetry-breaking parame-
ters at Munif , which allows us to evade the general result of
Eq. (7). The top squarks should be light to eliminate fine-
tuning, although they do not have to be as light as in the
case of high scale supersymmetry-breaking, because of
rather small Mmess. A detailed study of the LHC signatures
in this particular model will be given in Sec. IV.

D. Characteristic spectra: light top squarks and light
Higgsinos

Considerations so far have highlighted certain generic
features for a superparticle spectrum that leads to natural
electroweak symmetry breaking in minimal supersymmet-
ric theories. These have been obtained by considering
mainly the tension between the m2

Hu
jrad term in Eq. (3)

and the Higgs boson mass bound from LEP II. Another
important constraint on the spectrum comes from the j�j2

term in Eq. (3). The fine-tuning arising from this term is
about M2

Higgs=2j�j2, so that requiring ��1 � 20% (10%)
leads to the bound j�j & 190 GeV (270 GeV). This im-
plies that the Higgsinos should be much lighter than in
typical mSUGRA or gauge mediation models, where rela-
tively large top squark masses lead to a large � parameter.

Taking all these together, we find that a supersymmetric
theory that has the minimal matter content and reproduces
naturally the correct scale for electroweak symmetry
breaking should have the following properties for the
superparticle spectrum:
(i) T
5It is i
be posit
Mmess is

-8
he A term for the top squarks is large, jAt=m~tj �
�1:5	 2:5� at the weak scale. This leads to a large
mass splitting between the two top squarks:

m~t2 �m~t1 � �1:5	 2:5�mt: (12)

Here, we have assumed m2
Q3
� m2

U3
. The splitting

as small as ’ mt, however, may be allowed if Mmess

is small, Mmess � O�TeV�.

(ii) T
he top squarks should be light, i.e. m~t �
�m2

Q3
m2
U3
�1=4 should be small, to reduce the sensi-

tivity of v to yt. How small m~t should be depends
on the value of Mmess and the amount of ��1

required. For the case of high scale supersymmetry
nteresting to point out that the sign of � is determined to
ive in the minimal setup, �B � 0 at Mmess, as long as
larger than the weak scale.
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breaking with ��1 � 10%, the bound is very
strong, m~t & 300 GeV, leading to m~t1 	 100 GeV.
(iii) S
mall values for the top squark masses imply that
we cannot push up the Higgs boson mass much
larger than the tree-level value. Typically, we find

MHiggs & 120 GeV: (13)
(iv) T
he ratio of the electroweak VEVs should also be
moderately large

tan� * 5; (14)

to have a sufficiently large Higgs boson mass at tree
level. This implies that the �B term should be
(significantly) smaller than 2j�j2 �m2

Hu
�m2

Hd
at

the weak scale.

(v) T
he � parameter should be small

j�j & 190 GeV�270 GeV�; (15)

for ��1 � 20% (10%). This leads to light
Higgsinos, which may be the LSP, or if not, may
significantly mix with the LSP.
The features described above still leave several possible
patterns for the superparticle spectrum, which can lead to
somewhat different situations. In Fig. 5 we depict possible
patterns which are representative for generic cases. In
Fig. 5(a), we depict a pattern that typically arises in a
high scale supersymmetry-breaking scenario with ��1 �
10%, for example, in the mSUGRA model with m2

Hu
,

m2
Hd

� m2
0 (see Fig. 3). In this situation the top squarks

are rather light, m~t � �m2
Q3
m2
U3
�1=4 & 300 GeV, with the

light top squark close to its experimental bound, m~t1 ’

100 GeV. The Higgsinos, ~h, are also light, although
��1 � 10% allows m~h as large as � 270 GeV. In princi-
ple there are little constraints on the other gaugino and
sfermion masses, except that the gluino should be heavier
than about 450 GeV and that the squarks cannot be much
Characteristic spectra for the superparticles which give
nt fine-tuning. The spectrum in (a) arises typically in a high
b) arises in a theory where supersymmetry is broken by bou
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lighter than the gluino. The universal gaugino mass rela-
tion, M3=g2

3 � M2=g2
2 � M1=g2

1, may or may not be sat-
isfied. The LSP will be either binolike, winolike, Higgsino-
like, or a mixture of these states. If the LSP consists mainly
of the bino, its thermal relic abundance can give the correct
dark matter density either through a large mixture with the
neutral Higgsinos and/or wino, coannihilation with the stau
or stop, or resonant annihilation through s-channel Higgs
boson exchange. Note that some of these options are not
available in typical mSUGRA points, in which top squarks
are heavy and thus the� parameter is large. For other cases
of winolike and Higgsino-like LSPs, the production should
be nonthermal. It is interesting that a large At term also
makes it easier to satisfy the constraints from the precision
electroweak data with small top squark masses [51]. It is
important to perform detailed LHC studies of this class of
spectra, although a large ambiguity for the gaugino and
sfermion masses will make a thorough study of the pa-
rameter space somewhat complicated. These spectra will
also be interesting for a future e�e� linear collider [52].

If we want to reduce fine-tuning further, for example, to
eliminate it altogether (��1 � 20%), we must generate the
soft supersymmetry-breaking parameters at low energies.
Because of a small logarithm, ln�Mmess=m~t�, constraints on
the top squark sector is slightly weaker in this case:
jAt=m~tj * O�1� and m~t & O�700 GeV�. On the other
hand, the constraint on the� parameter is stronger because
of a stronger requirement on ��1: for ��1 � 20%, we
obtain the bound on the Higgsino masses m~h & 190 GeV.
In fact, generating these spectra with small Mmess is non-
trivial, and one of the ways is to adopt (effectively) the
scheme of boundary condition, or moduli, supersymmetry
breaking at low energies. This generically leads to a rather
ordered spectrum at low energy, e.g. universal gaugino and
sfermion masses at the weak scale. This situation is de-
picted in Fig. 5(b), where almost degenerate gaugino and
sfermion masses are assumed. The relation between the
gaugino and sfermion masses is model-dependent. An
the correct scale for electroweak symmetry breaking without
scale supersymmetry-breaking scenario with ��1 � 10%, while
ndary conditions, or moduli contributions, with small (effective)
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important implication of this class of spectra is that the
LSP is one of the neutral Higgsinos, unless the gravitino is
lighter. To identify this LSP to be the dark matter, it must
be produced nonthermally, for example, as in [53]. As
discussed in [11], such dark matter can have an interesting
implication on direct dark matter detection experiments
such as CDMS II.

In the rest of the paper, we focus on studying LHC
signatures for the latter class of spectra, given in
Fig. 5(b). We do so partly because it gives milder (or no)
fine-tuning, and partly because there is little LHC study
directly related to this case. In particular, we first focus on
signals expected from the Higgsino LSP at the LHC, and
discuss under what conditions the signals are most useful.
We then demonstrate in section IV that the signals can
indeed be used in realistic analyses, using the explicit
model discussed at the end of subsection II C. The deter-
mination of model parameters are also discussed there,
which may be useful to discriminate between various
possible models.
III. HIGGSINO LSP AT THE LHC

We have seen that in a large class of theories where the
supersymmetric fine-tuning is solved, the Higgsinos are the
lightest among the superpartners of the standard model
particles. A characteristic pattern for the superparticle
spectrum in these theories is depicted in Fig. 5(b). The
three gauginos are almost degenerate at the weak scale, as
well as the squarks and sleptons. The ratio of the gaugino
and the sfermion masses is model-dependent. In this sec-
tion, we identify characteristic signals of these spectra at
the LHC, and discuss under what conditions the signals are
useful in realistic analyses. We assume throughout that the
gravitino is not lighter than the Higgsinos, so that the LSP
is the lightest neutral Higgsino.6

A. Dilepton invariant mass distribution from
~�0

2 ! ~�0
1l
�l� in the Higgsino LSP scenario

An important feature of the spectra depicted in Fig. 5(b)
is that there are three almost degenerate neutralino/char-
gino states, ~�0

1, ~�0
2 and ~��1 , with the masses � j�j &

190 GeV. If the gaugino masses are sufficiently larger
than j�j, which we assume to be the case, these states
are almost purely the Higgsinos, with the mass splittings
given by
6In fact, none of our analyses changes unless the gravitino
mass, m3=2, is smaller than O�1	 10 keV� because the lightest
Higgsino then lives long enough so that it can be treated as a
stable particle for collider purposes. For a smaller gravitino
mass, the lightest Higgsino decays into a Higgs boson and a
gravitino, followed by the Higgs boson decay h! b �b. This can
be used to measure the Higgs boson mass, e.g., by selecting four
b-jet events and plotting Mbb invariant masses. For m3=2 �
O�0:01	 1 keV�, we may also have displaced b �b vertex signals.
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m~�0
2
�m~�0

1
’ m2

Z

�
cos2	W
M2

�
sin2	W
M1

�
; (16)

m~��1
�m~�0

1
’
m2
Z

2

�
cos2	W
M2

�
sin2	W
M1

�
; (17)

where we have assumed a moderately large tan�, e.g.
tan� * 5, 	W is the Weinberg angle, and M1 and M2 are
the U�1�Y and SU�2�L gaugino mass parameters, respec-
tively. This implies that ~�0

2 and ~��1 undergo three-body
decays to ~�0

1. In particular, ~�0
2 has the leptonic decay mode

~� 0
2 ! ~�0

1l
�l�: (18)

At hadron colliders, this decay mode can give important
information on the properties of the initial- and final-state
neutralinos [3,54–56]. Below we show that the dilepton
arising from the decay of Eq. (18) can provide an important
test for the Higgsino nature of the lightest two neutralinos
~�0

1 and ~�0
2.

The three-body decay ~�0
2 ! ~�0

1l
�l� occurs through the

diagrams shown in Fig. 6. In the limit where the mass
difference between the two neutralinos is much smaller
than the Z boson mass and where the slepton masses are
much larger than the decaying neutralino, m~�0

2
�m~�0

1
�

mZ and m~lL
, m~lR

� m~�0
2
, the effects of these diagrams are

described by a single low-energy ~�0
1 ~�0

2l
�l� four-Fermi

operator for each chirality of leptons. This implies that

the distribution shape of the dilepton invariant mass,Mll ���������������������������
�pl� � pl��

2
p

, is completely determined by the masses of
the two neutralinos, ~�0

1 and ~�0
2, where pl� and pl� are the

four-momenta of l� and l�. Let us now adopt the phase
convention in which all the mass eigenvalues and the
mixing matrix elements for the neutralinos are taken to
be real. This basis can always be taken as long as there is
noCP violating effect in the neutralino mass matrix, which
we assume throughout. We then obtain the following di-
lepton invariant mass distribution after performing appro-
priate phase space integrals:

d��~�0
2 ! ~�0

1l
�l��

dMll

/ Mll

�����������������������������������������������������������������������������������
�m2

~�0
2
�m2

~�0
1
�2 � 2�m2

~�0
1
�m2

~�0
2
�M2

ll �M
4
ll

r

� f�m2
~�0

2

�m2
~�0

1

�2 � �m2
~�0

1

�m2
~�0

2

�M2
ll � 2M4

ll

� 6
�m~�0
1
m~�0

2
M2
llg; (19)

for 0 � Mll � m~�0
2
�m~�0

1
and d��~�0

2 ! ~�0
1l
�l��=dMll �

0 for Mll > m~�0
2
�m~�0

1
. Here, m~�0

1
� jM~�0

1
j and m~�0

2
�

jM~�0
2
j are the absolute values for the two smallest neutra-

lino mass eigenvalues M~�0
1

and M~�0
2

with m~�0
1
<m~�0

2
, and


� � sgn�M~�0
1
�sgn�M~�0

2
� is the relative sign between them.

In fact, with the LEP II bound on the Higgsino masses, the
-10
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�l� decay.
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assumption of m~�0
2
�m~�0

1
� mZ implies that the two neu-

tralinos are nearly degenerate: �m � m~�0
2
�m~�0

1
� m~�0

1
.

The Mll distribution is then further simplifies to

d��~�0
2 ! ~�0

1l
�l��

dMll
/ Mll

�����������������������
�m2 �M2

ll

q

� f2�m2 � �1� 3
��M2
llg; (20)

for 0 � Mll � �m and d��~�0
2 ! ~�0

1l
�l��=dMll � 0 for

Mll > �m.
There are two important features for the Mll distribution

in Eq. (20) which can be used to test the Higgsino LSP
scenario. First, the endpoint of the distribution,m~�0

2
�m~�0

1
,

is expected to be very small:

Mmax
ll � m~�0

2
�m~�0

1
’
m2
Z

M0
� O�10 GeV�; (21)

where we have set M0 � M1 ’ M2. Given the LEP II
bound on the chargino mass, such a small mass splitting
between ~�0

1 and ~�0
2 cannot arise in a theory where the LSP

is gauginolike and the three gauginos respect the universal
mass relation, M3=g

2
3 � M2=g

2
2 � M1=g

2
1. Second, the

Higgsino LSP necessarily leads to the opposite signs be-
tween M~�0

1
and M~�0

2
, so that 
� � �1 in Eqs. (19) and

(20). This is because in the gauge eigenbasis the 2� 2
neutral Higgsino mass matrix takes a purely off-diagonal
form ��0;���; ���; 0��, which gives one positive and one
negative eigenvalues after diagonalization including the
effects of mixing with the gaugino states. The resulting
FIG. 7. Dilepton invariant mass distribution from the ~�0
2 ! ~�0

1l
�l

LSP case (left panel) and the case of gauginolike ~�0
1 and ~�0

2 with sgn�
lines represent the ones obtained from Eq. (20) with 
� � �1 and
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distribution is quite different from the one with 
� � �1,
which arises in the case of the gauginolike LSP with
sgn�M1� � sgn�M2�.

In Fig. 7 we plot Mll distributions calculated for several
different choices for the soft supersymmetry-breaking pa-
rameters. In the left panel, we plot the Mll distribution for
the Higgsino LSP case by a solid curve. The curve is drawn
using the complete expression with tan� � 10, M1 �
M2 � 480 GeV and � � 170 GeV, which gives m~�0

2
�

m~�0
1
’ 20 GeV. We have varied the slepton masses m~l �

m~lL
� m~lR

in the range 1:001 � r~l � m~l=m~�0
2
� 10, but it

does not lead to any visible change of the curve. In the
figure we have also drawn curves obtained using the ap-
proximate expression of Eq. (20) for 
� � �1 (dashed
line) and 
� � �1 (dotted line). We find that the expres-
sion of Eq. (20) with 
� � �1 well approximates the full
result. The small discrepancy arises from corrections
higher order in ��m=mZ�

2. The right panel shows the Mll

distribution in the case of gauginolike ~�0
1 and ~�0

2 with
sgn�M1� � sgn�M2� (solid lines). The parameters are
chosen to be tan� � 10 and � � 500 GeV, and M1 and
M2 are chosen such that the same values of m~�0

1
and m~�0

2
as

in the left panel are obtained: M1 � 158 GeV and M2 �
182 GeV. The slepton masses are varied as r~l �

m~l=m~�0
2
� 10, 1.1, 1.01, 1.001 and we find that the Mll

distribution in this case depends on m~l but only when it is
very close to the ~�0

2 mass. As in the left panel, we also draw
curves obtained from Eq. (20) with 
� � �1 (dashed line)
� decay. Solid lines represent the distributions for the Higgsino
M1� � sgn�M2� (right panel). The curves with dashed and dotted
�1, respectively, (in both panels).
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and 
� � �1 (dotted line). We find that the approximate
curve with 
� � �1 well reproduces the full result with
r~l * 1:1.

The plots in Fig. 7 clearly show that the Higgsino LSP
case can be discriminated from the case with 
� �

sgn�M~�0
1
�sgn�M~�0

2
� � �1, even with the same mass differ-

ence m~�0
2
�m~�0

1
, regardless of the values for the other

supersymmetry-breaking parameters such as the slepton
masses. In particular, we find that the behavior of the Mll
distribution near the endpoint is completely different be-
tween the two cases of 
� � �1 and �1. This can be
understood in terms of the selection rule for the orbital
angular momentum due to the CP properties of the two
neutralinos ~�0

1 and ~�0
2 [57]. For 
� � �1 (� 1), the Mll

distribution near the kinematical endpoint, which corre-
sponds to the limit of slow moving ~�0

1 in the ~�0
2 rest frame,

should give an S-wave (P-wave) behavior, leading toMll /

��m�Mll�
1=2 (Mll / ��m�Mll�

3=2) near the endpoint.
While gauginolike ~�0

1 and ~�0
2 could potentially give a

similar distribution if sgn�M1� � �sgn�M2�, the shape of
the Mll distribution together with the smallness of the
endpoint can provide a powerful tool to test the Higgsino
LSP scenario considered here, which necessarily leads to
�m� mZ and 
� � �1.7

To demonstrate that the signatures discussed above are
really useful at the LHC, we must check that there are no
other leptons from the superparticle cascade decays which
bury the signatures. We must also show that the shape of
the Mll distribution from the ~�0

2 ! ~�0
1l
�l� decay is pre-

served under selection cuts in the analysis at a level that
different shapes for
� � �1 and�1 can be discriminated
in a realistic detector. We address the first issue in the next
subsection, in the context of a class of theories discussed in
subsections II C and II D. The second issue will be ad-
dressed in Sec. IV, where we explicitly demonstrate that the
Mll distribution can indeed be used to test the Higgsino
LSP scenario, as well as to extract the information on the
neutralino masses, by performing Monte Carlo simulations
using a specific theory.

B. Higgsino LSP with quasidegenerate gauginos and
sfermions

Let us consider the pattern of the superparticle masses
depicted in Fig. 5(b), which can naturally arise in a theory
7It is interesting to point out that the signatures discussed here
arise only from the fact that the neutral Higgsinos are pseudo-
Dirac fermions. The same technique, therefore, can also be used
to test the idea of pseudo-Dirac gauginos, depending on the
spectrum for the other superparticles (for examples of theories
giving pseudo-Dirac gauginos, see [58]). For instance, if the LSP
is one of the pseudo-Dirac bino or wino states, similar signatures
may arise in the dilepton invariant mass distribution, depending
on the existence of other sources of leptons and/or patterns of
cascade decays for the superparticles.
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where moduli-type, or boundary condition, supersymmetry
breaking is employed with small Mmess. Specifically, we
consider the following spectrum. The three gauginos are
almost degenerate at the weak scale with the masses de-
noted by m~g. The squarks and sleptons are also nearly
degenerate with the masses denoted by m~q, although the
two top squarks, ~t1 and ~t2, can have substantially different
masses because of a large mass splitting due to large At.
The mass splittings among the gauginos and among differ-
ent squarks and sleptons arise at higher order, but they are
expected to be small and of O�10%�. The � parameter is
smaller than about 200 GeV, so that it is smaller than both
m~g and m~q.

We first consider the case with m~q < m~g. In this case, a
squark cannot decay into a gluino, so that it decays as ~q!
~��1 q

0, ~�0
1q or ~�0

2q. Here, q and q0 represent quarks having
the same and different flavors with ~q, and the lightest
chargino, ~��1 , and the lightest two neutralinos, ~�0

1;2, are
the charged and neutral Higgsinos, respectively, with small
mixings with the gaugino states. On the other hand, the
gluino, once produced, decays into a quark and a squark
g! q~q, followed by squark decay discussed above. In
these decay chains, leptons arise only from decays of ~��1
and ~�0

2: ~��1 ! ~�0
1l
�� and ~�0

2 ! ~�0
1l
�l�. In the Mll distri-

bution analysis, we select events having two and only two
leptons with the same flavor and opposite charge. The
number of dileptons arising from ~��1 decays is then small
over the relevant energy region of Mll � O�10 GeV�,
compared with that from ~�0

2 decay. (The background
from ~��1 decays can actually be estimated using
opposite-sign opposite-flavor leptons and thus subtracted
using the combination e�e� ����� � e��� �
��e�.) The only remaining issue then is the squark
branching ratio into ~�0

2 and the ~�0
2 branching ratio into

leptons. In the parameter region we consider, the former is
typically of O�10%� and the latter is � 3% for both e�e�

and ���� modes, which are large enough to produce an
appreciable number of dilepton events.8 We therefore con-
clude that the signatures discussed in the previous section
can be used at the LHC for m~q < m~g. This claim will be
confirmed in the next section, where we perform an explicit
study using Monte Carlo simulations.

In the case of m~q > m~g, a squark decays mainly into a
quark and a gluino, although it may also decay into a wino
or bino by a small amount. The gluino then undergoes
three-body decays: ~g! ~��1 q �q0, ~�0

1q �q or ~�0
2q �q. The
8Strictly speaking, opposite-sign same-flavor dileptons may
also arise from the three-body decay of the gluino ~g! ~Wqq
followed by the wino decay ~W ! l~l! ll~�0

1, if the gluino is
slightly heavier than the wino, e.g. by about O�10%�, due to
higher order effects. The branching ratio of this mode, however,
is extremely small because of a large phase space suppression, so
that the resulting dileptons are completely negligible compared
with the ones arising from ~�0

2 decay. A similar comment also
applies to ~q! ql~l followed by ~l! l~�0

1.
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branching ratios for ~g! ~Wq �q�0�, ~Bq �qmay also be nonzero
if the gluino is slightly heavier than the wino and/or bino,
but these modes are highly suppressed by smallness of the
phase space. The gluino branching ratio into ~�0

2 is of
O�10%�, and the ~�0

2 branching ratio into leptons (including
both e and �) is � 6%, implying that an appreciable
number of dilepton events can be obtained from ~�0

2 decay.
The background from ~��1 decay is, again, not important.
The only sources of leptons that could potentially destroy
the signatures are decays of ~W and ~B, produced by squark
decay. The dominant decay modes of ~W and ~B, however,
will be into a Higgsino (either one of ~��1 , ~�0

1 and ~�0
2) and a

W, Z or Higgs boson, so that the dangerous modes giving
l�l� directly are suppressed by the three-body phase space
and a small gaugino-Higgsino mixing. The number of
dangerous dileptons from ~W and ~B decays, therefore, is
at most of the same order as the ones from ~�0

2 decay. Since
the Mll endpoint for these dileptons is about m~g � j�j and
the distribution is suppressed for Mll much smaller than
this values, it is unlikely that these leptons destroy the
signatures from ~�0

2 decay. (We select events having two
and only two leptons when doing theMll analysis.) We thus
find that the Higgsino LSP signatures discussed in the
previous subsection are also useful in the case of m~q >
m~g at the LHC.

We finally consider the case where m~q � m~g at the
leading order (at tree level). In this case we expect that
the masses of the gluino and squarks, m~g and m~q, are
slightly (O�10%�) larger than those of the wino, bino and
sleptons, m ~W , m ~B and m~l, due to higher order (radiative)
effects. The orderings among m~g and m~q and among m ~W ,
m ~B and m~l are model-dependent. With these spectra, glui-
nos and squarks once produced decay mostly into ~W or ~B
plus a few jets, although a small fraction decays directly
into light Higgsino states, ~��1 , ~�0

1 and ~�0
2. Decays of the

electroweak gauginos differ depending on the ordering of
m ~W , m ~B and m~l. If there is a slepton with the mass smaller
than that of a gaugino, e.g. m~l < m ~W , there is a sizable
branching ratio for the gaugino decaying into the slepton,
~W ! l~l. This gives a large amount of opposite-sign same-

flavor dileptons through the slepton decay ~l! l~�0
1, which

can potentially destroy the signatures from ~�0
2 decay. On

the other hand, if all the sleptons are heavier than ~W and ~B,
these gauginos decay mainly into a Higgsino (one of ~��1 ,
~�0

1 and ~�0
2) and aW, Z or Higgs boson. The branching ratio

into ~�0
2 is typically of O�10%�, and the desired signatures

are obtained from ~�0
2 decay. There are other dileptons from

three-body decays of ~W and ~B, such as ~W ! ~��1 ll, but the
number of these dileptons is sufficiently small. We thus
expect that the Higgsino LSP signatures are useful for
m~q � m~g as long as all the sleptons are heavier than the
electroweak gauginos.

We have seen that the Higgsino LSP signatures dis-
cussed in subsection III A are useful, i.e. not buried by
095004
dileptons from other superparticle decays, in a large class
of theories motivated by solving the supersymmetric fine-
tuning problem. In the next section, we explicitly demon-
strate that these dilepton signatures can indeed be used in
realistic analyses by performing Monte Carlo simulations
in a theory with m~g > m~q. We also present a technique
which can essentially determine all the superparticle
masses in a class of theories discussed here, up to small
mass splittings of O�10%� among different squarks and
sleptons and a smaller splitting between the electroweak
gaugino masses.

IV. NATURAL SUPERSYMMETRY AT THE LHC

In this section, we perform a Monte Carlo study for a
class of theories discussed in the previous section and in
subsections II C and II D which naturally leads to the
correct scale for electroweak symmetry breaking. We ex-
plicitly demonstrate that the signatures discussed in the
previous section can be used to test the Higgsino LSP and
extract the small mass difference between the two neutral
Higgsinos at the LHC. We also devise a series of cuts that
allows us to determine all the relevant superparticle masses
in theories with m~g > m~q: m~�0

1
, m~q, �m and m~g. In par-

ticular, we perform the analysis in the context of the model
based on mixed moduli and anomaly mediated supersym-
metry breaking, discussed at the end of subsection II C, and
show that the model can be tested at the LHC, up to
theoretical uncertainties of� 15% on various superparticle
masses.

A. Framework

The basic setup for our analysis is the same as that in
subsection III B (and subsection II C). The three gauginos
are almost degenerate at the weak scale, m~g � M1 ’ M2 ’

M3, and the squarks and sleptons are also nearly degener-
ate, m~q��m

2
Q�

1=2’�m2
U�

1=2’�m2
D�

1=2’�m2
L�

1=2’�m2
E�

1=2.
The A parameters are nearly universal at the weak scale,
A � Au ’ Ad ’ Ae, with A satisfying jA=m~qj * O�1�. The
(top) squark masses, m~q, should not be very large, and the
ratio of the electroweak VEVs should satisfy tan� * 5. In
the analysis in this section, we only consider the casem~g >
m~q.

To perform an explicit Monte Carlo study, we must
choose particular parameter points. For this purpose, we
take the model based on mixed moduli and anomaly me-
diated supersymmetry breaking, discussed at the end of
subsection II C, and choose the parameters within the
region satisfying the condition ��1 � 20%. In particular,
we take [9,10]

M1;2;3 � M0; m2
Q;U;D;L;E �

M2
0

2
;

Au;d;e � �M0; m2
Hu;Hd

� O
�
M2

0

8�2

�
;

(22)
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TABLE II. Superparticle masses in GeV for points I and II in
Table I. The masses for the second generation squarks and
sleptons are not listed because they are nearly degenerate with
the corresponding first generation squarks and sleptons.

point I point II

~g 623 917
~��1 167 170

~��2 600 893
~�0

1 161 166
~�0

2 177 176
~�0

3 584 882
~�0

4 603 894

~uL 473 686
~uR 471 684
~dL 480 691
~dR 472 685
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at some scale Mmess � O�100 GeV	 TeV�, where

450 GeV & M0 & 900 GeV; (23)

for tan� * 20. For smaller tan�, the lower bound in
Eq. (23) increases; for tan� � 10 (5) the lower bound
becomes � 550 GeV (900 GeV). In our analysis, we
take �, mA and tan� to be free parameters in the Higgs
sector, which are left undetermined after the electroweak
symmetry breaking condition is imposed on �, �B, m2

Hu

and m2
Hd

. As shown in Ref. [11] the constraint from the
b! s� decay chooses the sign of� to be positive. We thus
have

sgn ��� � �1; j�j & 190 GeV;

mA & 300 GeV; tan� * 5:
(24)

The last three conditions come from the naturalness crite-
rion, ��1 � 20%.

In our Monte Carlo study, we choose two parameter
points given in Table I, satisfying Eqs. (22)–(24). The
point I is representative for the case with a relatively low
superparticle mass scale, while the point II for the case
with a high superparticle mass scale. These points satisfy
the experimental constraints such as the ones coming from
the Higgs boson mass and the b! s� decay, within theo-
retical uncertainties. We note, however, that the constraints
from the Higgs boson mass and b! s� are not very
important in our present context, because they are sensitive
to the parameters in the Higgs sector, such asmA and tan�,
whose precise values are not relevant in our LHC study
below.

The physical masses for the superparticles are obtained
from the inputs in Table I as follows. We interpret the input
masses as the running masses in the DR0 scheme at the
scale Mmess, and evolve them down to the superparticle
mass scale using renormalization group equations. We then
add the effects of electroweak symmetry breaking, such as
the D-term contributions to the scalar masses and the
gaugino-Higgsino mixings, and convert the running
masses to the pole masses by including finite threshold
corrections, using the code SuSpect 2:3 [28]. The result-
ing superparticle masses are given in Table II for the two
parameter points in Table I. Strictly speaking, this proce-
dure is not quite meaningful in the context of the model
under study, because we generically expect unknown
TABLE I. Two representative parameter points of the model
used in Monte Carlo simulations.

point I point II

M0 [GeV] 600 900
� [GeV] 170 170
mA [GeV] 250 250
tan� 15 15
Mmess 1 TeV 1 TeV
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higher order corrections of O�1=8�2� in the expression of
Eq. (22), which can be comparable to some of the low-
energy corrections included here. Nevertheless, this proce-
dure allows us to incorporate the fact that the colored
particles are systematically heavier than the noncolored
ones by O�10%�, which we expect to hold in realistic
situations. We thus perform our Monte Carlo study using
the masses given in Table II, although one should remem-
ber that there are intrinsic theoretical uncertainties of
O�10%� for the superparticle masses in the model.

To perform the analysis, we generate both supersym-
metric and standard model events using PYTHIA 6:324
[59]. We generate supersymmetric events for the two pa-
rameter points in Table I. The number of events generated
for each point is equivalent to the integrated luminosity of
30 fb�1, which corresponds to the three-year running of
the LHC at low luminosity. The superparticle decays are
calculated using the code SDECAY 1:1a [60], with the
results transferred to PYTHIA and used in the event gen-
eration. For the estimation of standard model background,
we have generated 0.5M QCD 2! 2 events for each bin of
the transverse momentum: 100 GeV<pT < 200 GeV,
200 GeV< pT < 400 GeV, 400 GeV<pT < 800 GeV,
and pT > 800 GeV. We have also generated the W � jets
events with W ! e�, ��, � (0.5M events for 50 GeV<
pT < 200 GeV and 0.2M events for pT > 200 GeV), the
Z� jets events with Z! � ��, �� (0.5M events for
~eL 433 643
~eR 429 640
~�eL 425 638

~t1 365 571
~t2 576 783
~b1 463 678
~b2 481 691
~1 424 636
~2 437 646
~�L 425 638
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50 GeV<pT < 150 GeV and 0.2M events for pT >
150 GeV), 1M events for the t�t production, and 0.2M
events for each ZZ, Z��, ZW and WW production. These
standard model events are simply scaled to 30 fb�1 when
estimating standard model backgrounds. While our back-
ground estimations are correct probably only to a factor of
a few due to inherent uncertainties associated with the
QCD effects, we expect that our analysis is not much
affected by this because the standard model background
can be pretty much reduced by our cut selections, as we
will see later. Some of the analysis, e.g. the effective mass
analysis in subsections IV D and IV E, may be affected by
these uncertainties, but then we can always raise the cut on
Emiss
T and recover the usefulness of the analysis.
For the detector simulation, we use AcerDET 1:0 [61],

a generic fast detector simulation and reconstruction pack-
age for the LHC, which has a similar principle of operation
to the official fast simulation package of the ATLAS
detector, ATLFAST [62]. The package performs identifi-
cation and isolation of leptons, photons and jets in terms of
detector coordinates: pseudorapidity 
, azimuthal angle�,

and cone size �R �
��������������������������������
����2 � ��
�2

p
. Lepton, photon and

jet four-momenta are smeared, and the cluster selections
are made based on pT and j
j. Isolation criteria are applied
to leptons and photons in terms of the distance from other
clusters, �R> 0:4, and of maximum transverse energy
deposited in cells in a cone �R � 0:2 around the cluster.
The calibration of jet four-momenta is also performed, and
each jet is labeled either as a light jet, b-jet, c-jet or -jet,
using information from event generators. (We use default
parameters for these selection, isolation, calibration and
labeling processes.) For the b-jet identification, we further
implement b-tagging efficiency of 60% per a b-labeled jet,
with mistagging probability of 10% for a c-labeled jet and
1% for a light jet. For the -jets, we use efficiency of 50%
per a -labeled jet, with the mistagging probability of 10%
for other jets.

For each event, we apply the following trigger selections
[62]: one isolated electron with pT > 20 GeV, one isolated
photon with pT > 40 GeV, two isolated electrons/photons
with pT > 15 GeV, one muon with pT > 20 GeV, two
muons with pT > 6 GeV, one isolated electron with pT >
15 GeV and one isolated muon with pT > 6 GeV, one jet
FIG. 8. Decay cascades
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with pT > 180 GeV, three jets with pT > 75 GeV, and
four jets with pT > 55 GeV, where isolated electrons/pho-
tons, isolated muons and jets must be in the central regions
of pseudorapidity j
j< 2:5, 2.4, and 3.2, respectively. In
our analysis, we consider only events passing one of these
criteria.

In our study, we ignore possible systematic errors caused
by cuts and choices of fitting functions and regions, and
take only into account the statistical errors. Based on good
agreements between the input values and the fit results
obtained in subsections IV C, IV D, and IV E, however,
we expect that these neglected errors are not much larger
than the statistical errors included in the analysis. We also
do not include detector issues such as fake leptons, but we
expect, based on rough estimates, that they do not elimi-
nate our signatures. Detailed studies of these issues, how-
ever, are warranted.

B. Characteristic features: short cascades and fewer
leptons

We begin by identifying characteristic features relevant
to the LHC arising for the superparticle spectra under
consideration. At the LHC, most of the superparticle pro-
ductions comes for m~q, m~g & 1 TeV from squark and
gluino productions. For point I (point II) in Table I, the
cross sections are ’ 3:8 pb, 25.3 pb and 23.0 pb (0.27 pb,
2.98 pb and 3.71 pb) for the ~g ~g , ~g ~q and ~q ~q productions,
respectively, where the total superparticle production cross
section is about 55.2 pb (9.22 pb). We find that the squark-
gluino pair production and the squark pair production
dominate in our parameter space. After the production, a
squark decays mostly into ~��1 or ~�0

1 and a quark, ~q!
~��1 q

0, ~�0
1q, but it also decays into ~�0

2, ~q! ~�0
2q, with a

small branching ratio ofO�10%�. The ~��1 and ~�0
2 produced

then decay into ~�0
1 and quarks/leptons through three-body

decays, giving leptons with branching fractions ofO�10%�.
For the gluino, it decays into a quark and a squark with the
branching ratio of � 100%, which is followed by squark
decay.

An important feature of these decays is that the decay
chains are relatively short. Compared with the case where
the wino decay into a slepton is open, for example, decay
chains with the present spectra are shorter in average.
used in the analysis.
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FIG. 9 (color online). The distribution of the dilepton invariant
mass, Mll, for point I. Hatched histogram represents the standard
model background, which is smeared over five bins in order not
to magnify the statistical uncertainty due to the scaling of the
events. The solid line is the best fit function for the signal plus
background, obtained using the theoretical curve with 
� � �1.
It can be clearly distinguished from the 
� � �1 case, drawn by
the dashed line. The endpoint is extracted to be 15:30

0:15 GeV.
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Another important feature is that the number of leptons
arising in the cascades is significantly smaller than in the
case where colored and noncolored superparticles have a
large mass hierarchy, e.g. as in a typical mSUGRA pa-
rameter point. We can thus use (# of 1 lepton events)/(# of 0
lepton events) to make a first guess that the superparticles
may have a spectrum like the one considered here. In fact,
the features described here allow us to test certain generic
aspects of the spectra, such as the nature of the LSP, and to
determine the basic mass parameters in a simple manner.
These information can then be used to test or discriminate
between possible models, as will be discussed in
subsection IV F.

In our analysis, the following decay cascades are used:
~q! ~�0

2q! ~�0
1l
�l�q, ~q! ~�0

1q, and ~g! ~qq! ~�0
1qq,

which are depicted in Fig. 8. Here, we have not discrimi-
nated between quarks and antiquarks. Using the kinematics
of these cascades, we can determine the masses of the
gluino, squarks and neutralinos, as well as the small mass
difference between ~�0

1 and ~�0
2, model independently. This

will be shown in subsections IV C and IV D for the case of
point I and in subsection IV E for the case of point II.
Various kinematical endpoints, such as the ones for dilep-
tons, two leptons plus a jet, and a combination of two jets,
will be used. Precisions of order a few to 10% are achieved,
as will be shown later below.

C. Determination of the squark and neutral Higgsino
masses

In this subsection we show that using the kinematics of
the cascade decay ~q! ~�0

2q! ~�0
1l
�l�q and those for the

squark pair production with ~q! ~�0
1q, we can determine

m~q, m~�0
1

and m~�0
2

without using input from particular
models. This information can thus be used for nontrivial
tests of the model predictions, as will be discussed in
subsection IV F. The analysis also demonstrates that the
Mll distribution discussed in Sec. III is indeed useful in
testing the Higgsino nature of the lightest neutralinos. In
this and the next subsections, we use point I in Table I
(M0 � 600 GeV) for the analysis. The same analysis will
be repeated for point II (M0 � 900 GeV) in
subsection IV E.

We first look at the Mll distribution from the three-body
decay ~�0

2 ! ~�0
1l
�l�. As discussed in Sec. III the endpoint

and the shape of the distribution measure the mass differ-
ence of the two neutralinos, �m, as well as the relative CP
property of the two neutralinos, 
�.

We select the dilepton events with the following cuts:

(i) E
miss

T > 300 GeV

(ii) A
t least two jets with pT > 50 GeV
(iii) T
wo and only two leptons with the same flavor and
opposite charge
(iv) V
eto b-jets

In Fig. 9, we show the Mll distribution obtained with the
cuts described above. The standard model backgrounds are
095004
effectively reduced by the cuts (hatched histogram). We
can clearly see the endpoint of Mll around 15 GeV, which
can be the first test for the Higgsino LSP scenario. Note
that while Mll is small, pT’s of the leptons are not so small
because of the parent ~�0

2’s transverse momenta, so that
these leptons are not much affected by the trigger selec-
tions of subsection IVA.

We have performed a fit of the distribution by using the
theoretical curve including the effect of the finite Z-boson
mass, with a linear background distribution. In this fitting
process, the standard model background events are
smeared in order not to artificially magnify the statistical
uncertainty due to the scaling of the generated events to
30 fb�1. A reasonable fit is possible only for the 
� � �1
case (solid line), and we obtain the endpoint value

Mmax
ll � 15:30
 0:15 GeV; (25)

which is consistent with the input value of the mass dif-
ference �m � 15:40 GeV (see Eq. (21)). The theoretical
curve with the 
� � �1 case is superimposed in the plot
(dashed line). We can clearly see the deviation from the
simulated distribution, especially near the endpoint. We
thus conclude that the smallness of the endpoint, Mmax

ll ,
together with the shape of the Mll distribution character-
istic of 
� � �1, provide an extremely powerful test for
the Higgsino LSP scenario. If these signals are actually
-16
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observed, they strongly suggest that the LSP is one of the
nearly degenerate neutral Higgsinos.

At this stage, we only have information on the neutralino
mass difference, but further information can be obtained by
stepping up the cascade, i.e. by combining dileptons with
the quark jet from the squark decay. We can construct two
independent Lorentz-invariant quantities Mllq and Mlq,
whose endpoint values are given by

Mmax
llq � Mmax

lq � m~q

�
1�

m2
~�0

2

m2
~q

�
1=2
�
1�

m2
~�0

1

m2
~�0

2

�
1=2
: (26)

The two endpoints coincide because the final-state leptons
come from the three-body decay. The measurement of the
two endpoints, therefore, can give only one additional
information.

For the event selection for the Mllq and Mlq measure-
ments, we have imposed a cut on Mll
(i) M
FIG. 1
backgr
The so
Gauss
The M
ll < 15 GeV

in addition to the cuts for the Mll measurement, in order to
reject incorrect lepton pairs. The jet which is combined
with the lepton(s) is selected from the two largest pT jets.
We choose the one that gives the smaller Mllq to see the
endpoint of the distribution.
0 (color online). The distributions of Mllq (left) and Mlq (rig
ound, which for Mllq is smeared over five bins in order not to m
lid line is the best fit function for the signal plus backgrou

ian smearing for the signal and a linear function for the backgr

lq endpoint cannot be extracted clearly using a simple linear

095004
In Fig. 10, we show the distributions of Mllq (left) and
Mlq (right). The endpoint is clearer inMllq than inMlq. We
thus use the Mllq endpoint for the mass determination. We
have performed a fit of the Mllq distribution near the
endpoint, with a linear function with Gaussian smearing.
A linear function is also assumed for the background
distribution. The best fit function is drawn in the figure,
and we obtain

Mmax
llq � 179:6
 5:8 GeV: (27)

This is consistent with the expected endpoint obtained
using the formula of Eq. (26), which is ’ 180 GeV. We
have also tried to estimate the endpoint in the Mlq distri-
bution. A reasonable fit, however, cannot be obtained with
linear functions. Better functions are needed if one wants to
extract the endpoint from the Mlq distribution. From the
Mll and Mllq endpoint measurements, we now have two
relations among three mass parameters, m~�0

1
, m~�0

2
and m~q.

We still need one more independent quantity to determine
all the three masses.

In principle, the threshold value of Mllq with the cut
Mll > �Mmax

ll (0< �< 1) could provide the required addi-
tional information:
Mmin
llq jMll>�Mmax

ll
�
Mmax
llq���
2
p

�
1�

��1� �2 � �1� �2�
m

~�0
1

m
~�0

2

�2 � 4�2�1=2

1�
m

~�0
1

m
~�0

2

� �2
1�

m2

~�0
2

m2
~q

1�
m2

~�0
2

m2
~q

1�
m

~�0
1

m
~�0

2

1�
m

~�0
1

m
~�0

2

�
1=2
: (28)
ht) for point I. Hatched histogram represents the standard model
agnify the statistical uncertainty due to the scaling of the events.

nd near the endpoint, obtained by using a linear function with
ound. The endpoint is extracted to be 179:6
 5:8 GeV for Mllq.
function.
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FIG. 11 (color online). The MT2 (defined in the text) distribu-
tion for the input value of the neutralino mass m~�0

1
� 200 GeV

for point I. Hatched histogram is the standard model background.
The endpoint is extracted by fitting the signal plus background
histogram with a linear function, and the background near the
endpoint by a linear function. The endpoint is obtained to be
505:3
 0:6 GeV.
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However, with the limited statistics and the narrow physi-
cal Mll region of the Higgsino LSP scenario, the threshold
ofMllq is not quite useful for the mass determination. With
fixed Mmax

ll and Mmax
llq , Mmin

llq has a very little sensitivity to
the mass parameters.

We therefore have to look for another quantity to deter-
mine the three masses. Such a quantity can be obtained by
analyzing the squark pair production process followed by
the two squarks decaying into two jets and two ~�0

1’s.
Although we cannot reconstruct the squark four-momenta
due to two escaping invisible neutralinos by the event by
event analysis, we can extract a relation between m~q and
m~�0

1
by the endpoint analysis of theMT2 variable defined in

Ref. [63]. This variable is designed to take the maximal
value at the squark mass when we input the correct m~�0

1
in

the calculation. The definition is given by

M2
T2 � min

pmiss
T1 �pmiss

T2 �pmiss
T

maxfm2
T�p

j1
T ;p

miss
T1 �; m

2
T�p

j2
T ;p

miss
T2 �g�;

(29)

where pj1T and pj2T are the transverse momenta of the jets
from the squark decays, and pmiss

T is the missing transverse
momentum. The transverse mass, m2

T , is defined by

m2
T�p

a
T;p

b
T� � m2

a �m
2
b � 2�EaTE

b
T � paT � pbT�: (30)

By identifying the endpoints of MT2 for various input
values of m~�0

1
, we can obtain a relation between m~q and

m~�0
1
, which can provide the last information to determine

the three masses, m~�0
1
, m~�0

2
and m~q.

To select the squark pair production events, we use the
following cuts:
(i) E
miss
T > 300 GeV
(ii) V
eto leptons, b-jets, -jets

(iii) T
wo and only two jets with pT > 50 GeV
FIG. 12 (color online). Two curves on the m~�0
1
�m~q plane

deduced from the cascade decay analysis, Mmax
ll and Mmax

llq , and
the squark pair production analysis, Mmax

T2 , for point I. Both
curves are obtained by inputting hypothetical values of m~�0

1
,

which is taken as the horizontal axis. The intersection determines
the real values of m~�0

1
and m~q. The obtained masses with the 1�

statistical errors are shown by shaded bands.
For our assumptions on the b-tagging and -tagging effi-
ciencies, see subsection IVA.

In Fig. 11, we show the MT2 distribution for the input
value of m~�0

1
� 200 GeV as an example. We can see a

clear edge in the distribution around 500 GeV. Fitting with
a linear function with a linear background, we obtain the
endpoint 505:3
 0:6 GeV. With the rich statistics (63 859
events survive the cuts) and the sharp edge, we can mea-
sure the endpoint quite accurately. Note that this is not the
squark mass itself—it is the value of some quantity that
would become the squark mass if our hypothetical input
neutralino mass is in fact the true neutralino mass.

Combining the Mmax
ll and Mmax

llq measurements with the
MT2 analysis, we can now determine all the three masses,
m~q,m~�0

1
andm~�0

2
, as follows. First, the endpoint analysis of

the cascade decay, Mmax
ll and Mmax

llq , gives two constraints
on the three mass parameters, leaving one parameter un-
fixed. If we take this parameter to be m~�0

1
, we can draw a

curve on the m~�0
1
�m~q plane, using the constraints from
095004-18
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Mmax
ll andMmax

llq . On the other hand, the MT2 analysis of the
squark pair production gives another relation between m~�0

1

and m~q, giving an independent curve on the same plane.
The intersection of the two curves will then give the real
values of �m~�0

1
; m~q�. In Fig. 12 we show the two curves

explained above with the statistical errors. The MT2 curve
is obtained by performing the MT2 endpoint measurements
for six different input values of m~�0

1
and then interpolating

them with a smooth curve. The measured values ofm~�0
1

and
m~q by this combined analysis are indicated by shaded
bands with the 1� statistical errors.

The effectiveness and accuracy of the method are dem-
onstrated in Fig. 13. To draw the figure, we have generated
10 000 ‘‘experiments’’ and considered that in these experi-
ments the values of Mmax

ll , Mmax
llq and Mmax

T2 are determined
according to the Gaussian distributions with the statistical
errors given in Eqs. (25) and (27) and by the MT2 fit. We
have then calculated the three mass parameters using the
method described above and have plotted their distribu-
tions. These plots show that m~�0

1
andm~q have larger tails in

large mass regions. This represents the fact that the two
curves in Fig. 12 are more similar in a larger m~�0

1
region

than in a lower region. The input values of the mass
parameters are indicated in Fig. 13 by arrows, and we
find that the correct values are obtained within reasonable
statistical uncertainties. By fitting the histograms with the
Gaussian distribution, we obtain

m~�0
1
� 169
 17 GeV; m~q � 486
 11 GeV;

�m � 15:30
 0:15 GeV:
(31)

This demonstrates that the neutralino and squark masses
can be measured with 10% and 2% level accuracy, respec-
tively, at the LHC in the Higgsino LSP scenario. The mass
difference between the two neutral Higgsinos can be mea-
FIG. 13. The statistical errors of the measured mass parameters m~�
the Monte Carlo event generation. The accuracy at the level of 10%

095004
sured at 1% accuracy. The information on these masses are
very useful to test particular models, as will be discussed in
subsection IV F.

D. Determination of the gluino mass

With the knowledge of the squark and neutralino
masses, we can determine the gluino mass using the kine-
matics of the ~g! ~qq! ~�0

1qq cascade decay. The invari-
ant mass of the two final jets have the maximal value at

Mmax
jj � m~g

�
1�

m2
~q

m2
~g

�
1=2
�

1�
m2

~�0
1

m2
~q

�
1=2
: (32)

Therefore, if the endpoint of the Mjj distribution arising
from this cascade is measured, we can determine the gluino
mass.

In supersymmetric models, the gluino production is
mostly from the ~g� ~q or ~g� ~g pair production, which
necessarily gives additional jets from the other side of the
squark/gluino decay. Those additional jets cause an uncer-
tainty for the selection of the correct jet pair. In order to
reduce this combinatorial background, we select the events
with three hard jets, which is typical in the ~g� ~q produc-
tion, and choose a pair of jets which gives the smallest Mjj

among three combinations such that the calculated Mjj

would not exceed the endpoint in Eq. (32). (Note that
this does not mean that the selected pair is necessarily
the correct one, but it guarantees that the endpoint of the
Mjj distribution is given by the right formula, Eq. (32).)

The selection cuts we use are the following:

(i) E
0
1
, m~q and
, 2% an

-19
miss
T > 300 GeV
(ii) V
eto leptons, b-jets, -jets

(iii) T
hree and only three jets with pT > 50 GeV
With these cuts, we obtain the Mjj distribution shown in
the left panel of Fig. 14. The endpoint structure is visible
around 400 GeV. By fitting the histogram near the endpoint
�m for point I. Arrows indicate the input values used in
d 1% is obtained for m~�0

1
, m~q and �m, respectively.



FIG. 14 (color online). The Mjj (left) and Mbb (right) invariant mass distributions for point I. In the Mjj analysis, we select events
with three hard jets and take a combination that gives the smallest Mjj, out of the three combinations, in order to see the endpoint. A fit
is performed with a linear function with Gaussian smearing together with a linear function for the background events. The endpoint is
obtained as 377
 10 GeV. In the Mbb analysis, we select events with three hard jets including two hard b-jets. A similar endpoint,
370
 11 GeV, is obtained using the same fitting function.

FIG. 15. The statistical error of the gluino mass for point I. The
arrow indicates the input value used in the Monte Carlo event
generation. The accuracy at the level of 2% is obtained.
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by a linear function with Gaussian smearing and a linear
background shape, we obtain

Mmax
jj � 377
 10 GeV: (33)

The large value of �2 shown in the plot is caused by the
artificially magnified statistical uncertainty of the standard
model background due to the scaling of the events. We
have checked that the reasonable value of �2 is obtained
without the standard model background.

We can perform the same analysis for the ~g! ~bb!
~�0

1bb decay by requiring two b-jets. We show the resulting
Mbb distribution in the right panel of Fig. 14. In this case,
we do not suffer from the combinatorial background,
although the statistics is reduced. If we assume m~b ’ m~q,
which is indeed the case here, we can use this endpoint for
the gluino mass reconstruction. We, however, do not use
this analysis in the following because it will make our
analysis more model-dependent. For the purpose of testing
the particular model, however, the Mbb analysis can be
used as a consistency check (or to extract some information
on the value of tan�).

Combining the information of Mmax
jj with the analysis in

the last subsection, we can determine the gluino mass. The
reconstructed gluino mass is shown in Fig. 15. The input
value of m~g � 623 GeV is indicated by the arrow. We see
that the reconstruction is successful within the statistical
uncertainty. With the approximation of the statistical fluc-
tuation to take the Gaussian form, we obtain
095004
m~g � 632
 13 GeV: (34)

We find that a quite accurate ( � 2%) measurement of the
gluino mass is possible by this method.
-20
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There is another method of extracting the gluino mass,
which can be used in any model within the class considered
here. This is to use the effective mass Meff defined by

Meff � Emiss
T �

X
i

piT; (35)

where the sum runs over all the jets. The peak location of
this variable is known to have a correlation with the gluino
and squark masses [2,3]. In particular, as we will see below,
we have a definite relation between the peak location of
Meff and the superparticle masses within the model used
here. To perform this analysis, we use the cut criteria listed
in Ref. [64] to select the events, except for the lepton, b-jet
and -jet vetoes:
(i) �
FIG. 16
location

generate
moduli-a
obtained
selection
been inc
4 jets with pT � 50 GeV

(ii) �
 2 jets with pT � 100 GeVP
(iii) E
miss
T � maxf100 GeV; 0:25 ip

i
Tg
(iv) T
ransverse sphericity ST � 0:2

(v) �
��p1

T ;p
2
T �
� 170�
(vi) �
��p1
T�p2

T ;p
miss
T � � 90�
(vii) V
eto leptons, b-jets, -jets

By generating supersymmetric events for various parame-
ter points in the model, we find an excellent linear relation
between Mpeak

eff and m~q �m~g �m~�0
1

as shown in Fig. 16.
The relation is given by

Mpeak
eff � 285 GeV� 0:763�m~q �m~g �m~�0

1
�: (36)
(color online). An empirical relation between the peak
of Meff and a combination m~q �m~g �m~�0

1
. We have

d 50 000 events for each 30 sample points in the mixed
nomaly mediation model. A very good linear relation is
. Note that this relation will be modified if different
cuts are used. The standard model background has not

luded in searching the peak location.
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Note that this should be regarded as a sort of theoretical
prediction as we have not included the standard model
background in producing the plot. By using this empirical
fact, we can extract the combination m~q �m~g �m~�0

1
from

the Meff peak analysis.
In Fig. 17 we show the distribution of Meff described

above. We obtain the peak location Mpeak
eff � 977 GeV by

fitting the histogram near the peak with a Gaussian func-
tion. With the assumption that the theoretical relation in
Eq. (36) is accurate at a 5% level, we obtain the gluino
mass

m~g � 590
 62 GeV; (37)

by combining the Mpeak
eff analysis here with the analysis in

the last subsection. We find that the error amounts to
O�10%�. We thus conclude that the Mjj endpoint analysis

is more useful than the Mpeak
eff analysis to determine the

gluino mass not only because it is more model-independent
but also because it has better accuracy.

E. The case with large superparticle masses

In this subsection we repeat the analyses in
subsections IV C and IV D for the case of large super-
particle masses (point II in Table I) to see if accurate
measurements are still possible despite the smaller statis-
tics due to smaller superparticle production cross sections.
The analyses below show that essentially the same method
can be used to determine the mass parameters in good
FIG. 17 (color online). The distribution of Meff for point I. The
QCD background is smeared in order not to artificially magnify
the statistical uncertainty due to the scaling of the events. The
location of the peak is determined by fitting with a Gaussian
function near the peak. It is given by Mpeak

eff � 977 GeV.
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FIG. 19 (color online). The MT2 distribution for the input
value of the neutralino mass m~�0

1
� 200 GeV for point II.

Hatched histogram is the standard model background. The
endpoint is extracted by fitting the signal plus background
histogram with a linear function, and the background near the
endpoint by a linear function. The endpoint is obtained to be
716:6
 1:9 GeV.

FIG. 18 (color online). The distributions of Mll (left) and Mllq (right) for point II. Hatched histogram represents the standard model
background, which is smeared over five bins in order not to magnify the statistical uncertainty due to the scaling of the events. For Mll,
we have searched the endpoint by fitting with the theoretical curve assuming 
� � �1. The endpoint is obtained to be 9:48

0:21 GeV. For Mllq, we have used a linear function with Gaussian smearing for the signal and a linear function for the background.
The endpoint is obtained to be 223
 12 GeV.
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accuracy. In fact, similar or even better accuracy is ob-
tained for the m~q and m~g determination compared to the
case with low superparticle masses, as we will see below.

The Mll and Mllq distributions are shown in Fig. 18. We
have used the same cuts with those in subsection IV C for
the event selection. We can see the clear endpoints in both
distributions. The Mll distribution is fitted with the theo-
retical curve with 
� � �1. A good fit is obtained only for

� � �1, allowing a successful measurement of 
�. The
endpoints are obtained as:

Mmax
ll � 9:48
 0:21 GeV; Mmax

llq � 223
 12 GeV:

(38)

where the Mllq endpoint is determined by a fit using a
linear function with Gaussian smearing together with a
linear background shape.

The MT2 distribution with an input m~�0
1
� 200 GeV is

shown in Fig. 19. The signal to background ratio is not so
large, but there is no significant background near the
endpoint because of the large squark mass. The endpoint
measurement, therefore, does not suffer seriously from the
standard model background. We obtain 716:6
 1:9 GeV
for this value of the input neutralino mass. We then repeat
the analysis for six different input neutralino masses and
obtain a curve on the m~�0

1
�m~q plane by interpolating

these points.
The two curves obtained from the Mll and Mllq end-

points and the MT2 endpoint are shown in Fig. 20. We find
095004-22



FIG. 21 (color online). The Mjj invariant mass distribution for
point II. We select events with three hard jets and take a
combination that gives the smallest Mjj, out of the three combi-
nations, in order to see the endpoint. A fit is performed with a
linear function with Gaussian smearing together with a linear
function for the background events. The endpoint is obtained as
609
 13 GeV.

FIG. 20 (color online). Two curves on the m~�0
1
�m~q plane

deduced from the cascade decay analysis, Mmax
ll and Mmax

llq , and
the squark pair production analysis, Mmax

T2 , for point II. Both
curves are obtained by inputting hypothetical values of m~�0

1
. The

intersection determines the real values of m~�0
1

and m~q. The
obtained masses with the 1� statistical errors are shown by
shaded bands.
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that the crossing angle of the curves is larger compared to
the case in Fig. 12. This property makes it possible to
measure the squark mass in this point with similar accuracy
to the case of low superparticle masses, even though we
have larger statistical uncertainty.

For the Mjj endpoint measurement, we use a different
cut for the jet pT . We take
(i) T
hree and only three jets with pT > 100 GeV

instead of pT > 50 GeV, used in the analysis of the low
superparticle mass case, because a clear endpoint is not
obtained with the 50 GeV cut. The resulting Mjj distribu-
tion is shown in Fig. 21. By fitting with a linear function
with Gaussian smearing and a linear background, we ob-
tain

Mmax
jj � 609
 13 GeV: (39)

Combining all the results, we can determine the four
mass parameters, m~�0

1
, m~q, �m and m~g. The estimation of

the statistical uncertainties is given in Fig. 22. The input
values are indicated with the arrows, which are all within
reasonable statistical uncertainties. The gluino mass is
obtained with slightly larger values. This is caused by the
systematics that the Mjj endpoint tends to give larger
values than the one obtained in Eq. (32) when we use the
pT > 100 GeV cut for jets. Therefore, the estimation of the
systematic error will be important in this analysis. By
095004
fitting the histograms with Gaussian functions, we obtain

m~�0
1
� 164
 24 GeV; m~q � 700
 12 GeV;

�m � 9:5
 0:2 GeV;
(40)

m~g � 940
 15 GeV: (41)

The neutralino, squark and gluino masses can be measured
at 15%, 2% and 2% level accuracy, respectively. Since this
point represents the case of the highest superparticle
masses from the naturalness requirement (see Eq. (23)),
the above analysis shows that the method of mass deter-
mination developed here covers the entire region of the
parameter space.

For completeness, we show in Fig. 23 the Meff distribu-
tion. The standard model background is huge, although it is
not so significant around the peak location. By using the
relation in Eq. (36), we obtain the gluino mass

m~g � 801
 85 GeV; (42)

which is slightly deviated from the input value of 917 GeV
(by 1:4�). This little discrepancy is mainly caused by the
shift of Meff in the lower direction due to the standard
model background. For a realistic use of the Meff analysis
in the high superparticle mass region, one needs to develop
a better understanding of the shape of the standard model
background and/or to devise a better cut (especially on
Emiss
T ) to reduce the standard model background. Note that
-23



FIG. 23 (color online). The Meff distribution for point II. The
QCD background is smeared in order not to artificially magnify
the statistical uncertainty due to the scaling of the events. The
peak location is determined by fitting with a Gaussian function
near the peak. It is found to be Mpeak

eff � 1306 GeV.

FIG. 22. The statistical errors of the measured mass parameters m~�0
1
, m~q, �m and m~g for point II. Arrows indicate the input values

used in the Monte Carlo event generation. The accuracy at the level of 15%, 2%, 2% and 2% is obtained for m~�0
1
, m~q, �m and m~g,

respectively.
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the relation in Eq. (36) will be modified if different cuts are
used.

F. Testing the model with mixed moduli-anomaly
mediation

One of the most important features of the LHC experi-
ment is its potential of ruling out models. With the limited
precisions of various measurements, it is extremely impor-
tant to develop methods of testing model predictions rather
than just measuring parameters under the assumption of a
particular model. We here take the model with mixed
moduli-anomaly mediation as an example and discuss
possible ways of testing the model.

We have already seen that one of the characteristic
features, the Higgsino LSP, can be tested using the distri-
bution of the dilepton invariant mass from ~�0

2 decay. Other
interesting features of the model include approximate uni-
versality of the gaugino masses and the definite ratio
between the sfermion and gaugino masses, given in
Eq. (22). We can test these features by using the mass
parameters obtained in the previous analyses. Specifically,
we can calculate the parameter M0 in three different ways
and compare them with each other. If the relations pre-
095004-24
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dicted in the model hold, the three values must coincide
within (mostly theoretical) uncertainties/corrections.

The first way of calculating M0 is to use the measured
neutralino mass difference, �m. By using Eq. (16) with
M1 ’ M2 ’ M0, we can extract M0 as

M0 ’
m2
Z

�m
: (43)

This must give the correct value of M0 up to corrections of
� 15%, which come mainly from O�j�j sin2�=M0� cor-
rections in diagonalizing the neutralino mass matrix and
from the effect of running between the effective messenger
scale, Mmess, and the gaugino mass scale. The other two
ways use direct measurements of the squark and gluino
masses:

M0 ’
���
2
p
m~q; M0 ’ m~g; (44)

which must also give the correct value of M0 up to correc-
tions. The corrections come, for example, from running
between Mmess and the superparticle mass scale as well as
from finite supersymmetric QCD corrections. For the
squark masses, the SU�2�L and U�1�Y D-terms also give
corrections of O�m2

Z=M
2
0�. All these corrections, again,

amount to � 15%. We thus conclude that the three values
of M0 calculated using Eqs. (43) and (44) must coincide
within 15%, if the model is actually realized. This can
provide a rather nontrivial test for the model.

We show in Fig. 24 the values of M0 calculated in three
different ways for point I (M0 � 600 GeV; left panel) and
for point II (M0 � 900 GeV; right panel). The shaded
regions indicate the 
15% range around the true values
of M0 ( � 600 GeV and 900 GeV). For m~g, we have
plotted both values obtained from the Mjj endpoint and
the Meff peak analyses. As we can see, all measurements
agree with each other within 15% uncertainties, both for
the cases of point I and point II. Moreover, we can even
understand a nature of the dispersions in the plot. We find
that theO�j�j sin2�=M0� correction tom2

Z=�m is negative
FIG. 24 (color online). A nontrivial test for the mixed moduli-ano
M0 � 900 GeV (right). Three ways of calculating M0, i.e. m2

Z=�m
uncertainties. For m~g, we have plotted the values obtained in two d
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whereas the QCD corrections to the squark and gluino
masses are positive, as expected from theory. Since experi-
mental errors on determining these quantities are rather
small, the structure of these dispersions might be useful for
deducing further detailed structures of the underlying the-
ory, such as the structure of higher order corrections to the
superparticle masses.

V. DISCUSSION AND CONCLUSIONS

Weak scale supersymmetry is often said to be fine-tuned,
especially if the matter content is minimal. Is it true? If the
LEP II bound on the Higgs boson mass pushed the top
squark masses above a TeV, as is sometimes stated in
literature, this would be a true statement. The size of the
top-stop loop contribution to the Higgs boson mass-
squared parameter, m2

Hu
, would then be larger than about

�250 GeV�2 even for a unit logarithm, ln�Mmess=m~t� � 1,
leading to fine-tuning of order 10% independently of an
underlying mechanism of supersymmetry breaking (see
Eqs. (2) and (3)). In fact, in most supersymmetry breaking
models, the logarithm is (much) larger than 1, leading to
(much) severer fine-tuning. For example, fine-tuning is
already as bad as 2% for Mmess � 100 TeV. Such heavy
top squarks, therefore, would not allow natural electroweak
symmetry breaking in the context of minimal
supersymmetry.

The situation, however, is not as described above if there
is a large At term at the weak scale. For jAt=m~tj � �1:5	
2:5�, the top squark masses can be as small asm~t � �250	
400� GeV to evade the LEP II constraint of MHiggs *

114:4 GeV, so that the ‘‘model-independent’’ contribution
to m2

Hu
from top-stop loop is only about �100 GeV�2, even

including the contribution from the At term. (The lower
bound on m~t here, � 250 GeV, arises in fact from the
direct search bound of the top squark, m~t1 * 100 GeV,
and not from the Higgs boson mass bound.) Such light
top squarks allow ‘‘fine-tuning’’ to be only of O�20%� for
Mmess � O�10 TeV� and allow completely natural electro-
maly mediation model in the case of M0 � 600 GeV (left) and
,

���
2
p
m~q and m~g, give the same value within � 15% theoretical

ifferent ways, i.e. from Mmax
jj and Mpeak

eff .
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weak symmetry breaking for smaller values ofMmess. With
these low-energy spectra, the amount of fine-tuning, ��1,
can also be small for theories with large logarithms. We
find that ��1 � 10% is possible even in theories with
Mmess 	Munif . Therefore, under the current experimental
constraints, the supersymmetric fine-tuning problem
should not be regarded as the problem of minimal super-
symmetry itself but as the problem of specific
supersymmetry-breaking mechanisms.

Characteristic features required to have (relatively) natu-
ral electroweak symmetry breaking in minimal supersym-
metric theories are (i) a large A term for the top squarks,
jAt=m~tj � �1:5	 2:5� (ii) light top squarks (iii) a moder-
ately large ratio of the electroweak VEVs, tan� * 5, and
(iv) a small � term, j�j & 190 GeV (270 GeV) for ��1 �
20% (10%). A generic implication of these low-energy
spectra is a relatively light Higgs boson, MHiggs &

120 GeV. There will be classes of theories leading to these
features/spectra, and we have identified two representative
ones (see Fig. 5). Among them, a class giving nearly
universal gaugino and sfermion masses at low energies
[see Fig. 5(b)] can make electroweak symmetry breaking
most natural. Examples for these theories are obtained by
employing moduli-type, or boundary condition, supersym-
metry breaking (effectively) at a low scale. A consistency
with the desert can be explicitly recovered if the setup is
realized through mixed moduli and anomaly mediated
supersymmetry breaking.

An important consequence of the class of theories de-
scribed above is that the Higgsinos are the lightest among
the superpartners of the standard model particles.
Assuming that the gravitino is not much lighter than the
Higgsinos, which is actually the case in the model with
mixed moduli-anomaly mediation, the existence of the
nearly degenerate Higgsino states ( ~�0

1, ~�0
2 and ~��1 ) can

give interesting signals at the LHC. The signals arise in
the invariant mass distribution of dileptons arising from ~�0

2

decay: a smallness of the endpoint and a particular shape
determined by the relative CP property of the two neutra-
linos, ~�0

1 and ~�0
2. We have argued that these signals are

indeed useful in a wide variety of circumstances within the
class of theories considered here.

We have explicitly demonstrated the usefulness of the
signals in realistic analyses by performing Monte Carlo
simulations, including detector simulations and back-
ground estimations. We have also presented a method
that allows the determination of all the relevant super-
particle masses, m~�0

1
, m~q, m~g and �m � m~�0

2
�m~�0

1
, inde-

pendently of the details of the model. This allows us to
determine all the superparticle masses within the class of
models considered, up to theoretical uncertainties of �
15%. Note that some of the existing techniques, e.g. the
Mllq threshold analysis, is not very useful here because of
the near degeneracy of the Higgsino states. We can, never-
theless, determine the four mass parameters with the pre-
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cisions of order a few to 10%, by combining various
endpoint analyses. This is extremely important because it
provides ways to test various possible models, which ge-
nerically give nontrivial relations among these parameters.
We have demonstrated this in the case of the model with
mixed moduli-anomaly mediation, and shown that the
model can indeed be tested (and thus can be discriminated
from models that give significantly different relations
among the four parameters).

It will be possible to perform further tests for the class of
models discussed here. An important issue is to measure
the A parameters, especially that of the top squarks. This
may be done, for example, along the lines presented in
[65]. There is also an important interplay between collider
physics and cosmology. As discussed in Ref. [11], the
present class of models has a large discovery potential in
ongoing and future direct dark matter detection experi-
ments, such as CDMS II, if the Higgsino LSP composes
the dark matter of the universe. Now suppose that the mass
and the detection cross section for the dark matter are
measured in (one of) these experiments. The results from
the LHC can then be used to perform a consistency check
on the LSP mass and to provide a constraint on the Higgs
sector parameters, mA and tan�, because the detection
cross section depends strongly on these parameters.
Together with the other data from the LHC, such as the
one for the Higgs boson mass, we will be able to determine
all the parameters of the model with certain accuracy.

In performing all these analyses, inputs from a particular
model(s) will be very important/useful, especially if one
wants to pin down the parameter point of minimal weak
scale supersymmetry. The model(s) assumed is then better
to be a ‘‘likely’’ one, compared with other possible models
that can also ‘‘accommodate’’ the same set of measure-
ments. Naturalness of electroweak symmetry breaking,
together with the simplicity of a model, will then keep
playing an important guiding role in these ‘‘model selec-
tion’’ processes, which will most likely take the form of
processes of ‘‘slowly convincing ourselves.’’
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APPENDIX A: RENORMALIZATION GROUP
PROPERTIES OF MODULI MEDIATION MODELS

We here study interesting renormalization group (RG)
properties of moduli mediated supersymmetry-breaking
models. It is found in Ref. [48] that mixed moduli-anomaly
-26
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mediation models have an interesting RG property—the
contributions from anomaly mediation can be canceled by
the actual one-loop running effect at a certain energy scale,
mimicking a pure moduli mediated model at that energy
scale. Since a clear derivation of the result is not available
in the paper, we present it here. We show that the result can
be understood as a rather straightforward consequence of
special properties of moduli mediated models. We use the
method of ‘‘analytic continuation into superspace’’ [66],
which provides a powerful way of analyzing RG equations
in softly broken supersymmetric theories. We explain the
basic mechanism of this interesting property and the origin
of the conditions for the cancellation to happen. We also
point out that the effects of mass thresholds are under a
good theoretical control.

We consider the case where the effective Lagrangian is
given at a scale � as follows:

L �
Z
d4	�T � Ty�riQyi e

�2VQi �

�Z
d2	

�ijk
6
QiQjQk

� h:c:
�
�

�Z
d2	TW �W � � h:c:

�
; (A1)

where T is a spurion field with a nonvanishing
F-component. This is the form of the Lagrangian obtained
in moduli (radion) mediated models. The lowest compo-
nent of T represents the volume of the extra dimensions in
which the gauge fields propagate. The rational number ri
represents how much fraction of the extra dimensions the
matter Qi propagates, compared with the gauge fields. For
example, if the gauge fields and the matter field Qi propa-
gate in six and five dimensional spacetime, respectively, ri
is given by �5� 4�=�6� 4� � 1=2.

We now exploit the following property of moduli medi-
ated models to show certain special RG properties of these
models. We first note that at tree level there are following
simple scaling relations associated with the rescaling of the
moduli field T:

S! aS; Zi ! ariZi for T ! aT; (A2)

where S and Zi are the gauge kinetic function and the
wavefunction factor defined by L 3 SW �W ��F and
L 3 ZiQ

y
i Qi�D, respectively. We then find that these

scaling relations can be extended to the one-loop level if
the moduli rescaling, T ! aT, is supplemented by the
following rescalings of the RG scale �R and the Yukawa
couplings:

ln
�R

�
! a ln

�R

�
; �ijk ! a�ri�rj�rk�1�=2�ijk; (A3)

where �ijk are the superpotential Yukawa couplings ap-
pearing in Eq. (A1) (the ‘‘physical’’ Yukawa couplings are
given by yijk � �ijk=�ZiZjZk�1=2). Once this property is
proved (see later), we can use these scaling relations to
show that the gauge kinetic function, S, and the wave-
function factor, Zi, take the following form:
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S � T � Ŝ
�
ln��R=��

T

�
; (A4)

Zi��T�Ty�ri � Ẑi

�
j�ijkj

2

�T�Ty�ri�rj�rk�1
;

1

T�Ty
ln
�2
R

j�j2

�
;

(A5)

at an arbitrary scale�R. Here, Ŝ and Ẑi are some functions,
and we have used the fact that Zi can depend only on T
through the combination T � Ty because of the invariance
of the Lagrangian under the transformation T ! T � i�.

Now, suppose that the condition ri � rj � rk � 1 is
satisfied for the fields having the Yukawa interaction �ijk.
We then find that the T dependencies in Ŝ and Ẑi appear
only with the renormalization scale �R. In this case, the
gaugino masses, A terms, and soft scalar squared masses
are simply given by:

m� �
1

2
lnS�F � M0

�
1�

2bg2

�4��2
ln
�R

�

�
; (A6)

Aijk � ��lnZi�F � lnZj�F � lnZk�F�

� �M0

�
1� 2��i � �j � �k� ln

�R

�

�
; (A7)

m2
i � �lnZi�D � M2

0

�
ri � 4�i ln

�R

�
� 2 _�i

�
ln
�R

�

�
2
�
;

(A8)

at an arbitrary renormalization scale �R. Here, g and b
represent the gauge couplings and the beta function coef-
ficients, d ln�1=g2�=d ln�R � �2b=�4��2, respectively,
and �i and _�i are the anomalous dimensions,
d lnZi=d ln�R � �2�i, and their derivatives with respect
to the scale �R, _�i � d�i=d ln�R. The overall
supersymmetry-breaking parameter M0 is defined by

M0 �
T�F

T � Ty�A
; (A9)

where the subscript A denotes the lowest component. Note
that the soft supersymmetry-breaking parameters in
Eqs. (A6)–(A8) are given by simple functions of the quan-
tities at the scale �R, the gauge couplings, beta functions
and anomalous dimensions, as well as ln��R=��.

It is rather simple to prove the scaling relations in
Eqs. (A2) and (A3). The RG equations for the gauge
couplings (the gauge kinetic functions S � 1=2g2 � � � � )
are given by

d
dt
S�T; t� � �

b

�4��2
; (A10)

where we have defined t � ln��R=��. This obviously
leads to
-27
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d
dt
S�T; t� �

d
d�at�

aS�T; t� � �
b

�4��2
: (A11)

On the other hand, the RG equations for S�aT; at� are given
by

d
d�at�

S�aT; at� � �
b

�4��2
: (A12)

We thus find that aS�T; t� satisfies the same RG equation as
S�aT; at�. With the initial condition S�T; 0� � T, we can
determine the integration constant:

S�aT; at� � aS�T; t�: (A13)

This implies that S scales as S! aS for �T; t� ! �aT; at�,
which is the relation we wanted to prove. In fact, the result
here is not a special property of moduli mediated models.
The effective Lagrangian in softly broken supersymmetric
theories can always be recast in the form of Eq. (A1) as far
as the gauge sector is concerned, so that the expression for
the gaugino masses in Eq. (A6) is a (well-known) general
result.

We can prove the scaling properties of Zi’s along the
same lines. The RG equations for Zi’s are

d
dt

lnZi � �2�i �
1

2

X
j;k

j�ijkj
2

ZiZjZk
� 2�S� Sy��1C�i�2 �R�;

(A14)

at one loop, where C�i�2 �R� is the quadratic Casimir operator
for the superfield Qi.

9 We can again transform this to

d
d�at�

ln�ariZi� �
1

2

X
j;k

a�1j�ijkj
2

ZiZjZk
� 2a�1�S�T; t�

� S�T; t�y��1C�i�2 �R�

�
1

2

X
j;k

ari�rj�rk�1j�ijkj2

�ariZi��arjZj��arkZk�

� 2�S�aT; at� � S�aT; at�y��1C�i�2 �R�;

(A15)

where we have used Eq. (A13) in the second equation. This
equation shows that ariZi�T; �ijk; t� satisfies the same RG
equation as Zi�aT; a�ri�rj�rk�1�=2�ijk; at�. With the initial
condition of Zi�T; �ijk; 0� � �T � T

y�ri , the integration
constant is determined and we obtain

Zi�aT; a
�ri�rj�rk�1�=2�ijk; at� � ariZi�T; �ijk; t�: (A16)

This is the scaling relation for Zi given in Eqs. (A2) and
(A3).
9Precisely speaking, S� Sy in Eq. (A14) should be the real
gauge coupling superfield R defined by R� �TG=8�2� lnR �
S� Sy �

P
i�Ti=8�2� lnZi (in the NSVZ scheme). The differ-

ence, however, is irrelevant at the one-loop level.
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There is a subtlety if the gauge group contains a U�1�
factor. In this case the Fayet-Iliopoulos term

Z
d4	�VY; (A17)

may be induced at one loop, which contributes to the soft
scalar squared masses as

m2
i � �lnZi�D � g

2
Y�Yi; (A18)

where gY is the U�1� gauge coupling and Yi is the U�1�
charge of the superfieldQi. The RG equation for � is given
by [67]

d
dt
� �

�2

�4��2

�X
i

Yi lnZi

�
D
�

2g2
Y

�4��2
�
X
i

Y2
i : (A19)

Since the combination of
P
iYi lnZi is RG invariant, i.e.P

iYi�i � 0, � is never generated if
P
iYi lnZi � 0 (and

� � 0) at the classical level. Therefore, we can neglect the
contributions to m2

i from the Fayet-Iliopoulos term if the
condition

P
iYiri � 0 is satisfied.

In the case where there is a mass threshold M, we find
that the scaling properties of Eqs. (A2) and (A3) are
maintained if the rescalings of T, �R and �ijk are supple-
mented by

ln
M
�
! a ln

M
�
: (A20)

The functions Ŝ and Ẑi, in this case, can depend on
ln�M=��=T and ln�jMj2=j�j2�=�T � Ty�, respectively.
The soft supersymmetry-breaking terms, therefore, obtain
additional contributions:

�m� �
2�bg2

�4��2
M0 ln

M
�
; (A21)

�Aijk � �2���i � ��j � ��k�M0 ln
M
�
; (A22)

�m2
i � M2

0

�
4��i ln

M
�
� 2� _�i

�
ln
M
�

�
2
�
; (A23)

where �b, ��i and � _�i are the changes of b, �i and _�i at
the scale M (�high scale value� � �low scale value�). The
gauge coupling g in Eq. (A21) is the one at the scale �R.

The derivation here should make it clear the origins of
the special properties of Eqs. (A6)–(A8) and the required
condition ri � rj � rk � 1. Since the RG equations for the
gauge and Yukawa couplings take the form of dg=dt	 g3

and dy=dt	 y3 � yg2 at one loop, and g2 / 1=T and y2 /

�ZiZjZk��1 / �T � Ty���ri�rj�rk� in moduli mediated
models, it is clear that one-loop RG equations are invariant
under the rescaling �T; t� ! �aT; at� if ri � rj � rk � 1 is
chosen. This scaling property then guarantees the forms of
Eqs. (A4) and (A5), leading to Eqs. (A6)–(A8). (This also
makes it clear that these properties persist under the ex-
-28
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istence of arbitrary generational mixings.) This simple
scaling property clearly cannot persist at higher loop or-
ders, so that the properties of Eqs. (A6)–(A8) are that of
one-loop RG equations.

Inclusion of anomaly mediation is straightforward at this
point. We should simply replace � in Eqs. (A4) and (A5)
by ��, where ��� 1�m3=2	

2� is the chiral compensator
field. (Note that the compensator field � does not couple to
T as T is a dimensionless chiral superfield.) A curious
similarity between moduli and anomaly mediations is
manifest here. In particular, at the scale

ln
�

�R
�
m3=2

2M0
; (A24)
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the F-component of ln��R=���=T as well as F- and
D-components of ln��2

R=j��j2�=�T � Ty� vanish.
Therefore, either Ŝ or Ẑ does not have F- or
D-components if the condition ri � rj � rk � 1 is satis-
fied. The solutions of the RG equations at this scale are
remarkably simple:

m� � M0; Aijk � �M0; m2
i � riM

2
0: (A25)

If there is a mass threshold, the solutions are obtained by
simply adding the contributions in Eqs. (A21)–(A23),
because of the ultraviolet insensitivity of anomaly medi-
ated contributions.
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