
PHYSICAL REVIEW D 73, 094512 (2006)
Perturbative Wilson loops from unquenched Monte Carlo simulations at weak couplings

Kit Yan Wong
Simon Fraser University, Department of Physics, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6

and Department of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, United Kingdom*

Howard D. Trottier
Simon Fraser University, Department of Physics, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6†

and TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada

R. M. Woloshyn
TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada

(Received 16 December 2005; published 31 May 2006)
*Present ad
†Permanent

1550-7998=20
Perturbative expansions of several small Wilson loops are computed through next-to-next-to-leading
order in unquenched lattice QCD, from Monte Carlo simulations at weak couplings. This approach
provides a much simpler alternative to conventional diagrammatic perturbation theory, and is applied here
for the first time to full QCD. Two different sets of lattice actions are considered: one set uses the
unimproved plaquette gluon action together with the unimproved-staggered-quark action; the other set
uses the one-loop-improved Symanzik gauge-field action together with the so-called asqtad improved-
staggered-quark action. Simulations are also done with different numbers of dynamical fermions. An
extensive study of the systematic uncertainties is presented, which demonstrates that the small third-order
perturbative component of the observables can be reliably extracted from simulation data. We also
investigate the use of the rational hybrid Monte Carlo algorithm for unquenched simulations with
unimproved-staggered fermions. Our results are in excellent agreement with diagrammatic perturbation
theory, and provide an important cross-check of the perturbation theory input to a recent determination of
the strong coupling �MS�MZ� by the HPQCD collaboration.
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I. INTRODUCTION

A key ingredient in many high-precision applications of
lattice QCD is the use of perturbation theory, in order to
match lattice discretizations of actions and observables to
their counterparts in continuum QCD. An important ex-
ample is the determination of the strong coupling
�MS�MZ�, where perturbative expansions of short-distance
quantities, such as small Wilson loops, can be used to
extract the value of the coupling from simulation measure-
ments [1,2]. Lattice perturbation theory by Feynman dia-
gram analysis is extremely difficult however, because the
lattice regulator results in Feynman rules that are exceed-
ingly complicated; moreover, there is a proliferation of
diagrams that are not present in the continuum. A further
challenge is that these perturbative-matching calculations
must generally be carried out at next-to-next-to-leading-
order (‘‘NNLO,’’ which is generally equivalent to two-loop
Feynman diagrams), if one is to obtain results of a few-
percent precision [3].

Although many parts of diagrammatic lattice perturba-
tion theory have been automated with the help of computer
codes [3–5], higher-order calculations remain very chal-
lenging, and very few NNLO lattice calculations have been
done (see, e.g., Refs. [2,6–8]). The algebraic burden is
dress.
address.
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particularly heavy for the highly-improved actions that are
now commonly used in numerical simulations. A particu-
larly important case is the tree-level O�a2�-improved-stag-
gered-quark action (where a is the lattice spacing) [9],
together with the O�a2�-accurate and one-loop
Symanzik-improved gluon action [5,10], both of which
are tadpole improved (and which are hereafter collectively
referred to as the ‘‘asqtad’’ actions). The asqtad actions are
currently being used by the MILC collaboration to gener-
ate unquenched ensembles with three-flavors of sea quarks
[11], which have been used by several groups for a wide
variety of physics applications, including quantities requir-
ing higher-order perturbation theory [2,7,8].

Given the central role of perturbative-matching in lattice
QCD, alternatives to diagrammatic perturbation theory are
desirable. One approach [12,13] is to use Monte Carlo
simulations at weak couplings, where the theory enters
the perturbative phase (at finite volume). Simulation mea-
surements of a particular observable are done at several
values of the coupling, and the resulting data are fit to an
expansion in the coupling; the fit yields numerical values
for the perturbative coefficients, without Feynman dia-
grams, and with little or no analytic input.

This Monte Carlo approach has been successful in com-
puting the perturbation series of a number of quantities in
pure-gauge theories [12–15]. In particular, perturbative
coefficients for a number of small Wilson loops for the
plaquette gluon action were computed to NNLO using this
-1 © 2006 The American Physical Society
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method in Ref. [13], and the results were subsequently
reproduced by diagrammatic perturbation theory (see
Ref. [3]).

In this paper we make the first applications of this
Monte Carlo method to lattice actions with dynamical
fermions [16]. The perturbation series of a number of small
Wilson loops are computed through NNLO, for two differ-
ent lattice QCD actions with dynamical staggered quarks:
the Wilson plaquette gluon action with the unimproved-
staggered-quark action, and the asqtad actions. The latter
calculation is of particular relevance because it provides a
consistency check of the NNLO Wilson loop expansions
used in the determination of �MS�MZ� by the HPQCD
collaboration, in Ref. [2]. Perturbative expansions of
Wilson loops using diagrammatic methods have also
been reported for a variety of different lattice actions
[7,17].

We note that another simulation approach to lattice
perturbation theory has been developed, based on an ex-
plicit perturbative expansion of the Langevin simulation
equations themselves [18]. This method was first used to
determine the perturbative expansion of the plaquette to
fourth order in the bare coupling for the Wilson plaquette
action [19], and has been extended to 16th order in a recent
study of the gluon condensate [20]. This method has also
been applied to lattice actions with dynamical fermions
[21], where the expansions of Wilson loops were computed
to NNLO for the Wilson plaquette action and the unim-
proved Wilson quark action. These results show that simu-
lations using explicit perturbative expansions of the
Langevin equations can produce precise estimates of rela-
tively high-order perturbative coefficients, however more
studies are needed to determine the efficiency of that
approach when it is applied to more complicated actions,
such as the highly-improved asqtad staggered-quark action
considered here.

The Monte Carlo method considered here has the ad-
vantage that it can be done using conventional simulation
codes, although it is very advantageous to adopt twisted
boundary conditions (TBC) [5,22–25] in order to elimi-
nate zero modes, and to suppress nonperturbative finite-
volume effects due to transitions between Z�3� phases [13];
fortunately, TBC can be implemented in existing simula-
tion codes with relatively little effort.

This simulation approach to unquenched perturbation
theory is also very efficient, since the simulations can be
done on very small lattices (84 volumes are used here),
thanks to the use of TBC. The simulations are also done
here for different numbers nf of dynamical fermions,
which explicitly demonstrates that the data are sensitive
to the nf-dependence of the perturbative coefficients. A
further advantage is that we extract perturbative expan-
sions in a renormalized coupling, avoiding the notoriously
poor convergence of expansions in the bare coupling. The
high degree of efficiency of the simulation method using
094512
ordinary Monte Carlo code, adapted to TBC, together with
the use of a renormalized coupling for the perturbative
expansions, was assessed in Ref. [13].

Although small Wilson loops are the simplest observ-
ables for perturbative analysis by Monte Carlo simulations,
because they are such ultraviolet quantities (as well as
being gauge invariant), the studies presented here nonethe-
less provide important benchmarks for future applications
to other quantities; for instance, similar methods were used
to analyze the static-quark propagator in pure-gauge back-
grounds in Ref. [13], and the Fermilab heavy-quark propa-
gator was analyzed in Ref. [14].

While the expansion coefficients can be extracted with
far less effort from Monte Carlo simulations, care must be
taken to control all of the systematic uncertainties, in order
to reliably extract the small part of the signal correspond-
ing to the higher-order terms in the perturbative expansion.
It is also crucial to use an expansion in a renormalized
coupling, rather than in the bare lattice coupling �lat �
g2=�4��, for which perturbation theory is very poorly
convergent [26]. We use an expansion in the coupling
�V�q�� defined by the static potential, along with an esti-
mate of the optimal scale q� for a given quantity [26,27].
Although one can in principle define the renormalized
coupling �V at a given bare lattice coupling �lat from
simulation measurements of the static potential, we rely
here instead on existing NNLO determinations of the
relationship from diagrammatic perturbation theory [7].

We did simulations at couplings �V & 0:1, hence statis-
tical and systematic errors must be much less than
max��3

V� � 10�3, for determination of the third-order co-
efficients. The ensemble sizes were chosen in order to
reduce the statistical errors to the desired level. There are
four major sources of systematic error in the simulation
algorithms and in the data analysis: (i) transitions between
the Z�3� center phases of the gauge-field action; (ii) finite
step-size errors in the simulation equations; (iii) other
algorithmic systematics, such as the precision of the matrix
inversion; and (iv) fitting and truncation errors in the
perturbative expansion.

In this study simulations were done with TBC to sup-
press transition between the center phases, as indicated
above. To eliminate the finite step-size errors we pursued
one of two strategies: in the case of the unimproved ac-
tions, we used the rational hybrid Monte Carlo algorithm
(RHMC) [28,29]; for the asqtad actions we used the R
algorithm [30], and did simulations at several different
molecular-dynamics step sizes, the results of which were
extrapolated to zero step size. To extract the perturbative
coefficients the data were analyzed using constrained-
curve fitting techniques [31], which provide an elegant
procedure for incorporating our a priori expectation that
the perturbative expansion is well behaved, and which
readily allow the maximum amount of information to be
extracted from the data.
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The rest of the paper is organized as follows. The actions
and simulation parameters are detailed in Sec. II, along
with the perturbation theory input which we use to extract
the renormalized coupling �V at a given bare lattice cou-
pling, from the simulation data. A detailed analysis of the
systematic uncertainties is presented in Sec. III, including
the use of TBC to control finite-volume effects. Results for
the two actions are reported in Sec. IV, and are compared
with NNLO diagrammatic perturbation theory.
Conclusions and prospects for further work are presented
in Sec. V.

II. ACTIONS AND SIMULATION PARAMETERS

A. Perturbative expansions

We have done unquenched simulations for two sets of
actions: the first set used the unimproved Wilson plaquette
action with unimproved-staggered fermions, while the sec-
ond set used O�a2�-improved gluon and staggered-quark
actions. We provide the simulation parameters and pertur-
bation theory input for each set of actions in the two
following subsections.

A basic input parameter for the simulations is the bare
lattice coupling �lat � g2=�4��, related to the usual simu-
lation parameter � in the case of the Wilson plaquette
action, for example, according to � � 6=g2 �
6=�4��lat�. However the bare coupling is not suitable for
perturbative expansions [26] and we use instead a renor-
malized coupling �V�q�, defined by the static potential
according to [26,27]

V�q� � �
4

3

4��V�q�

q2 : (1)

A (truncated) perturbative expansion for the logarithm of a
Wilson loop of size R� T is used, owing to the perturba-
tive perimeter law,

�
1

2�R	 T�
lnWRT 


XN
n�1

cn;RT�
n
V�q

�
RT�; (2)

where N is the order at which the series is truncated. We
aim to measure the coefficients through third-order, hence
fits must be done with N � 3. The characteristic scale q�RT
for each observable is determined according to the BLM
method (which estimates the typical momentum carried by
a gluon in leading-order diagrams) [26,27].

The connection between the simulation input �lat and
the �V coupling is therefore required. Although it is pos-
sible, in principle, to extract this relation by directly mea-
suring the static-quark potential in Monte Carlo
simulations, the connection has already been computed
in diagrammatic perturbation theory through NNLO for a
variety of actions, including those we consider here, in
Ref. [7]. We use the results of Ref. [7] to provide the three
leading orders of the expansion for the 1� 1 plaquette, as
well as the scales q�RT for all the Wilson loops (the later
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only requires a relatively straightforward one-loop
calculation).

The diagrammatic input provided by the expansion of
the 1� 1 loop simplifies our analysis, and still allows for
highly-nontrivial applications of the Monte Carlo method;
here we demonstrate the utility of the method by comput-
ing the NNLO perturbative expansions of several larger
Wilson loops, and thereby also provide a valuable consis-
tency check of the NNLO diagrammatic calculations
which were used to obtain �MS�MZ� in Refs. [2,7].

Given this input from diagrammatic perturbation theory,
the Monte Carlo method proceeds as follows. Simulations
are done at several small values of the bare coupling �lat (at
which the lattice theory is in the perturbative phase at a
given finite volume). For each bare coupling one measures
the average plaquette hW11iMC, whose perturbative expan-
sion is assumed, and the quantities of interest, whose
perturbative expansions are to be determined; in our case
these latter quantities are larger Wilson loops, hWRTiMC.
The numerical value of the renormalized coupling �V at
the scale q�11 is obtained by substituting the measured value
hW11iMC into its known third-order expansion. Once the
numerical value of �V�q�11� has been determined, the cou-
plings at the other relevant scales q�RT can be computed
using the universal second-order beta function, plus the
known third-order correction in the V scheme [32], accord-
ing to

�V�q� �
4�

�0 ln�q2=�2
V�

�
1�

�1

�2
0

ln�ln�q2=�2
V�


ln�q2=�2
V�

	
�2

1

�4
0ln2�q2=�2

V�

��
ln�ln�q2=�2

V�
 �
1

2

�
2

	
�2V�0

�2
1

�
5

4

��
; (3)

where �V�q�11� is traded for the intrinsic scale �V at the
given bare coupling. The beta-function coefficients are
�0 � 11� 2

3nf, �1 � 102� 38
3 nf, and �2V � 4224:18�

746:006nf 	 20:8719n2
f. Fits to the expansion Eq. (2) then

yield the perturbative coefficients for the larger Wilson
loops; details on the fitting procedure are described in
Sect. III D.

B. Unimproved actions

The first set of actions we consider are the Wilson
plaquette gluon action,

Sunimp
glue � �

X
x;�<�

�1� P���; (4)

where P�� is the 1� 1 plaquette and � � 6=g2, together
with the unimproved-staggered-quark action

Sunimp
stagg �

X
x

���x�
�X
�

���x��� 	m0

�
��x�; (5)
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TABLE I. Simulation parameters for the unimproved plaquette gluon action with the
unimproved-staggered-quark action. Two different sets of simulations were done for the
indicated number of flavors; in both cases 84 lattices with twisted boundary conditions were
used, with bare-quark mass m0a � 0:2. The RHMC algorithm was used with step size �t �
0:01, with 50 molecular-dynamics steps per trajectory; the table shows the acceptance rate for
the accept/reject step at the end of each trajectory.

Number of flavors: nf � 1
� �lat � 6=4�� hW11i Measurements Acc. Rate �V�q

�
11� a�V

11.0 0.04341 0.805569(41) 849 92% 0.05574 2:1� 10�5

13.5 0.03537 0.843964(34) 902 90% 0.04292 9:1� 10�6

16.0 0.02984 0.869561(26) 992 87% 0.03496 4:0� 10�7

19.0 0.02513 0.890999(21) 981 81% 0.02860 9:2� 10�9

24.0 0.01989 0.914413(16) 1066 69% 0.02198 1:7� 10�11

32.0 0.01492 0.936259(11) 1180 58% 0.01605 7:2� 10�16

47.0 0.01016 0.956886(7) 1261 53% 0.01067 4:2� 10�24

Number of flavors: nf � 3
� �lat � 6=4�� hW11i Measurements Acc. Rate �V�q�11� a�V

11.0 0.04341 0.807064(36) 821 89% 0.05551 3:9� 10�6

13.5 0.03537 0.844847(26) 641 86% 0.04283 1:1� 10�6

16.0 0.02984 0.870205(21) 740 84% 0.03490 2:9� 10�8

19.0 0.02513 0.891387(18) 738 77% 0.02859 3:8� 10�10

24.0 0.01989 0.914647(13) 791 66% 0.02197 2:7� 10�13

32.0 0.01492 0.936402(10) 840 56% 0.01605 2:5� 10�18

47.0 0.01016 0.956950(6) 902 52% 0.01066 8:5� 10�28

TABLE II. The optimal momentum scales q�RT for selected
R� T Wilson loops for the unimproved actions [7].

Loop q�RT Loop q�RT

1� 1 3.40 2� 2 2.65
1� 2 3.07 2� 3 2.56
1� 3 3.01 3� 3 2.46
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where �� is the standard lattice derivative, and ���x� �
��1�x1	...	x��1 is the usual staggered-quark phase.

Two sets of simulations were done for the unimproved
actions; the simulation parameters are summarized in
Table I. One set was done for a single dynamical flavor,
nf � 1, and another was done for three degenerate dy-
namical flavors, nf � 3. In each case, simulations were
done for seven values of the bare coupling, with bare-quark
mass m0a � 0:2, on 84 lattices with twisted boundary
conditions (the boundary conditions are discussed in
Sect. III A). The configurations for these actions were
generated using the RHMC algorithm, described in more
detail in Sec. III B; we used a time-step �t � 0:01 with 50
molecular-dynamics steps between accept/reject tests.
Based on an autocorrelation analysis, described in
Sec. III C, 40 trajectories were skipped between
measurements.

For the unimproved actions the expansion coefficients of
the average plaquette to NNLO are given by [7,33]

c1;11 � 1:04720�0�;

c2;11 � �1:2467�2� � 0:06981�5�nf;

c3;11 � �1:778�7� 	 0:464�27�nf 	 0:00485�0�n2
f;

(6)

where the uncertainties in the coefficients are statistical
errors which arise from numerical integration of the multi-
loop Feynman diagrams using a Monte Carlo technique
094512
(the error of ‘‘0’’ in c1;11 indicates that the integration error
is in the sixth digit in that case). The relevant scales for the
Wilson loops are given in Table II.

C. Improved actions

The one-loop Symanzik-improved gluon action [5,10]
we use follows Refs. [11,34] for tadpole improvement
Simp
glue � �pl

X
x;�<�

�1� P��� 	 �rt

X
x;���

�1� R���

	 �pg

X
x;�<�<�

�1� C�̂;��̂;��̂�; (7)
where R�� is the 1� 2 rectangle, C��� is the 1� 1� 1
‘‘corner cube’’ (see Ref. [11]), and where the couplings are
given by
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TABLE IV. The optimal momentum scales q�RT for selected
R� T Wilson loops for the asqtad actions [7].

Loop q�RT Loop q�RT

1� 1 3.33 2� 2 2.58
1� 2 3.00 2� 3 2.48
1� 3 2.93 3� 3 2.37

PERTURBATIVE WILSON LOOPS FROM UNQUENCHED . . . PHYSICAL REVIEW D 73, 094512 (2006)
�pl �
10

g2 ; �rt � �
�pl

20u2
0

�1	 0:4805�s�;

�pg � �
�pl

u2
0

0:03325�s;

(8)

with �s here defined by the (first-order accurate) expres-
sion

�s � �4 ln�u0�=3:0684: (9)

The one-loop couplings in Simp
glue correspond to the average-

plaquette definition of the gluon mean field

u0 � �W11�
1=4: (10)

The tree-level O�a2�-accurate improved-staggered-
quark action we simulate was derived in Ref. [9], and is
also used in the three-flavor simulations by the MILC
collaboration [11]

Simp
stagg �

X
x

���x�
�X
�

���x�
�
�0� �

a2

6
�3
�

�
	m0

�
��x�;

(11)

see Ref. [9] for the definition of the ‘‘smeared’’ derivative
operator �0�. Tadpole improvement of Simp

stagg is defined by
replacing each link U� in the action by U�=u0, but only
after adjacent pairs of identical links (Uy�U� � I) are
eliminated; the tadpole weights for the individual link
paths in the quark action were also detailed by the MILC
collaboration [11].

Simulations were done for the asqtad actions only for a
single dynamical flavor, nf � 1. Ensembles were gener-
ated at nine values of the bare coupling, on 84 lattices and
with bare-quark mass m0a � 0:1; simulation parameters
are given in Table III.

The R algorithm was used in these simulations, and
ensembles were generated at each bare coupling at four
different molecular-dynamics step sizes, �t � 0:005, 0.01,
TABLE III. Simulation parameters for the asqta
conditions. The number of flavors is nf � 1, wit
each bare lattice coupling were done at four valu
0.01, 0.02, and 0.03. The measured u0 and �V�q�11

0:005. The number of measurements at each of t

� Input u0 Measured u0 �lat �V

9.5 0.91690 0.916922(98) 0.08377 0.1
11.0 0.93166 0.931687(73) 0.07234 0.1
13.5 0.94704 0.946986(55) 0.05895 0.0
16.0 0.95661 0.956614(53) 0.04974 0.0
19.0 0.96433 0.964311(38) 0.04188 0.0
24.0 0.97243 0.972453(29) 0.03316 0.0
32.0 0.97978 0.979785(23) 0.02487 0.0
47.0 0.98652 0.986526(15) 0.01693 0.0
80.0 0.99220 0.992208(13) 0.00995 0.0

094512
0.02, and 0.03, with the number of steps per trajectory in
the four cases given by 100, 50, 25, and 15, respectively.
The measured Wilson loop data are extrapolated to �t � 0
at each bare coupling using constrained-curve fitting
(cf. Sec. III D). The simulation value of the tadpole factor
u0 is determined self-consistently at each bare coupling by
iteration during the thermalization process; the ‘‘final’’
input value was verified for consistency with the final
measured value of u0, as shown in Table III. Based on an
autocorrelation analysis, described in Sect. III C, we
skipped 20 trajectories between measurements.

For the asqtad actions the expansion coefficients of the
average plaquette to NNLO are given by [7,33]

c1;11 � 0:76710�0�;

c2;11 � �0:5945�2� � 0:07391�2�nf;

c3;11 � �0:589�38� 	 0:600�2�nf 	 0:00774�0�n2
f;

(12)

The relevant scales for the Wilson loops are given in
Table IV.
III. SYSTEMATIC EFFECTS

The various systematic effects which must be controlled
in order to extract higher-order expansion coefficients were
enumerated in the Introduction, and in the following four
subsections we consider these in turn.
d actions on 84 lattices with twisted boundary
h bare-quark mass m0a � 0:1. Simulations at
es of the R-algorithm step-size, �t � 0:005,
� are only shown for the ensembles with �t �
he four step sizes is given.

�q�11� a�V Measurements

2709 5:8� 10�2 461, 457, 836, 1335
0113 2:0� 10�2 281, 633, 1090, 038
7604 3:2� 10�3 290, 635, 1122, 1078
6106 5:0� 10�4 296, 634, 1145, 1100
4951 5:5� 10�5 298, 643, 1123, 1172
3765 1:3� 10�6 308, 645, 1191, 1113
2727 3:3� 10�9 315, 652, 1205, 1204
1797 3:8� 10�14 215, 709, 1227, 963
1029 5:3� 10�25 472, 489, 974, 1527
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A. Z�3� phases and twisted boundary conditions

The SU�3�color gauge-field action is invariant under the
transformation

U��x� ! zU��x�; 8x 3 x � �̂ � constant; (13)

where z 2 �1; ei2�=3; ei4�=3
 is an element of the center-
subgroup Z�3�. Although all closed Wilson loops are in-
variant under this transformation, the Polyakov line in the
� direction is sensitive to the phase; moreover, the pertur-
bative expansion of Wilson loops can be spoiled by the
formation of domains of different center phases [12].
While the fermion action breaks the center symmetry, the
action ‘‘cost’’ for reaching different phases, at the lattice
volume considered here, is too small to prevent frequent
transitions between phases, at least when periodic bound-
ary conditions (PBC) are used. This can be seen in Fig. 1,
where a scatter plot and run-time history of the ‘‘temporal’’
Polyakov line are shown for the unimproved actions with
PBC, on a 44 lattice at � � 16, well into the deconfined
phase of the theory.

Although the scatter plot shows that the action with
dynamical fermions has a preference for configurations
near the nontrivial phases z � ei2�=3 and z � ei4�=3 (de-
spite the fact that the simulation was started with all links
set to the identity), owing to the breaking of the Z�3�
symmetry, transitions between the various phases occur
frequently, which would prevent the extraction of pertur-
bative expansions, except on very large lattices [13].

Fortunately, the Z�3� transitions can be largely elimi-
nated by using twisted boundary conditions (TBC) [13],
-0.8
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0
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0.8

-0.4 0 0.4 0.8
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Re Pt
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1
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Number of configurations
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FIG. 1. Scatter plot and run-time history of the temporal
Polyakov loop Pt on a 44 lattice at � � 16, using periodic
boundary conditions. Results are shown for the unimproved
actions using the RHMC algorithm, with nf � 1, and bare-quark
mass m0a � 0:2; 100 trajectories were skipped between mea-
surements. The simulations were started with all links set to the
identity, U��x� � I, and the history is shown starting from this
initial configuration.
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which can be easily implemented using existing simulation
codes. In the case of the gauge fields, there is no change to
the link variables inside the lattice, and link variables
across the twisted lattice boundaries are computed accord-
ing to

U��x	 L�̂� � ��U��x��
y
�; (14)

where L is the lattice length, and the �� are a set of
constant ‘‘twist’’ matrices which obey the algebra [5]

���� � z����; �3
� / I: (15)

The gauge action and observables are therefore periodic
with TBC, but with period 3L, and with the important
additional benefit that zero modes are eliminated [5].

Twists must be applied across at least two boundaries,
else the effect of the twist matrix can be removed by a field
redefinition. We choose to impose twists across all three
‘‘spatial’’ lattice boundaries, with ordinary periodic bound-
ary conditions across the temporal boundary [13]. The
following explicit representation of the twist matrices
was used in our simulations

�x �

0 1 0
0 0 1
1 0 0

2
64

3
75;

�y �
e�i2�=3 0 0

0 1 0
0 0 e	i2�=3

2
64

3
75;

�z � �2
x�y �

0 0 e�i2�=3

1 0 0
0 e	i2�=3 0

2
64

3
75:

(16)

To apply twists to the unquenched theory the quark field
fields ��x� must become 3� 3 color matrices [23,24];
these additional fermionic degrees-of-freedom amount to
a new set of three degenerate ‘‘flavors’’ (Parisi introduced
the term ‘‘smells’’ [23], to distinguish these copies from
physical quark flavors). To compute the fermion fields
across the twisted lattice boundaries one then imposes
the boundary conditions

��x	 L�� � ei�=3����x��
y
�; (17)

where the phase ei�=3 makes the quark field antiperiodic
(on intervals 3L), thereby eliminating its zero modes as
well.

As a result of the three-fold increase in the number of
components of the quark field, unquenched simulations
using TBC will be roughly 3 times as expensive as simu-
lations using PBC for the same action (although this cost is
far offset by the reduction in finite-volume effects). To
compensate for the extra fermion copies we include an
additional factor of 1=3 in the fermion force term (on top of
the 1=4 to reduce the four staggered ‘‘tastes’’ to a single
-6
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effective quark flavor); we therefore continue to use nf to
denote the total number of quark ‘‘flavors.’’

Figure 2 shows a scatter plot and run-time history of the
temporal Polyakov for simulations done with TBC, using
the same simulation parameters that were used with PBC to
generate Fig. 1. The suppression of Z�3� transitions when
TBC are used is striking. In fact, we have generated about
1� 106 configurations with TBC (at a larger volume V �
84), and not a single transition away from the ‘‘trivial’’ Z�3�
phase has been observed.
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B. Simulation algorithms

Dynamical simulations with staggered quarks have gen-
erally been done with the R algorithm. The major disad-
vantage of this algorithm is that measured quantities have
leading O��t2� errors [30], where �t is the step-size in the
molecular-dynamics evolution equations. The step-size
errors cannot be corrected by a Monte Carlo accept/reject
procedure, because the fermion force is not computed
explicitly in the R algorithm, rather a noisy estimator is
used. This leads to a large change in the system energy
during the molecular-dynamics updates, making the accep-
tance rate small if one would impose a Monte Carlo accept/
reject step at the end of the evolution. Therefore simula-
tions are generally done at several values of �t, and the
results are extrapolated to zero step size. This is the method
we use to simulate the asqtad actions, for which ensembles
were generated at four values of �t at each bare lattice
coupling (see Table III). The Wilson loop data at a given
bare coupling were fit to an expansion in �t, including
terms up toO��t6�, excluding the linear term (constrained-
curve fits were used, with priors for each term in the fit set
to 0� 5, see Sec. III D). Some typical results for the step-
size extrapolations are shown in Fig. 3.

Step-size errors can be eliminated using the rational
hybrid Monte Carlo (RHMC) algorithm to handle the frac-
tional powers of the staggered matrix [28,29]. In the
RHMC algorithm the fermion force for staggered quarks
is computed explicitly by approximating the �nf=4�-th root
(or the �nf=12�-th root in the case of TBC) of the fermion
matrix with a rational function (and retaining only even-
site couplings in MyM, as usual, to avoid a further redou-
bling of fermion degrees-of-freedom). This allows an ex-
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FIG. 5. Autocorrelation plots for the 3� 3 loops for the asqtad
actions, at two different couplings. Configurations were gener-
ated by the R algorithm, with �t � 0:01 and 50 molecular-
dynamics steps per trajectory.
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plicit computation of the force term, hence the step-size
errors can be corrected efficiently using a Monte Carlo
accept/reject step.

We tested the efficiency of the RHMC algorithm by
applying rational function approximations of various de-
grees [Nrat, Nrat], that is, the numerator and denominator
are taken to be polynomials of degree Nrat. This was done
to approximate both x�1=12 (for TBC with nf � 1) and
x�1=4 (for TBC with nf � 3), in the interval x 2
�	min; 	max
, where we estimate the lower and upper
bounds on the eigenvalue spectrum of MyM from the
free-field values, 	min � �2m0a�

2 and 	max � 64	
�2m0a�2, respectively.

Results for degrees Nrat � 6, 8, 10 and 12 are shown in
Fig. 4, for two values of the bare coupling. The maximum
error in the rational approximation, over the requisite
eigenvalue range, falls below about 10�5 at around Nrat �
10, and it appears as well that at larger orders there is little
change in the ensemble averages of the plaquette, within
the statistical errors. We therefore use Nrat � 10 through-
out the rest of this study (on the other hand, only a 5%
difference in performance is observed for each additional
order in the approximation). The RHMC code is found to
be about two-times slower compared to the R algorithm,
using the same �t and number of molecular-dynamics
steps. Given that the acceptance rate varies from about
90% at � � 11 to about 50% at � � 47 (see Table I), we
094512
conclude that the RHMC algorithm is about 2–4 times
more expensive; however, we generated four sets of en-
sembles at different step-sizes for the R algorithm, in order
to extrapolate to �t � 0, hence we find that the two
algorithms are, in practice, of comparable cost for
unimproved-staggered quarks.

C. Other algorithmic systematics

We have explicitly computed autocorrelation times for
the simulation data. This is important because gauge-field
fluctuations are suppressed at weak couplings, which
should lead to longer autocorrelation times as the coupling
is decreased; moreover, little information on autocorrela-
tions in the weak-coupling phase is available from other
studies. The autocorrelation for a set of measurements Oi
of some observable is defined, as usual, by

Corr �Nskip� �

P
i
�Oi �

�O��Oi	Nskip
� �O�

P
i
�Oi �

�O�2
; (18)

where Nskip is the number of ‘‘skipped’’ trajectories, and
where the autocorrelation time 
 is estimated from
Corr�Nskip� � e

�Nskip=
. The autocorrelation time is
observable-dependent, and one generally expects to have
longer autocorrelation times for a ‘‘larger’’ observable,
such as a larger Wilson loop. Figure 5 shows the autocor-
-8



TABLE V. Comparison of simulation error and induced error
(due to the uncertainty in the coupling in the perturbative
expansion), for various Wilson loops, for the unimproved actions
at � � 16 with nf � 1.

Loop �hlnWRTi ��lnWRT
MC ��lnWRT
induced

(� 10�5) (� 10�5)
1� 1 0.13976 2.2 —
1� 2 0.24382 4.6 3.8
1� 3 0.34158 7.9 5.3
2� 2 0.39270 8.8 6.1
2� 3 0.52235 13.7 8.1
3� 3 0.66857 20.2 10.4

PERTURBATIVE WILSON LOOPS FROM UNQUENCHED . . . PHYSICAL REVIEW D 73, 094512 (2006)
relation function for the 3� 3 Wilson loop, the largest
considered here, at two couplings, for the asqtad actions.
Note that the autocorrelation time is longer for the larger
value of �, as expected. Based on these results, we have
chosen to skip 20 trajectories between measurements for
the asqtad simulations. In the case of the RHMC algorithm
that was used for the unimproved action, where the lowest
acceptance rate is about 50%, 40 trajectories were skipped
between measurements.

Another source of systematic error is the accuracy of the
matrix inversion, which affects both the R algorithm and
the RHMC algorithm. The Monte Carlo accept/reject step
in the RHMC algorithm cannot remove this error since
matrix inversions are also required in computing the action
for this setp. Matrix inversions �MyM��1� � x were done
by the stabilized bi-conjugate-gradient method, with a
convergence criterion jj�MyM�x��jj< �. We tested
the precision of the inversion by comparing ensemble
averages computed with different values of �. Results are
shown in Fig. 6 for the average plaquette for the asqtad
actions. Results are consistent within statistical errors for
� & 10�3; the same is true of larger Wilson loops. We used
� � 10�5 in the production runs.

An additional systematic error arises from propagation
of the uncertainties in the couplings�V�q�11�, which are due
to the statistical errors in the measured values of the 1� 1
plaquette, from which the couplings are extracted. The
errors in �V�q�11� propagate through to the couplings
�V�q

�
RT� that are used in the fits to the larger Wilson loops.
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FIG. 6. Average plaquettes computed with different conver-
gence criteria for the matrix inversion by the stabilized bi-
conjugate-gradient method. Results are shown for the asqtad
actions at two couplings.
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This could be accounted for by including the associated
uncertainty in the scale parameters �V (cf. Equation (3)),
in the augmented �2 that is used in the Bayesian analysis
(see Sec. III D below). We have instead propagated the
error in the coupling by using a first-order approximation
to the perturbative expansions (which is adequate for this
purpose), � lnWRT=2�R	 T� 
 c1;RT�V�q�RT�. This im-
plies that the statistical uncertainty ��lnW11
MC in the 1�
1 loop ‘‘induces’’ an additional uncertainty
��lnWRT
induced in the R� T loop, beyond its own statis-
tical error, through the coupling, given by

��lnWRT
induced 

lnWRT

lnW11
� ��lnW11
MC: (19)

It turns out that the simulation error in lnWRT grows more
rapidly than � lnWRT itself, as the loop gets larger, hence
the ‘‘induced’’ error becomes less important for larger
loops; a representative comparison of the errors for various
loops is shown in Table V. The sum of the two correlated
errors (statistical and induced) is used in the fits for each
Wilson loop.

D. Fitting and truncation errors

We use constrained-curve fitting [31] in our fits to
Eq. (2), which allows one to incorporate the assumption
of a convergent perturbation series in a natural way;, in
particular, a large number of higher-order terms can be
included in the fit, without spoiling the quality of the
results for lower-order terms that can be resolved by the
data.

Constrained-curve fitting is motivated by Bayesian
analysis; we refer the reader to Ref. [31] for an overview.
In practice, we minimize an ‘‘augmented’’ least-squares fit
function �2

aug, given by

�2
aug � �2 	

XN
n�1

�cn � �cn�
2

��2
n

; (20)

where �2 is the usual weighted sum-of-squared errors in fit
to the Monte Carlo data, and N is the number of terms in
the fit (cf. Equation (2)), which we take to be larger than
-9
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the order that we anticipate can be resolved by the data.
Fitting the data with �2

aug favors cn’s in the interval �cn �
��n, which are known collectively as ‘‘priors.’’

The values of �cn and ��n are to be chosen based on
theoretical expectations. In the present case one expects
that cn � O�1�, if the perturbative expansion is convergent.
We therefore take �cn � 0, and use a single prior ‘‘width’’
for all orders, ��n � ��, which should be of O�1�. The
optimal value for a prior such as �� can sometimes be
determined from the data itself, by maximizing the proba-
bility of obtaining the data, given the prior information, as
a function of the prior itself; this is the so-called ‘‘empiri-
cal’’ Bayes method (for details see Ref. [31]).

The sensitivity of the data to a given order in the expan-
sion is reflected in the fit results; coefficients that are well
determined by the data are relatively insensitive to changes
in �� and in the number of termsN in the fit, while fit results
for coefficients that are poorly or not at all constrained by
the data simply reproduce the priors. We expect that the
statistical quality of the simulation data here should allow
for useful determinations of the three leading orders in the
perturbative expansion.

To illustrate the quality of the constrained fits, some
representative results are given in Table VI, here for the
TABLE VI. Fit results for the 2� 2 Wilson loop, for the
unimproved actions with nf � 1. The upper table shows the
dependence of the results on the number of terms N in the fit, for
a fixed prior width �� � 1:5, while the lower table shows the
dependence on �� for fixed N � 6. The augmented �2 per
degree-of-freedom (dof) is also shown. The central values for
the prior coefficients are �cn � 0. Diagrammatic perturbation
theory yields c1 � 1:4339�0�, c2 � �1:400�2� and c3 �
�0:52�7� [7]. More accurate Monte Carlo estimates of c2 and
c3 are obtained in Sec. IV, using diagrammatic perturbation
theory to constrain the lower-order terms.

Dependence on N� �� � 1:5�
cn N � 4 N � 5 N � 6

c1 1.4334(6) 1.4334(6) 1.4334(6)
c2 �1:37�4� �1:37�4� �1:37�4�
c3 �0:91�56� �0:91�56� �0:91�56�
c4 �0:1�15� �0:1�15� �0:1�15�
c5 — 0.0(15) 0.0(15)
c6 — — 0.0(15)

�2
aug=dof 0.56 0.56 0.56

Dependence on ���N � 6�
cn �� � 0:5 �� � 1:0 �� � 1:5 �� � 5:0 �� � 10:0

c1 1.4338(4) 1.4335(5) 1.4334(6) 1.4333(6) 1.4333(6)
c2 �1:40�3� �1:38�4� �1:37�4� �1:36�4� �1:37�5�
c3 �0:49�38� �0:79�51� �0:91�56� �0:98�77� �0:9�12�
c4 0.0(5) �0:1�10� 0.0(15) �0:5�50� �2�10�
c5 0.0(5) 0.0(10) 0.0(15) 0.0(50) 0(10)
c6 0.0(5) 0.0(10) 0.0(15) 0.0(50) 0(10)

�2
aug=dof 2.8 0.93 0.56 0.28 0.25
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2� 2 Wilson loop for the unimproved actions with nf �
1. The effects of varying the number of terms N in the fit,
and of varying the prior width ��, are shown. We see that
the results for the three leading orders in the perturbative
expansion, c1, c2, and c3, are very insensitive to the details
of the priors, while the fit returns the prior information for
the fourth- and higher-order terms, which simply indicates
that the data are not accurate enough to resolve those terms,
as anticipated. We remark in passing that it is evident from
the results in Table VI that fits with prior widths �� * 5:0
can be regarded as essentially equivalent to an uncon-
strained fit.

The results for the three leading orders are in excellent
agreement with diagrammatic perturbation theory, within
the fit errors, of a few parts in 104 for c1, and a few percent
for c2; a reasonable NNLO signal c3 
 �1 is also ob-
tained, which is remarkable, given how little a priori
information went into the fit (more accurate results for c2

and c3 are obtained in Sec. IV, using diagrammatic pertur-
bation theory to constrain the lower orders).

The results for the �2
aug of the fits also suggest that an

‘‘optimal’’ prior width can be determined from the data,
with ��� 1:0–1:5, which we also find using the optimiza-
tion procedure given by the empirical Bayes method, al-
luded to above. Hence the simulation data are indeed
consistent with the expectation that perturbation theory is
reliable. For the rest of the fits in this paper we use N � 6,
�cn � 0, and �� � 1:5.
IV. RESULTS

A. Fitting strategy

Simulation results for the perturbative coefficients of
various Wilson loops are presented for the unimproved
and asqtad actions in the next two subsections. The results
are compared with a recent NNLO analysis using diagram-
matic perturbation theory, which was done in the infinite-
volume limit, and for zero quark mass, in Ref. [7].

We perform several types of fits for each set of actions.
Fits are first done without input from diagrammatic per-
turbation theory for a given Wilson loop (though we al-
ways assume the relevant scales q�RT , as well as the
coefficients for the 1� 1 loop, in order to extract the
numerical values of the �V couplings from the simulation
data). We then set the first-order coefficients to their values
from diagrammatic perturbation theory, so as to improve
the Monte Carlo estimates of the second- and third-order
terms, and then we similarly constrain both the first- and
second-order coefficients, so as to obtain the most accurate
estimate possible of the third-order terms. This provides us
with very stringent tests of the Monte Carlo method, and a
very precise cross-check of the difficult NNLO diagram-
matic calculations in Ref. [7].

For fits that use diagrammatic values to constrain lower-
order coefficients, we computed the leading-order
-10
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Feynman diagram loop integrals with TBC, for the 84

volume and quark masses that were used in the simula-
tions, in order to consistently account for finite-volume and
finite-mass effects in the simulation data. However these
effects are negligible except for the largest Wilson loops
and at the smallest couplings considered here [the leading
finite-volume corrections are ��V=Vol � O�10�4� � �V ,
while the leading mass-dependent corrections are
��2

V�m0a�
2 � O�0:01� � �2

V ; see also Ref. [13] for an
extensive finite-volume analysis in the pure-gauge
Monte Carlo perturbation theory.]

We also plot the following three residuals


1 �
1

�V�q
�
RT�

�
� lnWRT

2�R	 T�

�
; (21)


2 �
1

�2
V�q

�
RT�

�
� lnWRT

2�R	 T�
� c1;RT�V

�
; (22)

and


3 �
1

�3
V�q

�
RT�

�
� lnWRT

2�R	 T�
� c1;RT�V � c2;RT�

2
V

�
; (23)

which provide useful visualizations of the quality of the
data (diagrammatic perturbation theory is used for the
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simulation parameters are given in Table I. The intercepts marked by
to the corresponding cn, while the diagrammatic values [7] are in
overlaps with the diagrammatic value for c1.
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coefficients in 
2 and 
3). We plot the residuals versus
the appropriate coupling �V�q�RT�, and in the limit of zero
coupling one should find 
n ! cn for the particular Wilson
loop. Likewise a visible slope in the residual 
n at small
couplings reveals the sensitivity of the data to the next-
order coefficient cn	1.

B. Unimproved actions

The unimproved actions were simulated for nf � 1 and
nf � 3. The sensitivity of the data to three leading orders
in the perturbative expansions is apparent in the plots of the
three residuals 
1, 
2, and 
3, which are shown for a
representative Wilson loop in Fig. 7. The slope and curva-
ture in the plot for 
1, for instance, indicate the sensitivity
to c2 and c3, while the fact that the plot for 
3 has no
noticeable slope indicates that the data are insensitive to c4,
within the statistical errors.

Fit results for c1, c2, and c3, without input from dia-
grammatic perturbation theory (except for the couplings)
are given in Table VII, for Wilson loops up to 3� 3. As
discussed in Sec. III D, excellent agreement with diagram-
matic calculations is obtained, within the fit errors, which
for c1 are typically a few parts in 104, and for c2 are
typically a few percent. The third-order terms are also
resolved, which is remarkable given that no diagrammatic
input for these Wilson loops was used. The simulations
also clearly resolve the perturbative dependence on the
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� 2 Wilson loop, for the unimproved actions with nf � 1. The
open squares (�) in the plot for each 
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dicated by filled circles ( � ). Note that the Monte Carlo result
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TABLE VII. Perturbative coefficients of various small Wilson loops for the unimproved
actions, with nf � 1, and with nf � 3. The coefficients from diagrammatic perturbation theory
[7] are compared with the results obtained from the Monte Carlo simulations. These fits to the
Monte Carlo data used no diagrammatic input, except in the determination of the couplings for
the expansion Eq. (2).

Number of flavours: nf � 1
Monte Carlo method Diagrammatic values

Loop c1 c2 c3 c1 c2 c3

1� 2 1.2038(4) �1:327�29� �1:26�46� 1.2039(0) �1:335�0� �1:10�3�
1� 3 1.2586(5) �1:253�36� �1:43�56� 1.2589(0) �1:277�1� �0:95�6�
2� 2 1.4334(6) �1:368�39� �0:95�59� 1.4339(0) �1:400�2� �0:52�8�
2� 3 1.5163(7) �1:281�47� �1:11�71� 1.5172(0) �1:351�3� �0:26�12�
3� 3 1.6080(8) �1:230�56� �0:45�82� 1.6090(0) �1:298�6� 0.67(25)

Number of flavours: nf � 3
Monte Carlo method Diagrammatic values

Loop c1 c2 c3 c1 c2 c3

1� 2 1.2039(4) �1:480�28� �0:28�45� 1.2039(0) �1:485�0� �0:11�9�
1� 3 1.2590(5) �1:444�34� �0:06�54� 1.2589(0) �1:437�1� 0.02(11)
2� 2 1.4337(5) �1:529�38� 0.02(60) 1.4339(0) �1:551�2� 0.51(13)
2� 3 1.5169(6) �1:476�46� 0.20(71) 1.5172(0) �1:513�4� 0.73(16)
3� 3 1.6088(8) �1:431�53� 0.65(81) 1.6090(0) �1:463�11� 1.62(30)
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number of flavors, which in the case of c2 shows a change
of 3–4 standard deviations from nf � 1 to nf � 3.

The accuracy of the Monte Carlo results for the higher-
order coefficients can be dramatically improved by further
constraining the lower-order terms using available dia-
grammatic input. Results are shown in Table VIII where
we first fix c1 to its diagrammatic value, and then fix both
TABLE VIII. Monte Carlo results for perturbative coefficients
for the unimproved actions, where in the left table the first-order
term is set to its diagrammatic value, while in the right table both
c1 and c2 are set to their diagrammatic values.

Diagrammatic input: c1

nf � 1 nf � 3

Loop c2 c3 c2 c3

1� 2 �1:332�9� �1:19�22� �1:480�10� �0:28�25�
1� 3 �1:270�11� �1:20�27� �1:434�12� �0:19�30�
2� 2 �1:403�12� �0:48�29� �1:541�13� 0.20(33)
2� 3 �1:342�14� �0:28�34� �1:499�16� 0.52(39)
3� 3 �1:292�17� 0.38(41) �1:442�20� 0.80(46)

Diagrammatic input: c1;2

nf � 1 nf � 3

Loop c3 c3

1� 2 �1:13�9� �0:17�10�
1� 3 �1:02�11� �0:12�11�
2� 2 �0:55�12� 0.42(13)
2� 3 �0:08�14� 0.81(16)
3� 3 0.49(19) 1.16(27)
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c1 and c2; in the first case, the fit errors in c2 and c3 are
reduced by factors of about 2–3 compared to the results in
Table VII, while in the second case the errors in c3 are
reduced by a factor of about 5. Agreement with the dia-
grammatic values is obtained in all cases, within these
greatly reduced errors, and in most cases the
Monte Carlo results have errors that are comparable to
those in the diagrammatic evaluations.

C. The asqtad actions

Our results for the perturbative expansions of Wilson
loops for the asqtad actions are shown in Fig. 8, and in
Table IX. The data is sensitive to the three leading orders of
the perturbative expansion, and the agreement with dia-
grammatic results is again impressive.

We note that the uncertainties in the coefficients ob-
tained from these simulations are about a factor of 3
smaller than for the unimproved results presented in the
preceding subsection, which owes to the fact that the
asqtad simulations were done at larger couplings [the
largest coupling for the unimproved simulations was
�V�q�11� 
 0:06, while for the asqtad simulations it was
�V�q�11� 
 0:13, cf. Tables I and III]. This fact should
clearly be heeded in future studies, where one might
work at still larger couplings, as long as the theory remains
in the perturbative phase, as judged, for example, by simu-
lation measurements of the Polyakov line, which provides
an order parameter for confinement (a systematic approach
to optimizing the choice of couplings is given in
Refs. [13,31]).
-12
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FIG. 8. Plots of 
1, 
2, and 
3

for the 2� 2 loop with the asq-
tad actions. Simulation parame-
ters are given in Table III. The
results of fits to the Monte Carlo
data for the perturbative coeffi-
cients are indicated by open
squares (�), while the diagram-
matic results are shown by filled
circles ( � ). The impressive
agreement between the
Monte Carlo results and dia-
grammatic perturbation theory
is shown by the fact that the
open squares practically coincide
with the filled circles.

TABLE IX. Perturbative coefficients for various small Wilson
loops for the asqtad actions. There is no diagrammatic input in
the Monte Carlo results in the left-most table (except for the
couplings). In the middle table the Monte Carlo results are
shown with the first-order term set to its diagrammatic value,
while in the right-most table both c1 and c2 are set to their
diagrammatic values.

Monte Carlo method Diagrammatic values

Loop c1 c2 c3 c1 c2 c3

1� 2 0.9251(3) �0:644�13� 0.20(18) 0.9252(0) �0:646�0� 0.23(5)
1� 3 0.9845(3) �0:599�14� 0.37(19) 0.9845(0) �0:595�1� 0.38(6)
2� 2 1.1499(4) �0:641�15� 0.58(20) 1.1499(0) �0:643�2� 0.59(9)
2� 3 1.2342(4) �0:599�19� 0.88(26) 1.2341(0) �0:595�3� 0.85(16)
3� 3 1.3235(5) �0:545�19� 1.16(23) 1.3235(0) �0:522�4� 0.96(19)

Diagrammatic input: c1

Loop c2 c3

1� 2 �0:649�5� 0.26(12)
1� 3 �0:600�6� 0.39(13)
2� 2 �0:642�7� 0.59(14)
2� 3 �0:594�7� 0.82(15)
3� 3 �0:546�8� 1.17(17)

Diagrammatic input: c1;2

Loop c3

1� 2 0.21(4)
1� 3 0.28(5)
2� 2 0.61(6)
2� 3 0.84(8)
3� 3 0.84(10)
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V. CONCLUSIONS AND OUTLOOK

Perturbative coefficients of Wilson loops were extracted
from unquenched QCD simulations at weak couplings.
Two sets of actions were analyzed: unimproved gluon
and staggered-quark actions in one set, and O�a2� im-
proved actions in the other. Simulations were also done
for different numbers of dynamical fermions. An extensive
analysis of systematic uncertainties was made;
constrained-curve fitting, in particular, was used to extract
as much information as possible from the simulation data.

The Monte Carlo results for the perturbative coefficients
were found to be in excellent agreement with calculations
using diagrammatic perturbation theory, through next-to-
next-to leading-order. Results were obtained for the first-
order coefficients with uncertainties of a few parts in 104,
while the second-order coefficients were obtained to a few-
percent precision, without any input from diagrammatic
perturbation theory (except for the perturbative expansion
of the 1� 1 plaquette, which was used to extract the
relevant couplings �V�q�� from the simulation data). The
results also show that the Monte Carlo perturbation theory
is clearly sensitive to the number of dynamical fermion.
Furthermore, when the two leading perturbative coeffi-
cients were constrained to their diagrammatic values, the
third-order term was obtained with a precision comparable
to that from the NNLO diagrammatic analysis [7], which
required the evaluation of about 50 Feynman diagrams.

These results provide a stringent test of the Monte Carlo
method as applied to highly-improved lattice actions with
dynamical fermions, and also provide an important high-
precision cross-check of the perturbation theory input to a
recent determination of �MS�MZ� by the HPQCD collabo-
ration [2].
-13
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Remarkably little computational power was needed,
since the simulations were done on small volumes (84),
thanks to the use of twisted boundary conditions, which
eliminate lattice zero modes, and which suppress other
finite-volume effects; the entire set of simulations for the
asqtad actions only required the equivalent of about
60 months of run-time on a single 3 GHz processor.
Larger lattices might be needed for other quantities, such
as quark propagators [14], that are not as dominated by
ultraviolet modes as the small Wilson loops analyzed here,
though an earlier study for pure-gauge theories [13] found
that finite-volume effects in such quantities could be re-
moved by working on several relatively small volumes.

Additional work using this method is in progress, in-
cluding the determination of the NNLO mass renormaliza-
094512
tion for the NRQCD heavy-quark action, and preliminary
investigations of currents with infrared singularities.
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