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Calorons and monopoles from smeared SU�2� lattice fields at nonzero temperature
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In equilibrium, at finite temperature below and above the deconfining phase transition, we have
generated lattice SU�2� gauge fields and have exposed them to smearing in order to investigate the
emerging clusters of topological charge. Analyzing in addition the monopole clusters according to the
maximally Abelian gauge, we have been able to characterize part of the topological clusters to correspond
either to nonstatic calorons or static dyons in the context of Kraan-van Baal caloron solutions with
nontrivial holonomy. We show that the relative abundance of these calorons and dyons is changing with
temperature and offer an interpretation as dissociation of calorons into dyons with increasing temperature.
The profile of the Polyakov loop inside the topological clusters and the (model-dependent) accumulated
topological cluster charges support this interpretation. Above the deconfining phase transition light dyons
(according to Kraan-van Baal caloron solutions with almost trivial holonomy) become the most abundant
topological objects. They are presumably responsible for the magnetic confinement in the deconfined
phase.
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I. INTRODUCTION

In our previous work [1] we have started an investigation
of topological objects that appear in the course of smearing
[2] of equilibrium lattice fields. These were generated at
finite temperature in the confining phase of SU�2� lattice
gauge theory. The main idea was to analyze the monopole
content of these objects, still far from being classical
solutions, according to the maximally Abelian gauge
(MAG) in order to classify them as related to nonstatic
calorons or static dyons. Such a classification would be
natural in the context of Kraan-van Baal (KvB) caloron
solutions with nontrivial holonomy [3–5]. In the present
paper, using some additional techniques, we take up this
problem again, now for a couple of temperatures below and
above Tdec.

Before pointing out the new tools for this analysis, we
should briefly recall the general view and the terminology
used, that originate from the classical KvB solutions [3,4].
We will do this for the simplest case, the SU�2� gauge
theory. In this case, at finite temperature, the classical
carriers of one unit of topological charge are self-dual or
antiself-dual objects (periodic caloron solutions) which
consist of two monopole ‘‘constituents.’’ In the limit of
small intermonopole distances they form a single, non-
static caloron, whereas at large distances they dissociate
into a pair of separate static lumps of action and topologi-
cal density (static Bogomolnyi-Prasad-Sommerfield (BPS)
monopoles [6] or ‘‘dyons’’). In the latter case the action
8�2=g2 (or one unit of topological charge) is shared among
the constituents according to the holonomy of the gauge
field, in the ratio !=!, where ! � 1=2�!. The asymp-
totic value of the Polyakov loop
06=73(9)=094509(11) 094509
L1 � lim
j ~xj!1

L� ~x� � lim
j ~xj!1

1
2 trP exp

�
i
Rb�1=T

0 A4� ~x; t�dt
�

� cos�2�!�; 0 � ! � 1=2; (1)

determines the holonomy parameter ! and its complement
!.

Each physical phase can be thought as a medium creat-
ing a certain L1 as a boundary condition for the calorons.
For example, maximally nontrivial asymptotic holonomy,
L1 � 0 or ! � ! � 1=4, forces the constituents to carry
equal topological charge �1=2. With the holonomy be-
coming more and more trivial with increasing temperature,
L1 ! �1, the constituents become imbalanced. On the
other hand, the constituents are distinguished by the local
behavior of the Polyakov loop L� ~x� � �1 close to their
positions. This is the characteristic signature, irrespective
of whether the action forms two separated lumps or a
single lump, the latter one with unit topological charge.

Viewed by Abelian monopoles appearing in the MAG,
static dyons are represented by monopoles temporally
wrapping around the lattice, whereas single nonstatic cal-
orons are localized in time and have monopole loops of
finite extent running close to the center. This feature of
calorons in the MAG has been pointed out first by Brower
et al. [7]. This was our guiding hypothesis already in
Ref. [1]. In Fig. 1 we show a classical caloron solution in
the two limiting cases together with the corresponding
MAG monopole content. In Ref. [8] we have seen such
static monopoles also in the Polyakov gauge, regularly
accompanying static, i.e. dissociated caloron configura-
tions while being rarely found in nonstatic calorons.

According to the scenario to be outlined in Sec. II we
expect to observe below Tdec both dissociated and non-
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FIG. 1 (color online). Left: two static dyons accompanied by two static monopoles; right: a single caloron accompanied by a
monopole loop. The classical SU�2� configurations have been generated on a 163 � 4 lattice and then Abelian-projected. In the �z; y; t�
lattice at x � 0 we show the sites with action density s > smax=5 (left, for dyons) and s > smax=40 (right, for calorons) together with
the emerging monopole trajectories.
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dissociated clusters of topological charge � 1
2 and �1,

respectively, in some mixture. Above Tdec only clusters
with charge �1 should remain, with a density decreasing
with increasing temperature. That means that we are ex-
pecting to see calorons with trivial holonomy actually
dominating the topological charge above Tdec.

The topological structure in the deconfined phase is
partly also a question concerning the capability of the
smearing method applied in this paper. Whereas the topo-
logical structure is known to be preserved under smearing
in the confined phase, experience shows that under com-
parable smearing conditions the topology is rapidly wiped
out in the deconfined phase. Therefore, in order to escape
these bad prospects, we have to modify the smearing
conditions in the deconfined phase.

We point out in Sec. II that there are fermionic methods
to determine the topological density but, in order to detect
a semiclassical structure, certain UV smearing techniques
have to be applied as well. Our analogous method applied
for the same purpose is a combination of gluonic measure-
ments of the most naive topological charge density com-
bined with the monopole localization in the maximally
Abelian gauge. Both are applied to smeared configurations
[2]. In a very recent paper it has been demonstrated, by
comparison of smeared and cooled configurations with the
original equilibrium configurations, that the spectrum of a
chirally improved Dirac operator remains practically un-
altered [9] meaning that the infrared structure ‘‘seen by the
low-lying chiral fermion modes’’ in equilibrium, is con-
served under controlled cooling or moderate smearing.

Since for our purpose the correlation with Abelian
monopoles is of crucial importance, the technical improve-
ments (compared to Ref. [1]) in the present paper are
concerning the methods detecting the monopole structure.
This applies both to gauge fixing and to the analysis of
separable monopole loops. We have now fixed the MAG by
the more advanced technique of simulated annealing [10].
This method is known to lead, in comparison with the
overrelaxation method, to higher maxima of the gauge
functional and to a minimal monopole content.
Analogously to the preceding paper, the detection of
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monopole trajectories is used here to identify clusters of
the topological charge density resembling the two extreme
appearances of KvB calorons. Unlike the previous paper,
we are now actually exploring the full monopole content of
individual topological objects, not only looking for inter-
sections of timelike monopole currents with the topologi-
cal charge clusters [1]. We are taking the precise type of
monopole clusters into account.

Last but not least, we use now a larger lattice (with size
243 � 6) and a certain set of different �-values. Three
values, � � 2:2, 2.3, 2.4, belong to the confined phase
while the remaining two values of � � 2:5, 2.6, represent
the deconfined phase. This will allow us to get information
about the temperature dependence of the caloron/dyon
composition that was left open in the previous
investigations.

In Sec. II we will outline the general physical picture
behind the present investigation. In Sec. III we will briefly
explain the set of our runs and, in particular, the conditions
for the smearing procedure. In Sec. IV we shall describe
the local influence of monopoles altering the distribution of
the Polyakov loop. This part is interesting by its own and is
not related to the following cluster analysis. In Sec. V we
will describe the results of the analysis of topological
clusters. The classification with the help of monopoles
will be of use here. We draw our conclusions in Sec. VI.

II. THE PHYSICAL PICTURE

The one-loop calculation of the caloron amplitude [11]
has shown that below some temperature calorons may
become instable with respect to the separation into their
constituents. It would be attractive to identify this tempera-
ture with the deconfinement temperature because, in a
dilute gas calculation, it has been shown that at this tem-
perature trivial holonomy L1 � 1 turns from a minimum
of the free energy P (as a function of L1) into a maximum.
The global view of the function P�L1� is, however, beyond
the capability of the dilute caloron gas approximation. In a
schematic dyon gas model, Diakonov [12] has demon-
strated how the stability of L1 � 0 (being the minimum
of P) could eventually be achieved.
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All this taken together leads to a simplified picture that
describes the essence of the transition to confinement as the
dissociation of tightly bound calorons (with trivial asymp-
totic holonomy) into dissociated ones with nontrivial hol-
onomy and discernible dyonic constituents. This cannot be
the full truth, however. As we know from Refs. [7,8], at low
temperature calorons, even of nontrivial holonomy, are
likely to appear as single lumps of action that nonetheless
are different from the well-known instanton solutions be-
cause of the nontrivial holonomy boundary conditions they
must satisfy in the confining medium.

Therefore we expect to observe in a study at different
temperatures the constituents becoming manifest inside
dissociated calorons more abundantly approaching the
deconfining transition from below. Whereas the topologi-
cal susceptibility is temperature independent throughout
the confined phase, the relative abundance of static objects
with an appreciable fractional topological charge (close to
� 1

2 ) should increase towards the phase transition tempera-
ture compared to the abundance of nonstatic calorons.

We have announced in the Introduction that we have
used four-dimensional smearing for this investigation.
There is an alternative way to locate calorons and their
constituents, respectively. It is based on the localization
behavior of the zero modes and the near-zero modes of the
Dirac operator [13,14]. A jumping behavior of the zero
mode in charge Q � �1 configurations can be observed
under the influence of changing boundary conditions, de-
liberately imposed on the fermion field. This is very remi-
niscent to what is familiar from the case of an exact caloron
background field. Interpolating with an appropriate phase
factor between periodic boundary conditions and antiperi-
odic ones, the zero mode may jump from one constituent to
another.

For various classical solutions extracted on the lattice by
the cooling method this has been established for SU�2�
[15] as well as for SU�3� [16]. For equilibrium lattice
gauge fields selected to possess unit topological charge,
in the SU�3� and SU�2� cases a similar ‘‘jumping’’ of
lowest-lying modes of a chirally improved lattice Dirac
operator was reported by Gattringer and coauthors [17–
19]. Of course,Q � �1 equilibrium configurations generi-
cally contain more clusters and spatial fluctuations of
topological charge than the single zero-mode is able to
detect. Such configurations differ from a pure (anti)caloron
even in the deconfined phase. It has been verified [20], that
the single zero mode is always attracted to positions that
are maxima of the topological density inside extended
topological clusters. This check has required a very well-
tuned smearing and has used a topological charge operator
defined in terms of the naive twisted plaquette. However,
there were more clusters and cluster maxima going unde-
tected by the single zero mode. In our previous [1] and in
the present paper, the diagnostic role is shifted to the MAG
monopoles. Note that these are not limited in number or to
a particular chirality as the zero modes are.
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With a chirally perfect or improved Dirac operator at
hand (that satisfies the Ginsparg-Wilson equation), there is
a definition [21] of the topological charge density which is
equivalent, in the continuum limit, to the gluonic defini-
tion. It may supersede a gluonic definition at finite lattice
spacing. This density also exposes a clustering pattern
[22–24] strongly dependent on ultraviolet filtering, usually
implemented by a cutoff (in eigenvalues) of the contribut-
ing eigenmodes. The nonfiltered density, in contrast, con-
tains fluctuations of all scales and cannot be related to a
semiclassical model. An analysis of calorons and dyons
using these tools along the ideas of the present paper is left
for the future.

In Ref. [25] it has been attempted to construct single-
caloron and multicaloron solutions at lower temperature
starting from high temperature ones. It was characteristic
that all classical constituents were delocalized to a scale set
exclusively by the periodic 4-volume, in contrast to the
(jumping) zero modes seen also in zero temperature equi-
librium configuration background configurations which are
highly localized due to quantum fluctuations of the gauge
field. This limits our expectations to find, in the limit of
vanishing temperature, a semiclassical structure that would
reveal the elusive ‘‘instanton quarks’’ in separation.

Using the new procedures under wider physical condi-
tions at finite temperatures, similar to Ref. [1] we will
observe both nonstatic calorons and static dyons. In the
confined phase the relative population of isolated dyons
will be seen growing with increasing temperature. This
will be interpreted as progressive dissociation (dipole split-
ting) of calorons into dyons in the confined phase. This is
the main result of our paper directly related to the KvB
caloron picture and confirming the simplified picture de-
scribed above.

Unexpectedly from the point of view of the scenario
outlined above, in the deconfined phase nondissociated
calorons are rare objects, even though charge Q � �1
configurations are still observed after a well-tuned amount
of smearing. According to the different asymptotic holon-
omy (changing away from vanishing Polyakov loop toward
L1 � 0) one would expect an extreme asymmetry among
the constituent dyons if they appear at all. One type of
dyons should be small in size and heavy in action with a
peak of the Polyakov loop of opposite sign with respect to
L1, and another type of dyons large in size and light in
action with a peak of the Polyakov loop of equal sign with
the overall holonomy. The heavy dyons should be as rare as
the nondissociated calorons are, but they are not found
paired with the light dyons. The latter will be found about
an order of magnitude more frequently and contribute less
to the topological charge. Being static and always con-
nected with a static Abelian monopole, they could be held
responsible (together with other monopoles) for the mag-
netic confinement in the deconfined phase. This is the
second main observation to be reported.
-3



TABLE I. The numbers of topological clusters for 200
smeared configurations at different � identified as static dyons
(D), nonstatic calorons (CAL) and without clear identification
(OTHER).

� T=Tdec D CAL OTHER

2.2 0.54 39 624 10323
2.3 0.68 128 755 6512
2.4 0.94 626 511 2983
2.5 1.32 243 84 6989
2.6 1.87 118 20 10204
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FIG. 2 (color online). The effect of smearing on the ‘‘string
tension’’ �. In confinement (� � 2:23, 2.3, 2.37) � was obtained
from the correlator of Polyakov loops. In deconfinement (� �
2:5, 2.6) � was obtained from the behavior of spacelike Wilson
loops. The lattice size was 203 � 6.
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III. DETAILS OF THE SIMULATIONS AND OF
SMEARING

We have generated 200 independent Monte Carlo con-
figurations for each � � 2:2, 2.3, 2.4, 2.5, 2.6 on a 243 � 6
lattice. We used the heat bath method according to the
Wilson plaquette action. These samples characterize finite
temperature both in the confined and deconfined phases. At
N� � 6, the critical � corresponding to the deconfining
phase transition is about �dec � 2:42. For each � the
corresponding ratio T=Tdec is shown in Table I. The en-
sembles further have been subjected to smoothing by four-
dimensional smearing [2]. The fixed smearing parameter
was � � 0:45, whereas various numbers N of iterations
were applied at different �. From our previous observa-
tions on a 203 � 6 lattice at � � 2:3 we concluded that
dyons become visible above the noisy background after
N � 50 smearing steps.

For the present investigation at � � 2:3 and the two
other � � 2:2, 2.4 in the confined phase we adopt this
number of smearing steps, justified by the observation
that the string tension1 at the neighboring values � �
2:23, 2.3, 2.37 is reduced after 50 smearing steps to ap-
proximately the same 60% of the original value (see
Fig. 2). In the deconfined phase, where the spatial string
tension was used for this comparison, the same percent
reduction of this string tension has been observed at N �
25 and N � 20 smearing steps for � � 2:5, 2.6,
respectively.

IV. LOCAL POLYAKOV LOOP, MONOPOLES AND
ASYMPTOTIC HOLONOMY

Our first observation, as in Ref. [1], is the correlation
between the values of the Polyakov loop and the presence
of Abelian monopoles. For this purpose we have averaged
the Polyakov loop over all eight corners of a three-
dimensional cube (dual to a timelike link of the dual
lattice) where an Abelian magnetic charge has been de-
tected. This construction is implied whenever the original
and the dual lattice are put into relation. The distribution of
1For the purpose of this estimate the string tension was defined
by the Polyakov loop correlator.
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the values of this conditionally averaged Polyakov loop is
shown in the different panels of Fig. 3 as histograms (with
broad 12 bins, drawn in thick lines). For comparison, the
distributions of the Polyakov loop over all lattice sites are
shown (as fine-binned histograms, drawn in thin lines).
One sees that, with � approaching the phase transition
from the confinement side, the distribution over all lattice
sites becomes flatter, whereas the distribution over the
position of monopoles becomes increasingly shifted to-
ward �1.

Within our set of runs above but not so close to the
deconfinement temperature global flips of the Polyakov
loop did not happen. Because of this effective Z�2� break-
ing the two plots for the deconfined phase show an unsym-
metric distribution for the Polyakov loop over all lattice
sites. At these temperatures the same asymmetry is seen in
the distribution of the Polyakov loops for the monopole
positions.

In order to facilitate a qualitative comparison of the
topological clusters with KvB caloron solutions with non-
trivial holonomy L1, we have defined an empirical asymp-
totic holonomy H for each lattice configuration. We have
considered the sites on the lattice where the absolute value
of topological charge density is less than the averaged
absolute value of this density. We take the average of the
Polyakov loop over this set of asymptotic sites and call the
resulting observable the asymptotic holonomy H. The
distribution of H for the five � values is shown in Fig. 4.

It can be seen from the different panels of this figure that
the asymptotic holonomyH is concentrated near zero deep
in the confined phase (� � 2:2 and 2.3). The distribution is
widened at � � 2:4, already close to the deconfining tran-
sition, and it becomes again concentrated around a maxi-
mum moving slowly between 	0:5 and 	1 for our
temperature range in the deconfined phase.
-4
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FIG. 4. The distribution of the ‘‘asymptotic’’ holonomy H as defined in the text. The upper row of figures shows the results for
� � 2:2, 2.3, 2.4 (from left to right, confinement). The lower row of figures shows the results for � � 2:5, 2.6 (from left to right,
deconfinement).
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FIG. 3 (color online). The distribution of the Polyakov loop over sites where timelike Abelian monopole currents are detected (thick
line). Monopoles are obtained by Abelian projection in MAG. For comparison, the distribution of Polyakov loops over all sites is
shown (thin line). The upper row of figures shows the results for � � 2:2, 2.3, 2.4 (from left to right, confinement). The lower row of
figures shows the results for � � 2:5, 2.6 (from left to right, deconfinement).
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Note the sharp contrast characteristic for the confine-
ment phase of the H distribution to the Polyakov loop
distribution at the positions of timelike monopoles (as
defined in MAG) in Fig. 3. In the deconfined phase the
local Polyakov loop at the monopole positions is distrib-
uted around the asymptotic (global) holonomy H.
TABLE II. The densities (in fm�4) of dyon and caloron clus-
ters, as identified (in the second line extrapolated to the full
number of topological charge clusters).

� T=Tdec D CAL

2.2 0.54 1:14 
 10�3 0.0182
2.2 0.54 0.018 0.283
2.3 0.68 9:78 
 10�3 0.0577
2.3 0.68 0.062 0.425
2.4 0.94 0.175 0.1429
2.4 0.94 0.458 0.374
2.5 1.32 0.260 0.0900
2.5 1.32 5.55 1.92
2.6 1.87 0.514 0.0872
2.6 1.87 38 6.45
V. CLUSTER ANALYSIS OF SMEARED
CONFIGURATIONS

On one hand, for each of the four-dimensionally
smeared configurations we have looked for clusters of
topological charge. The topological density is assigned to
the lattice sites according to the unimproved (naive)
twisted plaquette definition. In order to form clusters for
the subsequent analysis we have selected the sites where
the absolute value of the topological charge density ex-
ceeds some threshold value qc. The link-connected sites
with q�x�> qc or q�x�<�qc form what we call positive
(negative) clusters of topological charge. Obviously, num-
ber and size of the clusters depend on the threshold qc. This
value has been varied between the ensemble average of
jq�x�j, taken as lowest threshold, and a value taken 10
times larger taken as the highest threshold with the aim
to get, for each smeared configuration, a maximal number
of mutually disconnected clusters of topological charge.
Therefore, this procedure finds an upper bound for the
number of clusters per configuration (corresponding to
the degree of smearing that we have chosen). This number
can be inferred from Table I and amounts to 20 to 55
clusters per configuration, maximal at the lowest and high-
est temperature, minimal at T & Tc. Obviously, the num-
ber of clusters is not a well-defined quantity, and many of
the shallow clusters should be ignored as mere extended
background fluctuations.

On the other hand, we have identified the complete
monopole structure for each smeared configuration. This
means that all monopole clusters have been found. A
monopole cluster is a connected set of occupied links of
the dual lattice, i.e. all links carrying nonvanishing mag-
netic charge current. The density of monopole currents (i.e.
the percentage of occupied links of the dual lattice) in the
smeared configurations was about 2 orders of magnitude
smaller than in the corresponding equilibrium ones.
Therefore, in the smeared ensemble monopole clusters
were mainly non-selfintersecting loops, in the confinement
phase yet percolating loops. From the set of all monopole
clusters in a configuration, we have selected those isolated
monopole loops that are either closed by periodicity in the
time direction (then mainly formed by minimal length L �
6 static timelike monopole currents) or closed within the
four-dimensional volume (then mainly with the minimal
loop sizes L � 4, 6, 8). If there was a complete covering of
exactly one monopole loop (of either kind) with some
topological cluster, we have classified this cluster either
as a static dyon or as a nondissociated caloron, which are
094509
the two opposite appearances of KvB calorons. Table I
shows the corresponding numbers of topological clusters
classified in one or the other way. Note that our classifica-
tion, due to the very restrictive cut, has been passed only by
a small fraction of topological clusters. The number of
topological clusters in general is best defined closely below
the pase transition (� � 2:4) where it reaches a minimum
of � 15 per configurations. Approximately one third of
them becomes successfully classified as dyons or calorons,
the rest has no obvious interpretation in terms of the
monopole content. The minimal monopole clusters men-
tioned above could be intersecting with the large, percolat-
ing monopole loops, hence having escaped our attention.

With the 4-dimensional volume of 17:84 fm4 (at � �
2:4 the lattice spacing is obtained from �a2 � 0:071�1�
[26]) the density of identified calorons could be estimated
as 0:143 fm�4, the density of dyons 0:175 fm�4. The
relative abundance extrapolated to the full number of
clusters at this � would for the calorons result in
0:374 fm�4, still in the right ballpark given the constant
topological susceptibility � � 1 fm�4 below Tdec.
Expressed in physical units, one can summarize (see
Table II) the outcome as follows: the density of monopoles
(dyons) continuously increases with the temperature. Near
the phase transition the densities of calorons and
monopole-like objects become comparable. We will dis-
cuss below to what extent the monopole-like objects are
really dyons and may be described as caloron constituents.
The density of objects classified as calorons drops down
above the phase transition. This does not come as unex-
pected in view of the topological susceptibility decreasing
with increasing temperature above Tdec. It remains to be
seen whether, in the deconfined phase, the configurations
with topological charge Q � �1 really contain such a
caloron. This would have to be expected from the scenario
that calorons are mainly undissociated in the deconfined
phase.

In order to corroborate (or relativize, for the deconfined
phase) this interpretation we have tried to characterize the
-6
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monopole-tagged clusters by some cluster variables. We
have averaged the Polyakov loop inside the selected clus-
ters again over all those sites where timelike Abelian
monopole currents of either sign are observed as part of
the closed monopole loop that served the identification. We
call this quantity the Polyakov loop averaged over the
‘‘monopole skeleton’’ of the given cluster,
hPL�Abelian monopoles�icluster. From KvB calorons we
expect this average for ‘‘static monopole clusters’’ to be
close to �1, whereas for ‘‘monopole-antimonopole pair
clusters’’ it should be close to 0, the latter because of the
internal dipole structure in terms of the Polyakov loop that
reflects the positions of the constituents which otherwise
would be hidden inside the single undissociated caloron
cluster. We use this as the first cluster variable that should
quantitatively characterize the type of cluster.

As a second cluster variable we want to consider the
topological charge assigned to the cluster. This total charge
is difficult to assess because the topological profile extends
below the threshold qc. Applying this cutoff was, however,
indispensable to localize the cluster. We have designed a
model-dependent estimator for the total topological charge
of an identified topological cluster. This estimator works
differently for the two types of clusters. For a static dyon
we know from the analytic KvB caloron solution that its
size depends on the holonomy parameter ! according to
Eq. (1) as

�r �
b

4�!
: (2)

b is the inverse temperature, i.e. the period in time direc-
tion. In the confinement phase assuming the holonomy
parameter to be ! � 0:25 the size of the dyons changes
inversely to temperature. Actually, the sizes of the dyon
clusters are distributed within some width. According to
the caloron solution in the limit of separated dyons, the
modulus of the topological charge density qmax in the
center xmax of the dyon cluster should be connected with
the cluster size in the following way:

qmax �
1

24�2 �r4 : (3)

Ascribing by this relation a size to each cluster classified as
static dyon we could obtain a cluster size distribution from
the observed maxima of the topological charge density
inside the clusters. Then, considering such a cluster, we
sum the actual topological charge over all sites x that
belong to the cluster including the tail below qc. That
means that we sum the topological charge density q�x�
within a tube with a 3-dimensional (spatial) radius R
(related to �r). This distance R should not be too large in
order to avoid double counting of topological charge (by
assigning sites to more than one cluster) and not too small
(in order not to underestimate the topological charge in the
094509
tail of the cluster under consideration). We use R � 3�r
which, for the case of an isolated dyonic cluster (with an
ideal, approximately exponential topological charge den-
sity profile), would estimate the total charge within 7%
accuracy. This estimator corrects for the tail and serves to
assign a topological charge to all clusters once they have
been classified as static dyon clusters.

An undissociated KvB caloron has a topological charge
profile like that of an isolated ordinary instanton solution.
In this case the maximum of the modulus of the topological
charge density is related to the instanton size � as follows

qmax �
6

�2�4 : (4)

Assuming that the clusters classified as undissociated cal-
orons have such a charge profile we can obtain the instan-
ton size � from the measured qmax of the cluster. Then we
sum the actual topological charge density over all sites x
inside a 4-dimensional ball with a radius 1:5� centered at
xmax. Finally, the result needs to be multiplied by a correc-
tion factor 1.29 inferred from the exact instanton solution.
In this way, we are in the position to define an estimated
topological charge for any cluster once it has been identi-
fied as undissociated caloron.

We show in Fig. 5 scatter plots showing clusters of our
topological clusters in the plane spanned by the estimated
topological charge of each cluster, Qcluster, and the
Polyakov loop averaged over the monopole skeleton, de-
noted as hPL�Abelian monopoles�icluster. The points in
these scatter plots represent cluster that have been identi-
fied in one or the other way. As it can be seen from this
figure, in the confined phase with increasing � (here at
� � 2:3, 2.4) the two sorts of topological clusters are
forming clusters on the scatter plot either closer to the
points hPL�Abelian monopoles�icluster � �c, Qcluster �
�1=2 (dissociated) or hPL�Abelian monopoles�icluster �
0, Qcluster � �1 (undissociated), with c! 1 with increas-
ing temperature. In the confined phase at lower tempera-
ture, � � 2:2, clusters which contain closed monopole
loops (‘‘undissociated calorons’’) are the most abundant
objects (among the identified ones) and are forming a
cluster, very similarly to � � 2:3, 2.4. On the other hand,
dissociated dyons are very rare and have not yet produced a
pronounced pattern of nonvanishing Polyakov loop (when
the Polyakov loop is averaged over the monopole skeleton
of the cluster).

In the deconfined phase at � � 2:5, 2.6 undissociated
calorons are forming clusters in the same way as they do in
the confined phase. However, they become increasingly
rare objects with increasing temperature. Single (dissoci-
ated) dyons are presented now by asymmetric objects: rare
heavy dyons with an averaged Polyakov line of opposite
sign compared to the holonomyH and frequent light dyons
with averaged Polyakov line approximately equal to the
value of the asymptotic holonomy. Undissociated calorons
-7
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FIG. 5 (color online). Scatter plots in the (Qcluster, hPL�Abelian monopoles�icluster) plane for � � 2:2, 2.3, 2.4 (upper row from left to
right, confinement) and for � � 2:5, 2.6 (lower row from left to right, deconfinement). The circles represent dyon clusters, the triangles
undissociated calorons.
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and heavy dyons are appearing almost exclusively in con-
figurations with total topological charge equal to Q � �1
while light dyons appear mainly in configurations with
total topological charge equal to Q � 0 and to a lesser
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FIG. 6 (color online). Scatter plots in the (Qcluster, hPL�Abelian mon
other two. The figure in the center shows configurations (45 from 20
1:5), the right figure the complementary 155 configurations with z
symbols is the same as in Fig. 5.
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extent in Q � �1 configurations (see Fig. 6). The charge
values Q � 0, �1 exhaust all cases among the smeared
configurations on the given lattice size, that are found for
the two �-values in the deconfined phase. This suggests to
0 0.5 1
nopoles)>_cluster
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opoles�icluster) plane for � � 2:6. The left figure is the sum of the
0 configurations) with topological charge jQj � 1 (0:5 � jQj �
ero topological charge Q � 0 (jQj � 0:5). The meaning of the
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view the topological background in the deconfined phase
mainly as a gas of ‘‘spurious’’ (both with small action and
topological charge) dyon-antidyon pairs. These pairs can-
not be understood as forming together a caloron. If they
were related to calorons at all, more likely they have
emerged from a caloron-anticaloron pair by annihilation
of their heavy partners. For these dyons it has to be checked
whether they are formed by locally selfdual or anti-selfdual
field. Modeling the size of these objects starting from the
topological density in the center is more questionable than
in the other cases. Considered only as static Abelian mag-
netic monopoles, they do not have to follow the dyonic
interpretation. However they could be held responsible for
the magnetic confinement. From this point of view it is no
surprise that their density increases with temperature above
Tdec.

Under further cooling, pairs of dyons and antidyons in
this gas can eventually annihilate. In some cases (when the
annihilation proceeds across the periodic boundary) this
process ends up with Dirac sheets (i.e. constant magnetic
fluxes) [27]. These Dirac sheets are either stable or un-
stable depending on the value of holonomy [28].

With some reservations concerning the dyonic interpre-
tation of the monopole-like clusters in the deconfined
phase, we have made a comparison of the ‘‘dyon’’ radii
found in the confined and deconfined phases. In the left
half of Fig. 7 we show the size distributions derived from
the qmax-values of clusters classified as single dyons. For
the confinement phase, this yields a distribution with a
single maximum as expected from the caloron model taken
seriously. In the deconfined phase, the discrimination be-
tween the abundant light dyon clusters with the same sign
of the Polyakov loop at the monopole position and the rare
heavy dyon clusters with opposite sign, always with re-
spect to H, is reflected in the figure and highlighted by
dotted and dashed lines, respectively. For comparison, we
show in the right part of Fig. 7 the � distributions of
isolated single caloron clusters found in the confinement
0 0.5 1 1.5 2
r/a

0

0.1

0.2

0.3

0.4

0.5

FIG. 7 (color online). Left: distributions of the radii �r of dyonic cl
(dashed/dotted lines, deconfinement phase). The dashed line correspo
dyons. Right: distributions of the scale-sizes � of isolated caloron clu
(dotted line). Both the values for �r and � are presented in units of t
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phase. These distributions undoubtedly reflect the increas-
ing size of the objects yet to be classified as single calo-
rons. This tendency fits together with the increasing
amount of dyons since, with increasing size, calorons
eventually turn into discernible dyons.

According to the relation (2), an estimate of ! � 0:25
for maximally nontrivial holonomy at � � 2:3, and ! �
0:1 corresponding to hHi � 0:8 at � � 2:6 could be taken
for rough orientation. Since the inverse temperature is b �
6a (with N� � 6) in all our cases, we would estimate �r �
2� a��� for all dyonic constituents in the confined phase,
whereas at � � 2:6 in the deconfined phase the light dyons
should have a typical radius �r � 4:8� a�2:6� and the
heavy dyons (with ! replaced by �! � 0:5�! � 0:4) a
radius of �r � 1:2� a�2:6�. Notice that the lattice spacings
for the two �-values are widely different (they differ by a
factor 2.75). Taking this into account the dyons at � � 2:3
(equally weighted in the confinement phase) would have a
size of �r � 0:6=

����
�
p

, that happens to be almost equal to the
size of the light dyons at � � 2:6 (in the deconfined phase)
which is �r � 0:64=

����
�
p

. The heavier dyons at � � 2:6 in
the deconfined phase (which are actually rather rare) would
be 4-times smaller in size, namely �r � 0:16=

����
�
p

. For the
lattice spacings a��� assumed here in order to express all
sizes in terms of the SU�2� string tension at T � 0 we refer
to Ref. [26].

Concluding we can say that the distributions drawn in
Fig. 7 do not agree quantitatively with the above estimates
dictated by holonomy values H � L1, but show at least
qualitatively the expected pattern of size splitting. On one
hand, the averaged holonomy H might not be a relevant
parameter for the asymptotics of a single topological clus-
ter. On the other hand, we would not take these caloron-
based estimates too serious for the static monopoles seen in
the deconfined phase, because they are not observed in
heavy-light pairs and are badly modeled by the formula for
calorons and self-dual BPS dyons.
1 2 3 4 50

0.1

0.2

0.3

ρ/a

usters for � � 2:3 (solid lines, confinement phase) and � � 2:6
nds to heavy dyon clusters, whereas the dotted line refers to light
sters for � � 2:2 (solid line), � � 2:3 (dashed line), and � � 2:4
he lattice spacing a���.
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VI. CONCLUSION

We have analyzed the topological clusters of four-
dimensionally smeared configurations at finite tempera-
tures, across the deconfining phase transition, by means
of studying the monopole–world line cluster content of
these clusters. This tool has allowed to identify part of the
topological clusters either as static dyons or nonstatic
calorons. We have to stress, however, that the number of
separable topological clusters was maximized in the course
of analysis such that a huge part of the clusters (more than
90% at the lowest temperature and in the deconfined phase,
approximately 70% closely below the transition tempera-
ture) remained unidentified in this sense. This does not
mean that they could not be classified using other means.
The simple monopole clusters that were thought to identify
clusters as dyons or calorons could have been intersecting
with the percolating part that exists in the confinement
phase. Another part of the topological clusters, mainly in
the deconfined phase, should simply have been ignored
because they are shallow background fluctuations. These
have nothing to do whatsoever with the well-localized,
(anti)self-dual carriers of topological charge which had to
be analyzed.

On the basis of this separation we attempted a model-
dependent reconstruction of the total topological charge for
each individual cluster. The correlation between the
Polyakov loop (averaged over the monopole skeleton)
and the total topological cluster charge has revealed the
following pattern. At temperatures not too much below the
deconfining phase transition, with the asymptotic holon-
omy being still maximally nontrivial, H � 0, we see both
nondissociated calorons and separate dyons, understood as
the result of part of the calorons being already dissociated
into dyons. The size of the nondissociated ones slightly
increases with temperature. Dyons with different local
values of the Polyakov loop are symmetric in mass and
action in the confinement phase. The ratio of the number of
dyons to the number of (yet undissociated) calorons is
increasing with temperature, such that we may speak about
a process of dissociation with increasing temperature. At
the transition temperature the densities of both objects has
become comparable.

Above the deconfining phase transition holonomy starts
to become trivial, H � 0. Contrary to our expectations
topological excitations are not dominated by (undissoci-
094509
ated or dissociated) calorons. Only half of the Q � �1
configurations can be interpreted as undissociated calo-
rons. Judged solely from the average Polyakov loop at
the static clusters, dyons are still prevailing above Tdec.
The most abundant objects are light dyons and antidyons
with static Abelian monopoles inside. That dyons are no
more symmetric in mass and action would have been
expected. But they do not appear anymore as pairs of light
and heavy constituents in the same configuration.
Therefore it is difficult to understand these configurations
as dissociated calorons.

The typical Q � 0 configurations contains monopole-
antimonopole pairs, each with only insignificant topologi-
cal charge. Since the estimate of the charge rests on for-
mulae for BPS dyons, some reservations about the
topological charge are due. Considered simply as static
magnetic monopoles (ignoring the topological charge clus-
ter) together with other magnetic monopoles they could be
held responsible for the spatial string tension (magnetic
confinement) in the deconfined phase. From this point of
view it is plausible that the density of monopoles does not
follow the decline of the topological susceptibility above
Tdec.

The logical next step will be to repeat the present study
with a suitable fermionic topological charge density ap-
plied to the (unsmeared) equilibrium gauge field configu-
rations with the option of eliminating UV fluctuations by
mode truncation.
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