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QCD critical point and complex chemical potential singularities
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The thermodynamic singularities of QCD in the plane of complex baryo-chemical potential � are
studied. Predictions are made using scaling and universality arguments in the vicinity of the massless
quark limit. The results are illustrated by a calculation of complex � singularities in a random matrix
model at finite temperature. Implications for lattice QCD simulations aimed at locating the QCD critical
point are discussed.
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I. INTRODUCTION

The search for the QCD critical point has attracted
considerable theoretical and experimental attention re-
cently. The existence of such a point—an ending point
of the first order chiral transition in QCD—was suggested
a long time ago [1,2], and the properties were studied using
universality arguments and model calculations more re-
cently [3,4] (see Ref. [5] for review). The experimental
search for the critical point using heavy ion collisions has
been proposed in [6]. It is apparent that theoretical knowl-
edge of the location of the critical point on the phase
diagram is important for the success of the experimental
search.

First principle lattice QCD calculations aimed at deter-
mining the location of the critical point on the T, �
(temperature, baryon-chemical potential) diagram have
been attempted recently using several different techniques
[7–10] (see Ref. [11] for review). The major obstacle for
direct Monte Carlo simulation is the well-known lack of
positivity of the measure of the path integral defining QCD
partition function at nonzero baryo-chemical potential
�—the sign problem. One of the methods to deal with
this problem is to Taylor expand the QCD pressure in
powers of � around � � 0, i.e., around the point at which
direct Monte Carlo simulations are not hindered by the sign
problem [8,10].

The success of such an approach in determining the
location �TE;�E� of the critical ending point crucially
depends on the convergence radius of the Taylor expansion
around � � 0 [8,10,12]. The convergence radius, in turn,
is a function of the position of the singularities in the
complex � plane. Little is known about the location of
these singularities to date. The purpose of this paper is to
expand our knowledge of the location of these complex
plane singularities.

We shall be able to determine the position of the singu-
larities in the regime where the quark masses m are suffi-
ciently small. To summarize, the strongest rigorous
consequence of our analysis is that the convergence radius,
�R, achieves its minimum value at a temperature slightly
above Tc (by O�m1=�����). This value scales as
06=73(9)=094508(8) 094508
min
T
�R�T� �m1=�2���; (1)

and vanishes in the chiral limit (m! 0). The value
1=���� � 0:54 is determined by the critical exponents of
the O(4) universality class in 3 dimensions. The singularity
which determines the radius in (1) lies in the complex
plane and pinches the real axis (together with its conjugate)
at the critical point. The convergence radius �R�T� has a
certain nonanalyticity at T � TE, which we shall describe.

The study of thermodynamic singularities, or partition
function zeros, in the complex plane was pioneered by
Yang and Lee [13]. Their analysis was extended by
Fisher from the complex magnetic field singularities to
complex temperature singularities [14]. The properties of
these singularities following from scaling and universality
have been further studied by Fisher [15], Itzykson, Pearson
and Zuber [16] and others.

From the point of view of the lattice studies of the QCD
phase diagram, we would like to distinguish two separate
issues. One is the convergence of the series as the trunca-
tion order is increased. This is the issue which this study
will impact. The other is the convergence of each term in
the series to its thermodynamic limit as the volume and/or
the number of Monte Carlo configurations are increased.
The sign-problem is affecting this latter convergence and
will not be addressed here (see, e.g., [17–19]).

II. UNIVERSAL PROPERTIES OF THE COMPLEX
SINGULARITIES

Here we describe generic universal properties of the
complex thermodynamic singularities. The basic results
following from scaling and universality are not new, and
can be found in [16]. For clarity and completeness, we
rederive the needed facts here using slightly different
approach. Our purpose is to apply these results to QCD
at finite temperature and density.

A. Complex � singularities as Fisher zeros

We shall first consider QCD in the chiral limit—the
limit of two lightest quark masses taken to zero. The phase
diagram in the �T;�� plane is sketched in Fig. 1. The low-
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FIG. 1. A sketch of the QCD phase diagram in the vicinity of
the critical line �c�T� for zero and nonzero quark mass.

M. A. STEPHANOV PHYSICAL REVIEW D 73, 094508 (2006)
temperature phase is separated from the high-temperature
phase by a phase transition. This is unavoidable, because
the symmetry of the ground state must change from
SU�2�V � U�1�B to the full symmetry of the action
SU�2�V � SU�2�A � U�1�B as the temperature is raised
[20]. This transition is of second order for �<�3, and
of first order for �>�3.

Let us now fix T at a value in the interval �T3; Tc� and
study the behavior of singularities in the complex � plane.
On the real axis, as � increases from zero, the transition
occurs at a value which we denote as �c�T� (see Fig. 1).
Therefore, at a fixed temperature, the change of the chemi-
cal potential ���c�T� is a relevant perturbation. In the
universality class of the O�3� ! O�4� transitions, to which
QCD chiral restoration transition belongs [21], there is
only one relevant variable—the thermal variable t (we
are discussing the symmetry limit—the magnetic field
variable h is absent). Therefore, we are led to consider
the universal behavior of the singularities in the complex
temperature plane, which correspond to Fisher zeros. The
scaling parameter t is to linear order

t��2 ��c
2�T�: (2)

We use�2 instead of� to ensure that at� � 0 the thermal
variable is proportional to T � Tc.

B. Partition function zeros and electrostatic analogy

As first exposed by Lee and Yang [13], the thermody-
namic singularities in the complex plane are related to the
zeros of the partition function. For a finite system the
partition function Z, by definition, is strictly positive for
real values of the parameters. However, Z has zeros in the
complex plane, whose number grows linearly with the size
of the system. In the thermodynamic limit the zeros typi-
cally coalesce into cuts. A phase transition occurs where
such a cut pinches (second order) or crosses (first order) the
real axis.
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The considerations of Lee and Yang apply to the variable
� � exp��=T� since the partition function of QCD is a
polynomial (times an integer power) in � due to quantiza-
tion of the baryon charge. It is convenient to use the
electrostatic analogy. The partition function—a polyno-
mial, can be written in terms of its roots

Z��� �
Y
k

��� �k�: (3)

Therefore the free energy (or grand potential, if we are
dealing with grand canonical ensemble, as in QCD) is

���� � �T logZ � �T
X
k

log��� �k�: (4)

For complex �, the real part Re� can be interpreted as an
electrostatic potential created by charges located on the
plane �Re�; Im��:

Re ���� � �T
X
i

logj�� �kj: (5)

All charges have the same magnitude and sign (degenerate
roots can be treated as coincident charges). Now let us
assume, as is known to be true in most cases, and in the
universality region of interest, in particular, that the zeros
coalesce into 1-dimensional curves in the thermodynamic
limit. Then, the electrostatic potential Re� is continuous
across such a curve, while the analog of the electric field

E � �r�Re�� � �
�
@Re�

@Re�
;
@Re�

@ Im�

�
� ��Re; Im�

d�

d�
(6)

is discontinuous—the normal component jumps by an
amount proportional to the linear charge density � on the
curve. This curve can be viewed as the location of a cut on
a Riemann sheet of the analytic function ����.

C. Stokes boundaries in the scaling region at h � 0

Consider now the critical region in the vicinity of a
critical point �c. In the scaling regime the singular (i.e.,
nonanalytic) part of the potential ��t� is proportional to a
power of t:

�sing�t� �
�
A	t

2��; t > 0;
A���t�2��; t < 0;

t �
�� �c
�c

(7)

which defines the universal specific heat exponent � and
the amplitudes A
, whose ratio is also universal. Off the
real axis ��t� must be an analytic function everywhere
except for discontinuities across the cuts. Such cuts (at
least two, by symmetry ��t�� � ��t�) must be present,
because the function (7) taken at t > 0 does not match its
analytic continuation from the t < 0 axis along a path
around t � 0. The location of the cuts can be determined
using electrostatic analogy, which requires Re� to be
continuous across the cut. Parameterizing t � �sei’ using
real parameter s > 0 we find:
-2
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FIG. 2. Universal behavior of Stokes boundaries in the scaling
region for zero and nonzero symmetry breaking parameter h.
Only upper complex half-plane is shown. The trajectory of the
branching point t��h� is indicated by a dashed line.
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A	 cos��2� ���’� ��
 � A� cos��2� ��’
: (8)

Therefore, the cuts are straight lines at an angle with
respect to the negative t axis given by (cf. [16])

tan��2� ��’
 �
cos���� � A�=A	

sin����
; (9)

as shown in Fig. 2. All quantities entering this formula are
universal.

The cuts are termed Stokes boundaries in [16]—they
carry conceptual resemblance to the anti-Stokes lines in the
WKB theory. Across these lines, the function � switches
from one of its Riemann sheets to another. The density of
the ‘‘charges’’ on the cut is proportional to the disconti-
nuity of the normal component of E, and thus to
Im�ei’d�=dt�, which vanishes at the branching point as

�� jtj1��: (10)
D. Stokes boundaries at h � 0

The magnetic field h is another relevant variable near the
O(4) critical point. The magnetic field breaks the O(4)
down to O(3), and in QCD this role is played by the quark
mass m (more precisely, the average of the u and d
masses). At h � 0 the free energy is analytic function of
t at t � 0. In the scaling region the singular part of the free
energy scales as a power of h if t is also changed to keep the
scaling variable x � th�1=���� fixed. Therefore the (two)
branching points must be located at a point away from the
origin given by

t� � x�h
1=���� (11)

and at �t���, where x� is a complex constant. The phase of t�
(the polar angle coordinate of the branching point) is
determined by the following argument. By scaling postu-
late, the singular contribution to the free energy must be
given by
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�sing � h1	1=�A�th�1=����� (12)

where the function A�x� is analytic at x � 0. A�x� has two
cuts which originate at points x� and �x��� and go off to
infinity. Consider �sing as a function of complex h at fixed
real t. By symmetry (h$ �h, h$ h�), the Stokes
boundaries of this function lie on the imaginary axis
(more rigorously, this follows from the Lee-Yang theorem
and universality). Thus the branching point, for t > 0, at
h� � �t=x��

��, is purely imaginary, and therefore
�� argx� � �=2. Thus,

t� � jx�jei h1=����;  �
�

2��
: (13)

To summarize, at h � 0, the complex singularities in the
scaling region of the thermal parameter t form cuts (Stokes
boundaries) which go along the rays at angle ’ with the
negative real axis given by (9). With increasing symmetry
breaking parameter h the branching point shifts away from
t � 0 by an amount proportional to h1=���� along the
direction at the angle  to the positive t axis given by
(13). This is illustrated in Fig. 2.
III. SINGULARITIES OF QCD IN THE COMPLEX�
PLANE

A. Chiral limit: m � 0

Let us begin with the chiral limit m � 0. Consider the
interval of T 2 �T3; Tc�. In this interval increasing � leads
to the second order transition at � � �c�T�. As discussed
in the previous section in the vicinity of the transition we
must identify t with �2 ��c

2�T� (up to an irrelevant
constant factor)—Eq. (2). Thus, at a given temperature
T, near �c�T� the location of the singularities in the com-
plex � plane is determined by the universal arguments of
the previous section. Conformal transformation �! �2

does not affect the angles � and  away from � � 0.
In particular, atm � 0, the (two) cuts should originate at

the branching point located at �c�T� on the real axis, and
follow the rays at angle ’ given by (9) with respect to the
negative real axis as shown in Fig. 3 (left).

Taking the values � � �0:25 [22] and A	=A� � 1:6
[23] we estimate the value of the angle as ’ � 77�. At the
tricritical point � � 1=2 and A	=A� � 0 and thus ’ �
60�.
B. Small quark mass: m � 0

At finite quark massm the second order line � � �c�T�
is replaced by an analytic crossover for all temperatures
T > TE. The critical ending point of the first order tran-
sition is located at a temperature we denote TE. For T < TE
the transition is of the first order.

At fixed T > T3, and small mass m, in the vicinity of the
crossover point the singularities are described by the uni-
-3
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FIG. 3. Stokes boundaries in QCD at fixed T and two different values of m (left) and at fixed small m and three different values of T
(right) as dictated by universality.
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versal arguments with

h�m: (14)

For the purpose of the discussion we can define the
crossover point as the value of the real part of the branching
point: �crossover � Re����m��. The branching point,���m�
or the nearest singularity to the real axis, is shifted by the
amount proportional to m1=����, which is m0:54, using the
O(4) critical exponents [22], in the direction along the ray
at angle (13)  � �=�2��� � 48� towards the positive
real axis as shown in Fig. 3 (left).

When T is decreased towards TE this branching point
���m� (and its conjugate) approach the real axis and pinch
it when T � TE. At this temperature, the cuts originate
from the branching point on the real axis �E (see Fig. 3
(right)). The point �TE;�E� is the QCD critical ending
point. This ordinary critical point is in the universality
class of the Ising model [3,4]. The initial direction of the
cuts near this point is perpendicular to the real axis, i.e.,
’ � 90�. This follows from the fact that the perturbation
���E is magnetic-field-like,

h����E; (15)

and from the fact that singularities in the h plane lie on the
imaginary axis.

The reason that ���E is not t-like, but h-like, is the
following. In the vicinity of the critical point, since the
O(4) is explicitly broken, the perturbation ���E affects
both the thermal variable t as well as magnetic-field-like
variable h to linear order. Since ��> 1, the scaling vari-
able x � th�1=���� is small, which means the perturbation
���E takes the system into the region where the variable
h dominates the scaling.1
1An equivalent way of saying this is by comparing the scaling
dimensions of the variables coupled to thermal and magnetic
relevant operators: yt � 1=	 and yh � ��=	. Since both opera-
tors couple linearly to the variable ���E, and yh > yt, the
magnetic field operator dominates the response to ���E
perturbation near the critical point. In contrast, at m � 0, the
coupling to magnetic operator is forbidden by symmetry.
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IV. RANDOM MATRIX MODEL

In this section we illustrate the universal properties
discussed above by determining the complex plane singu-
larities of a random matrix model of the QCD partition
function at finite T and � which was introduced in Ref. [4]
and applied to the study of the QCD phase diagram and the
(tri)critical point. At � � 0 this model is equivalent to the
finite-T model of Ref. [24] and at T � 0—to the finite-�
model of Ref. [25]. The parameters T,� andm used in this
section are dimensionless, and correspond to measuring T
in units of Tc � 160 MeV,� in units of 2.27 GeV, andm in
units of 100 MeV. For more details, see Ref. [4].

The model can be solved in the thermodynamic limit,
which corresponds to the infinite size of the random ma-
trix, N ! 1, by using the replica trick. This gives, for real
�, T and m,

logZRM � �min
�

���� (16)

where

���� � �2 � 1
2 lnf���	m�2 � ��	 iT�2
 � ���	m�2

� ��� iT�2
g:

(17)

Analytically continuing into the complex �-plane, one
finds the branching points of the partition function by
solving a system of two algebraic equations

d�

d�
� 0;

d2�

�d��2
� 0 �branching points� (18)

for two unknowns: � and �. The second equation states
that two of the solutions determined by the first equation
are coalescing into one at this value of �. The Stokes
boundaries can be determined by solving the condition
Re���1� � Re���2� where �1 and �2 are the two solu-
tions of the first equation in (18) which coalesce at the
-4
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branching point:

d�

d�

�����������1;�2

� 0; Re���1� � Re���2�:

�Stokes boundaries�:

(19)

At finite N the partition function can be written explic-
itly as a polynomial (apart from an irrelevant constant
factor)

Z�N�RM �
XN=2

k1;k2�0

N

k1

 !
N

k2

 !
�N � k1 � k2�!1F1�k1 	 k2

� N; 1;�m2N�����	 iT�2N
k1����� iT�2N
k2 ;

(20)

using the procedure similar to [26], where 1F1�a; b; c� is
the Kummer confluent hypergeometric function (in (20) it
is a polynomial inm2). The zeros are found numerically for
N � 120 and plotted in Fig. 4 together with the Stokes
boundaries given by (19).

Near the point T � Tc, � � 0, the thermal scaling
variable t is proportional to �T � Tc� 	 C�2, where C is
the constant giving the slope the second order transition
curve (see Eq. (2)). Therefore it is convenient to plot the
zeros in the complex �2 plane.

Only the vicinity of the origin�2 � 0 is shown in Fig. 4.
The universal properties described in the previous section
are manifest. It is clear from the form of the solution (16)
that the critical exponents near the second order line have
their mean field values, and correspondingly, the angles are
’ � 45� and  � 60�. At the tricritical point, the expo-
nents are given by their mean field values also in QCD
(albeit with logarithmic corrections): ’ � 60�,  � 72�.
One can also see that the density of the zeros decreases
near the branching point, as dictated by (10).
0.3 0.2 0.1 0.1 0.2 0.3

0.3

0.2

0.1

0.1

0.2

0.3 2 plane
m 0

T T3T 1

FIG. 4 (color online). Stokes boundaries and zeros of the N � 120
zero and nonzero quark mass. The trajectory of each branching poi
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V. CONVERGENCE RADIUS

Relevant for the search of the QCD critical point is the
question of the convergence radius �2

R�T� of the Taylor
expansion around � � 0 of the QCD thermodynamic po-
tential as a function of T. For sufficiently small quark
masses, and sufficiently near Tc, the position of the nearest
singularity, limiting this radius, is determined by the uni-
versal arguments given above. For illustration, this radius
in the random matrix model is plotted on Fig. 5.

All generic and universal features are manifest in Fig. 5.
As T decreases, and the branching point singularity slides
along the dashed line on Fig. 4 from left to right, the radius
�R contracts, and then, below the crossover temperature,
begins to expand again. From the universality arguments of
Sec. III (see Fig. 3 (right)) we conclude that near the chiral
(m! 0) limit the minimum value of the radius scales with
m as

min
T
�2
R�T� �m

1=���� �m0:54; (21)

and is achieved at a temperature T which scales as T �
Tc �m

1=���� �m0:54.
Further away from the minimum, at the critical point,

T � TE, the singularity and its conjugate pinch the real
axis. At this point one observes a nonanalyticity in �2

R�T�:
a contribution of order �TE � T��� turns on below T � TE.
This is due to the kink in the dashed line on Fig. 4 at TE. In
QCD �� � 1:56, given by the exponents of the 3d Ising
model, while in the random matrix model �� has the mean
field value 3=2. More explicitly, the trajectory of the
branching point �� near �E is given by:

���T� � �E 	 c1�TE � T� 	 ic2�T � TE���

	O��T � TE�
2�; (22)

with some nonuniversal positive coefficients c1;2. To derive
this equation one observes that both t and h scaling vari-
ables are linear combinations of (T � TE) and (���E)
0.3 0.2 0.1 0.1 0.2 0.3

0.3

0.2

0.1

0.1

0.2

0.3 2 plane
m 0.07

T 1 T TE

random matrix partition function at representative values of T at
nt as a function of T is indicated by a dashed line.
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FIG. 5 (color online). The convergence radius�2
R as a function

of T in the random matrix model at m � 0:07 (7 MeV). The
value of �2

R is the distance of the singularity on the dashed line
on Fig. 4 from the origin. The critical point at T � TE where the
singularities pinch the real axis is shown.
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and uses Eq. (13) for the branching point. The fact that the
third term on the right-hand side in (22) is purely imagi-
nary for T > TE is related to the fact that the branching
point h� in the h plane is on the imaginary axis for t > 0 as
discussed in Sec. II D. Therefore

�2
R�T� � j���T�j

2 � �2
E 	 ~c1�TE � T�

	 ~c2
�TE � T��TE � T��� 	O��T � TE�2�:

(23)

Below TE, the singularity continues to move away from
the origin, and the radius of convergence continues to
increase. The radius is now determined by the spinodal
point of the first order phase transition (but see discussion
in the Appendix). This singularity resides on the continu-
ation of the physical Riemann sheet under the cut.2

One must point out that the random matrix model of
Ref. [4] does not capture a known feature of the QCD
partition function—the periodicity, or invariance under the
shift �! �	 2�iT, which is due to the quantization of
the baryon charge.3 As shown by Roberge and Weiss [28]
this periodicity is related to the appearance of a Stokes
boundary given by Im� � �T for sufficiently high tem-
peratures. For T of order 160 MeV, this Stokes boundary
could interfere with convergence of the series only if the
singularity we discuss moves further than j�j � 500 MeV.
2On a more subtle level, one has to note that the fact that the
singularity (22) remains on the real axis is an artifact of the mean
field critical behavior in the random matrix model (�� � 3=2).
In QCD, the singularity moves off the real axis by an amount
which scales as �TE � T���.

3A random matrix model which does capture this feature is
studied in [27].
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VI. SUMMARY AND DISCUSSION

We have described the location as well as temperature
and quark mass dependence of the singularities of the QCD
partition function in the complex� plane. In the vicinity of
the chiral phase transition at m � 0 the universality and
scaling arguments predict that in the infinite volume the
singularities are two complex conjugate branch cuts orig-
inating at a branching point on the real � axis. The cuts are
oriented at an angle to the negative � axis given by (9). At
nonzerom the branching points (and the cuts) are shifted in
the direction given by angle  � 48�, by a distance of
order m0:54 (see Fig. 3).

A related consequence of the universal behavior of the
complex T singularities, and the fact that  < 90�, is the
prediction that the crossover point at m � 0, defined as the
projection of the closest singularity onto the real axis, is
above the second order O(4) line, as sketched in Fig. 1.

The singularities we describe determine the convergence
of the Taylor expansion around the point � � 0. As a
result, the radius of convergence �R

2 at T � Tc is limited
by a singularity whose distance from the origin scales as
�R

2 �m0:54, vanishing in the chiral limit. At T � TE the
convergence radius �R�T� shows nonanalyticity described
by Eq. (23).

The random matrix model of Ref. [4] illustrates these
universal predictions: Figs. 4 and 5.

The knowledge of the complex plane singularities might
be used to improve the Taylor expansion methods, for
example, by constructing Padé or similar extrapolations
[12], accommodating the correct universal singular behav-
ior. It can also be used to crosscheck the results of lattice
Monte Carlo simulations, by comparing the expected uni-
versal behavior of the partition function zeros to the output
of a lattice calculation.
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APPENDIX A: TAYLOR EXPANSION NEAR A
STOKES BOUNDARY

The following question has the practical importance for
lattice Taylor expansion methods [8,10,12]: Does a Stokes
boundary limit the convergence radius of a Taylor expan-
sion and how? A view often expressed in the literature is
that the thermodynamic functions can be analytically con-
tinued past the Stokes boundary (or a first order phase
transition)—the true singularities being located at the
branching points, where the Stokes boundaries end.
Although this is correct in the strictly infinite volume V �
1, this certainly is not correct for any finite volume, no
matter how large. This must be so since the singularities of
the free energy of the type log�z� zk� are located along the
Stokes boundaries. How then do these singularities appear
-6



FIG. 6 (color online). The convergence disk of the Taylor
series around point z0 near a line of complex plane singularities.
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not to limit the radius of convergence in the V ! 1 limit?
The answer is that they do, but in order to see the diver-
gence in the series, one needs to continue the expansion
beyond some large order n� which slides to infinity as V !
1. We determine n� in this Appendix.

Consider a simplified problem, where the expansion
point z0 is located sufficiently close to the Stokes boundary
so that the curvature of the boundary can be neglected, and
the zeros can be considered equally spaced and extending
to infinity. It is also convenient to transform the variable z
to conformally map the Stokes boundary to the imaginary
axis as shown in Fig. 6.

The contribution to the thermodynamic potential from
the Stokes boundary at finite volume is the given by4

�sing � � log
�
2Vz

Y1
k�1

�
1�

�
zV
�k

�
2
��
� � log2 sinh�zV�

� �zV � ln�1� e�2zV�: (A1)

We have also rescaled the variable z so that the spacing
between zeros is �=V, to emphasize the fact the density of
zeros grows linearly with V. In the thermodynamic limit

�sing

V
���!V!1��z; Rez > 0;

z	 i�; Rez < 0:
(A2)

On the Stokes boundary, Rez � 0, Re� is continuous but
the normal derivative of Re� is not, in accordance with the
electrostatic analogy (6). However, the function �z has no
singularity on the Stokes boundary and can be analytically
continued through it. Let us choose z0 to be on the positive
real axis and Taylor expand around such a point (see
Fig. 6):

�sing�z� ��sing�z0� � ��z� z0�V 	
X1
n�1

an

�
z0 � z
z0

�
n

(A3)

where

an �
1

n!
�2z0V�

n
X1
p�1

pn�1e�2z0Vp: (A4)
4A more common example � � � log2 cosh�zV� can be an-
alyzed similarly, with a little additional complication, unneces-
sary for this discussion.
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For large V and n the coefficients approach5

an ���!n!1;V!1
�
e�n� �n��n=n!; n� n� � 2z0V;
1=n; n� n�:

: (A5)

We see that the late terms n > n� � V will cause the
divergence of the Taylor series outside the circle of radius
jz0j. The value of n� can be written in terms of two
quantities: the distance d of the expansion point from the
Stokes boundary and the spacing � between the zeros at the
given volume (shown in Fig. 6). Recalling that in terms of
the rescaled variable z the spacing is � � �=V and the
distance is d � jz0j, we conclude:

n� �
2�d
�

: (A6)
5In the interval n� � n� n2
�=�2�� the coefficients oscillate											
n3

p
before settling on an � 1=n.
with maxima reaching n�= 2�
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