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Effects of the quark field on the ghost propagator of lattice Landau gauge QCD
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Infrared features of the ghost propagator of color-diagonal and color antisymmetric ghost propagator of
quenched SU(2) and quenched SU(3) are compared with those of unquenched Kogut-Susskind fermion
SU(3) lattice Landau gauge. We compare (i) the fluctuation of the ghost propagator, (ii) the ghost
condensate parameter v of the local composite operator (LCO) approach, and (iii) the Binder cumulant of
color antisymmetric ghost propagator between quenched and unquenched configurations. The color-
diagonal SU(3) ghost dressing function of unquenched configurations has weaker singularity than the
quenched configurations. In both cases fluctuations become large in q < 0:5 GeV. The ghost condensate
parameter v in the ghost propagator of the unquenched MILCc configuration samples is
�0:002–0:04 GeV2 while that of the SU(2) parallel tempering samples is consistent with 0. The
Binder cumulant defined as U�q� � 1� 1

3
h ~�4
i

�h ~�2
i�2

, where ~��q� is the color antisymmetric ghost propagator
measured by the sample average of gauge fixed configurations via parallel tempering method, becomes
�4=9 in all the momentum region. The Binder cumulant of the color antisymmetric ghost propagator of
quenched SU(2) can be explained by the 3D Gaussian distribution, but that of the unquenched MILCc
deviates slightly from that of the eight-dimensional Gaussian distribution. The stronger singularity and
large fluctuation in the quenched configuration could be the cause of the deviation of the Kugo-Ojima
confinement parameter c from 1, and the presence of ordering in the ghost propagator of unquenched
configurations makes it closer to 1.
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I. INTRODUCTION

Infrared features of the ghost propagator are important in
the analysis of color confinement mechanism and the run-
ning coupling. Kugo and Ojima [1] considered the two
point function connected by the ghost propagator and ex-
pressed the confinement criterion as

1� u�0� � 1� c �
Z1

Z3
�

~Z1

~Z3

� 0 (1)

at the renormalization point � � 0 [2]. Here Z1 and ~Z1 are
the vertex renormalization factor of the triple gluon vertex
and the ghost antighost gluon vertex, respectively, and Z3

and ~Z3 are the wave function renormalization factor of the
gluon and the ghost, respectively.

If ~Z1 is finite, divergence of ~Z3 is a sufficient condition
of the color confinement. The lattice data suggest that ~Z3 is
infrared divergent, but its singularity is not strong enough
to hinder the running coupling, measured as

�s�q� �
g2

0

4�
Z�q2�G�q2�2

~Z2
1

� �s��UV�q�2��D�2�G�; (2)
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approach zero in the infrared [3]. Here Z�q2� andG�q2� are
the gluon dressing function and the ghost dressing func-
tion, respectively. The same observation is reported in [4].

The ghost propagator in the infrared region was inves-
tigated by several authors. Common findings are that it is
more singular than q�2 and that in the infrared region its
statistical fluctuation is large probably due to the presence
of Gribov copies [5–9]. In the quenched 324, 484, and 564

SU(3) lattice simulation, the color-diagonal ghost propa-
gator showed singularity of q�2��G with �G � 0:25. In the
Dyson-Schwinger (DS) approach, the infrared power be-
havior of the ghost propagator and the gluon propagator
q�2��D have the relation 2�G � �D � 0 and the lattice
data are consistent with this ansatz in the q > 1 GeV
region. As the magnitude of the �D, the Dyson-
Schwinger approach [10] and the Langevin approach [11]
predict �0:59, while the lattice data and DS approaches
[12,13] predict �0:5. If �D is smaller than �0:5 the gluon
propagator in the infrared vanishes and the Gribov-
Zwanziger’s conjecture on the color confinement of the
gluon becomes satisfied. Recent detailed analysis of the
finite size effect in the lattice confirms that the infrared
limit of ��D in the DS approach � � 0:5 is compatible
with the lattice data [14,15]. The relation 2�G � �D � 0
suggests the presence of an infrared fixed point [10]. The
infrared finite quark wave function renormalization Z of
unquenched simulation [16] also suggests that the running
coupling is not infrared vanishing.
-1 © 2006 The American Physical Society
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We cannot measure the ghost propagator at zero mo-
mentum, since we evaluate it with the condition that it is
zero-mode-less. Thus, the infrared power fitted at finite
lattice momentum �G cannot predict the power behavior of
the ghost propagator near momentum 0, i.e. the index �.

In [3], we observed that the Kugo-Ojima confinement
criterion is satisfied in the unquenched simulation but not
in the quenched simulation of lattice sizes up to 564. In
order to study the role of the fermion in the color confine-
ment, we consider the BRST (Becchi-Rouet-Stora-Tyutin)
quartet mechanism [1,17].

In the BRST formulation [1], unphysical degrees of
freedom are confined by the quartet mechanism. In the
pure QCD in the Landau gauge, one can construct the
BRST quartet as

A� ! D��A�c! 0 A� �c! D��A�c �c� A�B! 0:

Here the arrow implies the BRST transformation �B and B
is the Nakanishi-Lautrup auxiliary field. The transverse
gluon state A� is a BRST parent state of a daughter state
D��A�c and the state with opposite ghost number of the
D��A�c, i.e. A �c becomes a parent state, whose daughter
and the above three states construct a quartet.

Inclusion of the fermion field  allows one to construct
another BRST quartet as

 ! � c! 0  �c! � c �c�  B! 0:

The Dirac fermion state  is a BRST parent state of  c and
the state with opposite ghost number state of  c is  �c,
which becomes a parent state of the BRST partner that
constructs a quartet.

Inclusion of the fermion gives more restriction on the
degrees of freedom of the ghost and it may change the
fluctuation of the ghost propagator.

Another current problem concerning the ghost propaga-
tor is the possibility of the ghost condensates. In the lattice
Landau gauge QCD simulation, the presence of A2 con-
densates was suggested [3,5–7,18]. Since A2 is not BRST
invariant, a mixed condensate, i.e. a combination with
ghost condensates

Z �
trG=H

�
1

2
A�A

� � �iC �C
��
d4x; (3)

was proposed [19,20] as the on-shell BRST invariant, i.e.
invariant for the B field that satisfies

Ba � �
1

�
@�A

a� � i
g
2
fabccb �cc: (4)

Here G=H is the subset of gauge fixed configuration, and �
is the gauge-fixing parameter. The Landau gauge � � 0 is
regarded as a specific limit of the Curci-Ferrari gauge. In
recent studies, the space-time average of the vacuum ex-
pectation value
094506
1

V

Z
V

�
1

2
trA��x�A��x�

�
d4x

is claimed to have gauge invariant meaning [19,21]. In the
Landau gauge QCD, the Faddeev-Popov (FP) gauge-fixing
action is

SFP � Ba@�Aa� � i �C
a@�Dab

� Cb; (5)

where the last term �Ca@�D�
abCb, where Dab

� � �ab@� �
gfacbAc�.

In analytical studies in the Curci-Ferrari gauge, presence
of the ghost condensate hfabccb �cci was discussed as the
Overhauser effect in contrast to the hfabccbcci or
hfabc �cb �cci which are regarded as the BCS effect [22].

Since the Landau gauge is a specific limit of the Curci-
Ferrari gauge, it is of interest to study the ghost propagator.
In [6], we observed that in the SU(2) � � 2:1 164 lattice,
the expectation value of color off-diagonal ghost propaga-
tor h	abc �cbcci is consistent with 0 but the standard devia-
tion of the color-diagonal ghost propagator has the
momentum dependence of 
�Gaa�q�� / q�4. The investi-
gation was extended by [23] and this fluctuation was con-
firmed and, although the expectation value of
�a�q� � 	abccb �cc is consistent with 0, the expectation
value of its absolute value j�a�q�j was shown to behave
as q�4 and not zero. We extend this approach to un-
quenched MILC configurations.

In [23], the ghost condensate parameter v and the Binder
cumulant [24] of the color antisymmetric ghost propagator
were measured. In the Binder cumulant of an order pa-
rameter, renormalization factors cancel and one can extract
the fixed point in the continuum limit by a suitable
extrapolation.

In the Zwanziger Lagrangian [25], the color antisym-
metric ghost field �bc

� �x� leads to the mass gap equation

fabchAa��x��bc
� �x�i �

4�N2
c � 1��2���

2
p
g2

; (6)

where �2 is the mass dimension two Gribov mass parame-
ter [26]. It is not evident that the Zwanziger Lagrangian
expresses the effective theory of the lattice Landau gauge
QCD, but analytical calculation of the ghost propagator in
two loop [26] and the local composite operator approach
[22,27] suggest hints for solving entanglements in the
confinement problem.

In this paper we study the ghost propagator of quenched
SU(2)� � 2:2 164 lattice gauge fixed to the Landau gauge
via the parallel tempering (PT) method [28] and investigate
the Binder cumulant. We extend the study to unquenched
SU(3), using the MILCc configurations [29].

Organization of the paper is as follows. In Sec. II, we
show definitions of the color-diagonal and color antisym-
metric ghost propagator on the lattice. In Sec. III, fluctua-
tion of the ghost propagator of quenched and unquenched
configurations are compared. In Sec. IV, we compare the
-2
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parameter v of the ghost condensates from the color anti-
symmetric ghost propagators of quenched SU(2) PT con-
figurations and unquenched MILCc configurations. In
Sec. V, the Binder cumulant of the color antisymmetric
ghost propagator of the quenched SU(2) and unquenched
SU(3) are compared. A summary and discussion are given
in Sec. VI.

II. THE GHOST PROPAGATOR

The ghost propagator DG
ab�q2� and the ghost dressing

function Gab�q2� is defined by the Fourier transform (FT)
of the expectation value of the inverse Faddeev-Popov
operator M � �@�D�

FT �DG
ab�x; y�� � FThtr��ayf�M�U���1gxy�

b�i

� DG
ab�q2� �

Gab�q2�

q2 (7)

where anti-Hermitian SU(3) generator �a is normalized as
tr�ay�b � �ab.

We measure

DG
ab�q2� � htrh�aqjM�U��1j�bqii (8)

using the source vector j�aqi � 1���
V
p �aeiq	x. We select the

momentum q� to be directed along the diagonal of the
lattice momentum space.

In the approach of calculating the Fourier transform of
M�1Sa0�x� [5], compensation of hypercubic artifacts was
necessary, but in our method the artifact-free momenta are
selected and the translation invariance is fully utilized to
improve the statistics.

The Faddeev-Popov operator M�U� � �@D�U� is de-
fined with the use of the covariant derivative as

D��Ux;��� � S�Ux;��@��� �Ax;�; ���; (9)

where @�� � ��x��� ���x�, �� � 1
2 ���x��� �

��x��. In the U-linear version, [Ax;� �
1
2 �Ux;� �

Uyx;��jtrlp where jtrlp means the traceless part]
S�Ux;��Bx;� is defined as

S�Ux;��Bx;� �
1

2

�Ux;� �U
y
x;�

2
; Bx;�

���������trlp
(10)

and in the log�U version, (Ux;� � eAx;�)

S�Ux;��Bx;� �
Ax;�

2 tanh�Ax;�=2�
Bx;�; (11)

where Ax;� � adjAx;� [28].
In [23], the Faddeev-Popov operator was parametrized

as

M bc
U �x; y� � �bcS�x; y� � fbcdAd�x; y�: (12)

The authors decomposed the inverse matrix DG
bc�x; y� �

�M�1�bc�x; y� into DGe
bc�x; y� and DGo

bc�x; y�, i.e. the
094506
component containing even number of A, odd number
of A, respectively. They derived the ghost propagator
from ��bc=�N2

c � 1��DGe
bc�x; y�, and the color antisym-

metric ghost propagator by multiplying S�1A to the color
antisymmetric ghost propagator DGe

bc�x; y� which con-
tains the perturbation series of even numbers of A.

We do not adopt this procedure, but derive directly the
color antisymmetric ghost propagators by the conjugate
gradient method. The convergence condition on the series
is set to less than a few percent in the l2 norm.

We define M � �@�D� and solve

�@�D�f
b
s �x� �

1����
V
p �b sinq 	 x (13)

and

�@�D�f
b
c �x� �

1����
V
p �b cosq 	 x: (14)

Then we calculate the overlap to get the color-diagonal
ghost propagator

DG�q� �
1

N2
c � 1

1

V
�ab�h�a cosq 	 xjfbc �x�i

� h�a sinq 	 xjfbs �x�i� (15)

and color antisymmetric ghost propagator

�c�q� �
1

N

1

V
fabc�h�a cosq 	 xjfbs �x�i

� h�a sinq 	 xjfbc �x�i�; (16)

where N � 2 for SU(2) and 6 for SU(3).
III. FLUCTUATION OF THE GHOST
PROPAGATOR

We present in the following subsections the square and
the absolute value of the color antisymmetric ghost propa-
gators of the quenched SU(2) � � 2:2 164 lattice, and
compare the corresponding values of the SU(2) Landau
gauge QCD of larger samples [23]. We measure also ghost
propagators of quenched SU(3) � � 6:45 564 lattice and
those of unquenched MILCc with lattice size 203 
 64 and
MILCf with lattice size 283 
 96. We present the square
and the absolute value of the color antisymmetric ghost
propagator of MILCc.

A. Quenched SU(2)

We select momenta q following the cylinder cut, and in
the case of unquenched SU(3) 203 
 64 lattice calculation,
it takes about 260 iterations in the q � 0:2 GeV region but
several iterations in the q � 4 GeV region. The average of
the color antisymmetric ghost propagator �c�q� is consis-
tent with 0 but the average of its square �c�q�2 has a
-3
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FIG. 1 (color online). Log of color antisymmetric ghost propa-
gator squared log10���q�

2� as the function of q�GeV�. � � 2:2,
164 PT gauge fixing.
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FIG. 3 (color online). Log of the ghost propagator
log10�DG�q�� as the function of log10�q�GeV��. � � 2:2, 164

PT gauge fixing.

SADATAKA FURUI AND HIDEO NAKAJIMA PHYSICAL REVIEW D 73, 094506 (2006)
nonvanishing value. We define

~��q�2 �
1

N2
c � 1

X
c

�c�q�2: (17)

The log of ~��q�2 of � � 2:2 164 lattice gauge fixed by
the PT method (67 samples) is shown in Fig. 1. The
corresponding log-log plots (Fig. 2) are to be compared
with that of the ghost propagator DG�q� (Fig. 3).

The infrared singularity of the standard deviation of the
color antisymmetric ghost dressing function and the color-
diagonal ghost dressing function are q�4:4 and q�4:5,
respectively.

B. Quenched SU(3)

In Fig. 4 we show the color-diagonal ghost propagator of
quenched SU(3) with� � 6:4 (1=a � 3:66 GeV) and� �
6:45 (1=a � 3:8697 GeV) on 564 lattice. The correspond-
ing ghost dressing function is in Fig. 5.
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FIG. 2 (color online). Log of the color antisymmetric ghost
propagator squared log10���q�

2� as the function of
log10�q�GeV��. � � 2:2, 164 PT gauge fixing.
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The standard deviation of the color-diagonal ghost
propagator of � � 6:45 multiplied by �qa�4 is almost
constant in the q > 1 GeV region but in the q < 0:5 GeV
region it is enhanced as compared to the value at the q >
1 GeV region.

The log-log plot of the standard deviation of the color-
diagonal ghost dressing function of � � 6:45 in the q <
1 GeV region behaves as


�G�q�� / q�2:8�1�: (18)

C. Unquenched SU(3)

In [7] we showed lattice results of the color-diagonal
ghost dressing function of unquenched JLQCD/CP-PACS
and MILC. In these simulations the length of the time axis
is longer than the spacial axes and the ghost propagator of
low momentum region is extended. In Fig. 6 the log-log
plots of the ghost dressing function of the MILCf �imp �

7:09 on 283 
 96 lattice and that of quenched � � 6:45 on
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FIG. 4 (color online). The ghost propagator as the function of
the momentum q�GeV�. � � 6:45, 564 (stars) and � � 6:4, 564

(filled diamonds) in the logU definition. The solid line is the
pQCD fit in gMOM scheme [7].
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FIG. 5 (color online). The ghost dressing function as the
function of the momentum q�GeV�. � � 6:45, 564 (stars) and
� � 6:4, 564 (filled diamonds) in the log�U definition.
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FIG. 7 (color online). Log of the standard deviation
log10
�G�q�� as a function of log10q�GeV� of MILCf �imp �

7:09 (upper points) and that of quenched � � 6:45 564 (lower
points).
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564 lattice are shown. We observe suppression of the ghost
propagator in the infrared region in the asymmetric lattice
[3,18]. The systematic deviation of the ghost propagator
and the gluon propagator of the asymmetric lattice from
those of the symmetric lattice is recently confirmed in the
large three-dimensional SU(2) lattice [30]. The suppres-
sion in the infrared of the unquenched data may not be due
to the presence of quarks but due to the geometry of the
lattice.

There are differences in the momentum dependence of
the standard deviation of the color-diagonal ghost dressing
function of unquenched MILCf, �imp � 7:09 on the 283 


96 lattice and the quenched � � 6:45 on the 564 lattice in
the infrared region as shown in Fig. 7. Since the sample size
is different, the absolute value of the standard deviation is
not meaningful, but the strength of the fluctuation defined
by the slope influences the infrared behavior of the running
coupling etc.
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FIG. 6 (color online). Log of the ghost dressing function
log10G�q� as a function of log10q�GeV� of MILCf �imp �

7:09 (diamonds) and that of quenched � � 6:45 564 (stars).
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The momentum dependence of the standard deviation of
the color-diagonal ghost dressing function of MILCf is
dramatically less singular than that of the quenched con-
figuration. We observed


�G�q�� / q�1:1�1�: (19)

The color antisymmetric ghost propagator of MILCc (21
samples) is shown in Fig. 8. By comparing with Fig. 1, we
observe a decrease of the slope.
IV. THE GHOST CONDENSATE

In the case of SU(2), the ghost condensate appears in the
color antisymmetric ghost propagator DGo

bc�q� related to
�a�q� through

�a�q� � �i
fabc

2
DG

bc�q2� � �i
fabc

2
DGo

bc�q� (20)

and
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FIG. 8 (color online). Log of the color antisymmetric ghost
propagator squared log10���q�

2� as the function of q�GeV�.
�imp � 6:83, and 6.76, 203 
 64.
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FIG. 9 (color online). Log of j�a�q�j (color antisymmetric
ghost propagator) divided by cos�� �qa=L� as the function of
log10q�GeV� of SU(2) PT samples.
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FIG. 11 (color online). Log of j ~��q�j= cos�� �qa=L� (color
antisymmetric ghost propagator) as the function of
log10q�GeV� of MILCc samples.
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DGo
bc�q� � i

r=L2 � v

q4 � v2 	bc; (21)

where 	bc is an antisymmetric tensor, i.e. when a � 3, b
and c � 1, 2. In general, we parametrize the average of
j�a�q�j as

1

N2
c � 1

X
a

j�a�q�j �
r=L2 � v

q4 � v2 : (22)

Here L is the lattice size and the parameter r=L2 is the
correction from the finite size effect.

A. Quenched SU(2)

In [23], the fitting parameter r of j ~�a
�q�j (color anti-

symmetric ghost propagator) on the lattice was derived
from
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FIG. 10 (color online). Log of the absolute value j�a�q�j
(color antisymmetric ghost propagator) as the function of
log10q�GeV� of SU(2) PT samples.
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1

3

X
a

L2

cos�� �q=L�
j�a�q�j �

r
qz
; (23)
in which �q � 0; 1; . . . ; L.
Our fit of j�a�q�j

cos�� �qa=L� of PT samples using r � 10:13, z �
4:215 is shown in Fig. 9.

Using r � 10:13, L � 16, the fitting parameter v of
j��q�j is found to be �0:002 GeV2 and is consistent
with 0. The fit is shown in Fig. 10.

B. Unquenched SU(3)

As in the SU(2) PT samples, we performed the fit of the
parameter v for the MILCc samples. We first fit the log of
j�a�q�j (color antisymmetric ghost propagator) divided by
cos�� �qa=L� using L �

�������������������
203 
 64
p

and obtained r � 40:5,
z � 3:75, as shown in Fig. 11. The parameters r and z for
the fit of ~�2

�q�=cos2�� �q=L� are r � 36:5, z � 7:5.
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FIG. 12 (color online). Log of the absolute value j ~��q�j (color
antisymmetric ghost propagator) as the function of log10q�GeV�
of MILCc samples.
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FIG. 13 (color online). Log of the ~��q�2 (color antisymmetric
ghost propagator squared) as the function of log10q�GeV� of
MILCc samples.
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Our fit of j��q�j ignoring the two lowest momentum
points and using r � 40:51 gives v � 0:0020 GeV2, which
is small but positive. When the two lowest momentum
points are included, v decreases to �0:0005 but
�2=d:o:f: increases. The former fit is shown in Fig. 12.

We fitted also log10
~�2
�q�, where

~� 2�q� �
1

N2
c � 1

X
a

�a�q�2 �
	
r=L2 � v

q4 � v2



2
: (24)

The fit with r � 40:5, v � 0:035 GeV2 is shown in
Fig. 13. The fit with r � 36:5, v � 0:041 GeV2 is not
distinguished from this figure.
V. BINDER CUMULANT

Two decades ago, Binder [24] showed cumulants of the
order parameter yields nontrivial fixed-point values. The
theory was applied to the Ising model in which the mag-
netization M is the order parameter [31,32] and the cumu-
lant was defined as

B �
1

2

	
3�

hM4i

hM2i2



: (25)

When the distribution of M is given by the one-
dimensional Gaussian distribution, one finds

hM4i

hM2i2
� 3 (26)

and B becomes 0.
In SU(2) and SU(3) lattice QCD, deconfinement phase

transition was studied by measuring

g �
hP4i

hP2i2
� 3 (27)

using the Polyakov line data P as the order parameter
[33,34].
094506
Since the color antisymmetric ghost propagator could be
an order parameter of the system, the authors of [23]
considered its Binder cumulant defined as

U�q� � 1�
h ~��q�4i

3h ~��q�2i2
: (28)

We measure

~��q�2 �
1

N2
c � 1

X
a

�
1

N



fabc

V
�h�b cosq 	 xjM�1j�c sinq 	 xi

� h�b sinq 	 xjM�1j�c cosq 	 xi�
�

2
(29)

and

~��q�4 �
	

1

N2
c � 1

X
a

�
1

N



fabc

V
�h�b cosq 	 xjM�1j�c sinq 	 xi

� h�b sinq 	 xjM�1j�c cosq 	 xi�
�

2



2
: (30)

In arbitrary d-dimensional space, corresponding expec-
tation value for d-dimensional Gaussian distribution be-
comes

h ~�4
i

h ~�2
i2
�
d� 2

d
: (31)

Thus a natural extension to d-dimensional vector variable
is

~U�q� �
h ~�4
i

h ~�2
i2
�
d� 2

d
(32)

which becomes 0 in the system with Gaussian distribution
whose symmetry is not broken.

When the symmetry of the system is broken, as in the
Ising model at the 0 temperature, the ratio of h ~��q�2i2 and
h ~��q�4i becomes 1 and ~U�q� becomes � 2

d . It corresponds
to the 0 temperature fixed point.

A. Quenched SU(2)

We measure the Binder cumulant U�q� of the quenched
SU(2) 164 � � 2:2, a � 1:07 GeV�1 configurations (67
samples) produced by the PT Landau gauge fixing and the
corresponding first copy [6,28]. The q dependence of the
U�q� of PT gauge fixed samples and the first copies are
shown in Fig. 14. The infrared fluctuation is large in the
first copy but it is reduced in the PT gauge fixed samples. It
implies a Gribov copy effect in the infrared region [8]. The
average over q > 0:5 GeV becomes U�q� � 0:45�2�. This
value is comparable to that of [23] obtained by 10 000
samples using symmetric momentum q1 � q2 � q3 �
q4 � 0. In [23], the value U�q� between 0 and 2=3 was
interpreted as a system deviating from the Gaussian distri-
-7
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FIG. 14 (color online). The momentum dependence of Binder
cumulant U�q� of SU(2), � � 2:2, a � 1:07 GeV�1 of PT
samples and first copy samples.
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bution. However, since ~��q� is a three-dimensional vector,
it would not be appropriate to treat it as a one-dimensional
object. The value 0.45 is very close to

U�q� � 1�
d� 2

3d
�

4

9
; (33)

or

~U�q� �
5

3
�
d� 2

d
� 0 (34)

corresponding to the 3D Gaussian distribution.

B. Unquenched SU(3)

We measured the Binder cumulant of the color antisym-
metric ghost propagator of MILCc. We observed qualita-
tively different features from quenched SU(2). An average
of 9 �imp � 6:76 samples and 12 �imp � 6:83 samples of

MILCc is shown in Fig. 15. When the ~� is distributed as a
Gaussian vector in eight-dimensional space, U�q� � 1�
0.5 1 1.5 2 2.5 3 3.5 4
q (GeV)

-3

-2

-1

0

1

2

3

U
(q

)

FIG. 15 (color online). The momentum dependence of Binder
cumulant U�q� of unquenched SU(3), �imp � 6:83 and 6.76, a �
1:64 GeV�1 MILCc.
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3	8 � 0:58. Data of Fig. 15 suggest that U�q� is slightly
larger than the 0.58, and that the shift from Gaussian
distribution of �imp � 6:76 samples with light bare quark
mass m0 � 11:5 MeV is larger than that of �imp � 6:83
samples with heavier bare quark mass m0 � 65:7 MeV.

A qualitative difference of unquenched SU(3) (Fig. 15)
from quenched SU(2) (Fig. 14) is the smallness of the
fluctuation at the lowest and next to the lowest momentum
point [q � �0; 0; 0; 1� and (0,0,0,2)]. Relatively large fluc-
tuation exists when one of the spacial components of q is 1
and other components are 0. The difference from the
quenched SU(2) could be due to the improvement in the
Asqtad action used in the MILCc and/or the presence of
dynamical fermions.
VI. SUMMARY AND DISCUSSION

We presented the color-diagonal ghost propagator of
quenched � � 6:45 564 lattice and those of unquenched
MILCc203 
 64 and MILCf283 
 96 configurations. The
momentum dependence of standard deviation of the color-
diagonal ghost dressing function of the unquenched con-
figurations is less singular than that of the quenched con-
figurations. The standard deviation and the mean value of
statistical distribution is important for determining the
nature of the ensemble.

The ghost pair creation operator in the BCS channel is
expected to behave as the order parameter, and in the
Landau gauge, where ghost pair creation is absent, the
ghost antighost pair creation in the Overhauser channel
was speculated to become an order parameter. The parame-
ter v of LCO approach that characterizes the ghost con-
densate was compatible with 0 in the SU(2) PT samples. In
the unquenched SU(3) MILCc samples, we found a small
but positive value of v. Uncertainty on v comes mainly
from that of r, where finite size effect is crucial. We need to
extend the analysis to larger lattices to get the definite
conclusion.

We showed that the Binder cumulant which measures
the fluctuation of the ghost propagator differs between
quenched and unquenched configurations. We confirmed
that the Binder cumulant U�q� of the color antisymmetric
ghost propagator of SU(2) obtained by 10 000 samples [23]
U�q� � 4

9 is consistent with that obtained by using PT
gauge fixed samples. In three-dimensional system, this
data can be interpreted as ~U�q� defined as Eq. (34) �0,
i.e. the color symmetry is not broken and that the system is
in the random phase. When the system is ordered, a certain
direction in the color space will be selected and the Binder
cumulant would deviate from the value expected by the
Gaussian distribution. The data of quenched SU(2) � �
2:2 do not show this tendency but the unquenched SU(3)
show a slight deviation from the Gaussian distribution.
Whether it implies the precursor of the ghost condensation
in the unquenched QCD is not evident. It would be inter-
-8
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esting to extend the analysis to finite temperature and study
qualitative differences.

The ghost condensates and the A2 condensates are ex-
pected to be related by the on-shell BRST symmetry. The
observables of lattice Landau gauge in the 1–3 GeV region
suggest the presence of A2 condensates. The larger stan-
dard deviation of the SU(3) quenched ghost propagator as
compared to the unquenched ghost propagator may imply
that the ghost propagator is more random in the quenched
samples. The fluctuation of the ghost propagator could be
the main cause of suppression of the running coupling in
the infrared and saturation of the Kugo-Ojima parameter c
at about 0.8 in the quenched approximation. It is likely that
the fermion field reduces the fluctuation of the color-
diagonal ghost propagator in the infrared, and renders the
Kugo-Ojima parameter c close to 1.

We think infrared suppression of the running coupling of
unquenched SU(3) measured by Eq. (2) presented in [3] is
a finite size effect. In the process of measuring the ghost
propagator for the running coupling, we observed large
fluctuations of the norm and random orientation of the
vector in adjoint color space, i.e. weakening of the color-
094506
diagonal structure of the ghost propagator in the infrared.
Concerning the fixed points of the running coupling,
Wilson [35] noted in 1971 that the renormalization group
flow of the coupling could approach limit cycles which are
more elaborate than simple isolated fixed points. A possi-
bility of complicated fractal structure in fixed points was
discussed in [36]. The Zamolodchikov’s c-theorem in two-
dimensional conformal field theory [37], however, ex-
cludes the limit cycle structure of the infrared fixed points.
In four-dimensional QCD, the situation is obscure [38]. To
clarify the nature of the infrared fixed points, it is necessary
to investigate the continuum limit of the lattice Landau
gauge QCD via systematic studies of finite size effects and
the Gribov copy effects.
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