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Excited hadrons on the lattice: Mesons
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We present results for masses of excited mesons from quenched calculations using chirally improved
quarks at pion masses down to 350 MeV. The key features of our analysis are the use of a matrix of
correlators from various source and sink operators and a basis which includes quark sources with different
spatial widths, thereby improving overlap with states exhibiting radial excitations.
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I. INTRODUCTION

Ground-state hadron spectroscopy has been at the fore-
front of the studies performed by the lattice QCD com-
munity. The exponential decay behavior of the mass
eigenstate contributions to Euclidean-time correlators
makes extraction of the lightest state straightforward: at
large time separations, the ground-state mass naturally
dominates the correlator, which then displays a single
exponential in time. Excited states, however, appear as
subleading exponentials, which in practice are rather diffi-
cult to separate, not only from the ground-state contribu-
tion, but also from those due to other excited states.

A few methods are currently in use to deal with this
problem. A straightforward fit to a finite sum of exponen-
tials is sometimes possible, usually when high statistics are
available. Constrained fitting [1] and the Maximum
Entropy Method [2] are also options, but these, like the
first method, can encounter problems when faced with
states which lie close in mass, or when unphysical contri-
butions appear due to quenching (ghosts).

We employ a different method, one based upon the
variational method devised by Michael [3], and later ela-
borated by Lüscher and Wolff [4]. The distinguishing
characteristic of our approach is the use of several hadron
interpolators which contain quark wavefunctions cova-
riantly smeared to approximate Gaussians of different
widths [5]. Using such a basis of source and sink operators,
it is our plan to improve overlap with physical states which
may involve a radial excitation. In a recent paper [6], it has
been demonstrated that this method also clearly separates
ghost contributions.

In the present work, we describe the method in detail and
report results for the meson sector. Another paper will
contain our latest results for baryons.

II. THE METHOD

Our calculation is based upon the variational method
[3,4]. The central idea is to use several different interpola-
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tors Oi, i � 1; . . .N with the quantum numbers of the
desired state and to compute all cross correlations

C�t�ij � hOi�t� �Oj�0�i: (1)

In Hilbert space these correlators have the decomposition

C�t�ij �
X
n

h0jOijnihnjO
y
j j0ie

�tMn : (2)

Using the factorization of the amplitudes one can show [4]
that the eigenvalues ��k��t� of the generalized eigenvalue
problem

C�t� ~v�k� � ��k��t�C�t0� ~v
�k�; (3)

behave as

��k��t� / e�tMk�1�O�e�t�Mk��; (4)

where Mk is the mass of the k-th state and �Mk is the
difference to the mass closest to Mk [7]. In Eq. (3) the
eigenvalue problem is normalized with respect to a time-
slice t0 < t.

Equation (4) shows that the eigenvalues each decay with
their own mass: The largest eigenvalue decays with the
mass of the ground state, the second largest eigenvalue
with the mass of the first excited state, etc. Thus, the
variational method allows one to decompose the signal
into those for ground and excited states, as well as ghost
contributions [6], and therefore, simple, stable two-
parameter fits become possible.

We remark that also for the regular eigenvalue problem,

C�t� ~v�k� � ��k��t� ~v�k�; (5)

a behavior of the type (4) can be shown [4]. We find that in
a practical implementation with our sources the results and
the quality of the data are essentially unchanged whether
we use the regular or the generalized eigenvalue problem.

The key to a successful application of the variational
method is the choice of the basis interpolators. They should
be linearly independent, and as orthogonal as possible,
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while at the same time, able to represent the physical state
as well as possible. Furthermore, they should be numeri-
cally cheap to implement.

For meson spectroscopy it is well known that different
Dirac structures can be used to construct interpolators with
the quantum numbers one is interested in. In this paper we
consider interpolators of the form

O � � �f1�� �f2�; (6)

where fi are flavor labels. We use matrix/vector notation
for Dirac and color indices and � is an element of the
Clifford algebra. Depending on what combination of
gamma-matrices one uses for �, the interpolator O will
have different quantum numbers. We list these in Table I.

However, it is well known (see, e.g., [8,9]) that correlat-
ing operators with different Dirac structures alone does not
provide a sufficient basis to obtain good overlap with
excited states. For many excited hadrons the spatial wave-
functions are expected to have nodes. In [5,10] it was
proposed, and tested on small lattices, to use Jacobi
smeared quark sources of different widths to allow for
nodes in the radial wavefunction. Other lattice efforts
[11,12] have also seen the need of using spatially extended
operators.

In a lattice spectroscopy calculation the hadron correla-
tors are built from quark propagators D�1 acting on a
source s,

X
~y;�;c

D�1� ~x; t j ~y; 0���
bc
s��;a�� ~y; 0��

c
: (7)

If the source is pointlike, i.e., s � s0, with

s��;a�0 � ~y; 0��
c
� �� ~y; ~0�����ca; (8)

then the two quarks in (6) both sit on the same lattice site.
Certainly this is not a very physical assumption.

The idea of Jacobi smearing [13,14] is to create an
extended source by iteratively applying the hopping part
of the Wilson term within the timeslice of the source:
TABLE I. Quantum numbers of the interpolators (6) for differ-
ent choices of �. We remark that the classification with respect to
C is for flavor degenerate interpolators only.

State JPC � Particles

scalar 0�� 1 a0

pseudoscalar 0�� �5, �4�5 	, K
vector 1�� �i, �4�i �, K�, 

pseudovector 1�� �i�5 a1

pseudovector 1�� �i�j b1

094505
s��;a� � Ms��;a�0 ; M �
XN
n�0

�nHn;

H� ~x; ~y� �
X3

j�1

�Uj� ~x; 0��� ~x� ĵ; ~y�

�Uj� ~x� ĵ; 0�
y�� ~x� ĵ; ~y��:

(9)

Applying the inverse Dirac operator as shown in (7) con-
nects the source at timeslice t � 0 to the lattice points at
timeslice t. There an extended sink may be created by
again applying the smearing operator M.

Jacobi smearing has two free parameters, the hopping
parameter � and the number of smearing stepsN. They can
be used to create sources and sinks with approximately
Gaussian profiles of different widths. In Fig. 1 we show
two such profiles P�r� as a function of the radius r. For
mapping these profiles we use the definition

P�r� �
X
~y

��j ~yj � r�
X
b

js��;a�� ~y; 0��
b
j: (10)

The parameters � and N were adjusted such that the
narrow source approximates a Gaussian with a half width
(i.e., standard deviation) of 0.27 fm and the wide source a
Gaussian with a half width of 0.41 fm. The corresponding
smearing parameters are listed in Table II. The values of
the smearing parameters are chosen such that simple linear
combinations of our two sources allows one to approxi-
mate the ground- and first-excited state wavefunctions of
the 3-d harmonic oscillator (with a half width of � �
0:33 fm for the ground state). We stress that we do not
impose such linear combinations, but rather use the simple
n, w sources for the basis interpolators in the variational
method and leave it to the simulation to determine the
physical superpositions.
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FIG. 1. Profiles P�r� of the narrow and wide source as a
function of the radius r (for the � � 7:90 lattice). The symbols
are our data points. The curves are the target Gaussian distribu-
tions (with half width �) which we approximate by the profiles
P�r�.
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TABLE II. Parameters of our simulation. We list the lattice
size, the inverse coupling �, the number of configurations, the
lattice spacing a, the cutoff a�1, and the smearing parameters N
and � for the narrow and wide sources.

Size � Confs. a [fm] a�1 [MeV] N�n;w� ��n;w�

203 	 32 8.15 100 0.119 1680 22, 62 0.21, 0.1865
163 	 32 7.90 100 0.148 1350 18, 41 0.21, 0.1910
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The interpolators which we actually consider in our
correlation matrix are flavor triplet operators of the form,

O� � �u�d: (11)

This avoids the need to calculate disconnected pieces. For a
given Clifford element � both �u and d sources can be wide
or narrow which gives the 4 possibilities (the subscripts n,
w denote the type of smearing used)

O�
nn � �un�dn; O�

wn � �uw�dn;

O�
nw � �un�dw; O�

ww � �uw�dw:
(12)

In addition, we have two choices for � in the vector and
pseudoscalar sectors such that for these cases we have a
basis of 8 interpolators. For scalars and pseudovectors we
restrict ourselves to 4 interpolators.

In the case of degenerate quark masses, O�
wn and O�

nw
give rise to identical correlators. This fact reduces the
correlation matrices to 6	 6 for vector and pseudoscalar
states and to 3	 3 for scalar and pseudovector states. For
the strange mesons, obtained by replacing the down quark
in (11) by a strange quark, the degeneracy is lifted and we
are free to work with the full 8	 8 and 4	 4 correlation
matrices.

Our quenched study is done with the Lüscher-Weisz
gauge action [15] at two different values of the inverse
gauge coupling �. The lattice spacing a was determined in
[16] using the Sommer parameter. We use lattices of two
different sizes, such that the spatial extent in physical units
is kept constant at 2.4 fm. This allows us to compare the
results at two different values of the cutoff, a�1 �
1680 MeV and a�1 � 1350 MeV. For the fermions we
use the chirally improved Dirac operator [17]. It is an
approximation of a solution of the Ginsparg-Wilson equa-
tion [18], with good chiral behavior [19]. The parameters
of our calculation are collected in Table II. We determine
the strange quark mass via interpolations in the heavy-
quark mass which match the (light-quark mass extrapo-
lated) pseudoscalar K meson mass to the physical value.
(These configurations have also been used in another study
[20] to determine low energy constants.)

We remark that the CI operator has one term which is
next-to-nearest neighbor. This has to be kept in mind when
selecting fit ranges for masses. Exactly what is to be
considered a safe minimum time separation before fitting
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is not, however, a simple matter. In the present case, we
limit ourselves to values larger than �t � 2.
III. RESULTS

A. Effective masses and fit ranges

Since this is a report on lattice spectroscopy, we begin
the discussion of our results in the standard manner—with
effective masses. Having performed the necessary diago-
nalizations of the correlator matrices, we determine the
effective masses from ratios of eigenvalues on adjacent
timeslices:

aM�k�eff

�
t�

1

2

�
� ln

�
��k��t�

��k��t� 1�

�
: (13)

Errors for such quantities are determined via a single-
elimination jackknife procedure.

We note that the quality of the plateaus which we obtain
here can depend upon the basis chosen. This is simply due
to the fact that the various interpolators have different
overlap with the states which contribute to the higher-order
corrections in Eq. (4) (e.g., see Ref. [11]). An appropriate
choice of operator combination (including the possibility
of further limiting the basis) can therefore minimize such
corrections, improving the plateaus in effective mass (and
correspondingly, in the eigenvector components).

In Fig. 2, we present our effective-mass plots for what
we consider to be our optimal operator combinations (n�n,
n�4�n, n�4�w, w�4�w for pseudoscalar and vector me-
sons on our coarse lattices; n�4�n, n�4�w, w�4�w for the
same mesons on our fine lattices; and n�n, n�w, w�w
otherwise). Shown are results for the pseudoscalar and
vector mesons from three quark masses on both sets of
lattices. In each case, the effective masses from the largest
two eigenvalues (largest three for the vectors on the fine
lattice) are displayed. The horizontal lines in the plots mark
the M
 �M values which arise from correlated fits to the
corresponding time intervals (we fit only when we see a
plateau of at least three successive effective-mass points).
Also given in the plots are the �2=d:o:f: values for the fits to
the excited-state plateaus. Here, one can see questionable
plateaus, and hence poor fits, for the coarse-lattice excited
vectors at high quark mass, but this is the only place where
such high �2=d:o:f: values occur. For all other fits,
�2=d:o:f: & 1.

To be sure that we are dealing (within statistical errors)
with a single mass eigenstate, we check that the corre-
sponding eigenvectors remain constant over the same re-
gion where we fit the eigenvalues for the mass. An example
of such a test is shown in Fig. 3, where we display the
second eigenvector for one of the vector mesons on our fine
lattices. It is obvious here that plateaus for this state cannot
be trusted before t � 4a, even though when looking at the
corresponding effective masses, one is tempted to start the
-3
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FIG. 2 (color online). Effective-mass plots for pseudoscalar (PS) and vector (V) mesons from our coarse (163 	 32, a � 0:148 fm,
with amq � 0:05, 0.1, 0.2 from top to bottom) and fine (203 	 32, a � 0:119 fm, with amq � 0:04, 0.08, 0.16) lattices. Both ground
and excited states are shown, along with the M
 �M results (horizontal lines) from correlated fits to the corresponding time intervals.
The numbers in the plots are the �2 per degree of freedom values for the fits to the excited-state plateaus.
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fit at t � 3a (see the right-most column in Fig. 2). We
make sure that all our fit ranges obey (within errors) such
restrictions. (This procedure accounts for the enlargement
of error bars for the aforementioned state since we reported
FIG. 3 (color online). Eigenvector for the first-excited vector
meson on our 203 	 32 fine lattices (a � 0:12 fm, amq � 0:06,
t0 � 1a). The eigenvector on each time slice is normalized such
that j ~vj � 1. There is a clear jump in the relative components
from t � 3a to t � 4a, a plateau forming afterwards. In this
situation, we fit starting at t � 4a, even though the correspond-
ing effective-mass plot shows a plateau starting sooner. We apply
similar restrictions to all our fit ranges.
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preliminary results for the mesons [21]. We are simply
being more conservative now.)

B. Quark mass dependence

In Figs. 4–6, we plot the resulting hadron masses versus
the ground-state pseudoscalar mass-squared ( / mq), all in
units of the Sommer parameter r0. All plots display results
from both our coarse and fine lattices. The vertical lines
mark the values of r2

0M
2
	 which arise when we use the

strange quark mass in the degenerate-quark-mass pseudo-
scalar; i.e., these mark the point where the mass of each of
the light �u; d� quarks in the corresponding meson equals
the strange quark mass.

Figure 4 shows the excited pseudoscalar masses. The
results from both lattice sets appear consistent with the
experimental value and, given the consistency of the two
sets (within statistical errors), no large discretization ef-
fects are apparent.

In Fig. 5, we show the ground- and excited-state masses
of the vector, pseudovector, and scalar mesons. For the
vector mesons on the coarse lattices, only one excited state
is extracted (another, slightly lighter effective-mass plateau
was seen, but since the eigenvectors were not stable over
the same region, no fits were performed). This state either
corresponds to the ��1700� or it suffers apparently signifi-
cant discretization effects. On the fine lattices, two such
excited states are resolved which appear consistent with the
-4



FIG. 5 (color online). Ground- and excited-state meson masses vs
scalar (SC) mesons appear. The quark masses are degenerate. All qu
represent the experimental points and the vertical lines mark the va

FIG. 4 (color online). Excited-state pseudoscalar (PS) masses
vs M2

	 for both lattice spacings. The quark masses are degener-
ate. All quantities are in units of the Sommer parameter, r0. The
diamond represents the experimental point and the vertical lines
mark the values of r2

0M
2
	 corresponding to the physical strange

quark mass.
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physical states; the statistical errors, however, are larger,
possibly hiding any residual systematic effects.

The pseudovector and scalar mesons present more diffi-
culties. Fewer effective-mass plateaus can be found for
excited states; for the b1 and scalar mesons, they are
virtually nonexistent. There are already significant prob-
lems for the ground states. At small quark masses, it
becomes obvious that the pseudovectors suffer large
quenching and/or finite-volume effects, causing an appar-
ent enhancement of the mass.

The upward curvature seen in the ground-state vectors
(at least on the coarse lattices) and pseudovectors may be
partly explained by quenching effects. Quenched chiral
perturbation theory for vector mesons [22] predicts a nega-
tive M	 term, which could certainly cause the observed
enhancement at low quark masses.

For the scalar meson plot similar curvature is seen, and
this despite the fact that our method removes the dominant
influences of ghosts [6]. The entire scalar plot also appears
to be shifted vertically, making one wonder whether the
ground-state �ud scalar meson even corresponds to the
a0�980�. Other lattice studies [23,24] find that, in fact, it
does not.
M2
	 for both lattice spacings. Vector (V), pseudovector (PV), and

antities are in units of the Sommer parameter, r0. The diamonds
lues of r2

0M
2
	 corresponding to the physical strange quark mass.
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FIG. 7 (color online). Ground- and excited-state effective
masses for the pseudoscalars. Results for the 123 	 24 (see
Refs. [5,10]) and 163 	 32 coarse lattices (a � 0:15 fm) are
shown, along with horizontal lines displaying M
 �M from
fits to the corresponding time intervals.

FIG. 6 (color online). Ground- and excited-state meson masses vs M2
	 for both lattice spacings. Both pseudoscalar (left) and vector

(right) mesons appear. One quark mass is fixed to the physical strange quark mass. All quantities are in units of the Sommer parameter,
r0. The diamonds represent the experimental points and the vertical lines mark the values of r2

0M
2
	 corresponding to the physical

strange quark mass.
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Our interpolators may be a poor choice of operators for
the pseudovector and scalar states. One might achieve
better results by altering the S-wave nature of our smeared
quark wavefunctions. In a future study, we plan to apply
covariant derivatives to our smeared sources, providing
interpolators which better mimic P-wave orbital excita-
tions and, hopefully, improving overlap with the pseudo-
vector and scalar mesons.

In Fig. 6, we present our results for strange-light pseu-
doscalar and vector mesons. The abscissa is again r2

0M
2
	,

but now this only corresponds to the light-quark mass and
we therefore only plot values which are lighter than the
strange-quark mass. The general picture here is similar to
that seen for the degenerate-quark-mass pseudoscalar and
vector mesons: Again, perhaps partly due to somewhat
large statistical errors for the excited states, the results
for the pseudoscalar mesons appear consistent with the
experimental values. The same also applies to the vector
mesons on the fine lattices, while the coarse-lattice excited
vector results appear systematically high.

C. Comparison with results on smaller lattices

Figure 7 displays two pseudoscalar effective-mass plots,
one from one of the current data sets (163 	 32) and one
from a previous set (123 	 24) at the same lattice spacing
(see Refs. [5,10]). One can see that previously chosen fit
ranges (for the 123 lattices) may have been started at too
small a value of t, apparently enhancing the resulting
masses when compared to our current results. Since the
physical spatial volume has been increased from 1.8 to
2.4 fm (the latter perhaps still being too small for excited-
state spectroscopy; see Ref. [25]), one may be tempted to
simply put this down as a finite-volume effect. However,
since the later effective masses on the smaller lattices are
consistent with the plateau found on the bigger ones, it is
094505
not easy to say whether this state is displaying effects due
to the finite volume. The enhancement may also be due to
higher state corrections, which still contribute since the
minimum timeslice considered in the fit is too small. With
better statistics on the 123 lattices (to make up for the
smaller number of spatial sites), we may end up finding a
similar plateau to that seen on the 163 lattices. Similar
effects are seen for the vector mesons. We suspect that
-6
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this poorer level of statistics for the 123 lattices, and the
subsequent choice of fit ranges, may account for most of
the relative enhancement of our earlier results for the
excited meson masses.

D. Chiral extrapolations of fine lattice results

Although we lack a third lattice spacing which would
allow us to try to work in the continuum, we nevertheless
attempt chiral extrapolations using the results from just our
fine lattices (see Fig. 8). For the most part, we use simple
linear extrapolations (interpolations for 
) in r2

0M
2
	 and,

when doing so, avoid the low quark mass region (r2
0M

2
	 <

2:5) for the pseudovectors since these suffer obviously
large systematics there.

Assuming quenched chiral effects similar to those ex-
perienced by vector mesons [22], we also allow for a r0M	
term (obviously negative) in the fits for the pseudovector
extrapolations and include all points. We also try a qua-
dratic fit in r2

0M
2
	 for the scalars. These additional extrap-

olations are plotted as the bursts on the right of the column
for each of these states. The right hand side of the plot
shows the persistent difficulties of simulating pseudovector
mesons in the quenched approximation. Dynamical simu-
lations of these states appear not to suffer the same system-
atic enhancements [26,27]. The extrapolations of the scalar
094505
appear more consistent with the a0�1450�, a finding which
appears consistent with unquenched results of simple �ud
scalars [23,24].

To the left in Fig. 8 we see that the results for the first-
excited pseudoscalar and vector states agree with the ex-
perimental values (and dynamical calculations of excited
pseudoscalars [27]), while the ground-state vectors (except
for the 
) exhibit residual systematic effects, a common
problem in the quenched approximation.

Given the fact that our results include (possibly large)
systematic errors (quenching, finite-volume, and chiral
effects) which are not presently well understood, we point
out that the correspondence between our masses and the
physical ones in Fig. 8 should be viewed with some cau-
tion. Nevertheless, despite these possible pitfalls, it is
remarkable that the mass splittings appear to be of the right
size.
IV. SUMMARY

We have presented ground- and excited-state meson
masses from quenched lattice calculations using chirally
improved quarks. Using a collection of linearly indepen-
dent interpolating fields and the correlator matrix tech-
nique, we have been able to clearly separate the different
mass eigenstates. Although it must be admitted that our
statistical errors are still quite large, the masses we find for
excited pseudoscalars are consistent with experimental
values. The same is true for the excited vector mesons on
our fine lattices. Results for the vectors on the coarser
lattices suggest either that we have ‘‘missed’’ the first
excitation (slightly lighter effective-mass plateaus were
seen in another eigenvalue, but without corresponding
plateaus for the eigenvector) or that this state experiences
significant discretization effects. The pseudovector and
scalar mesons proved more difficult to handle. We could
obtain few results for the excited states, virtually none
below the strange quark mass. At low quark masses, al-
ready the ground states have problems, displaying signifi-
cant quenching and/or finite-volume effects. Ultimately,
these problems will only be overcome via simulations
with better interpolators, larger physical volumes, and
dynamical fermions.
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