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We present a quenched lattice QCD calculation of the first few moments of the polarized and
unpolarized structure functions of the nucleon. Our calculations are done using domain wall fermions
and the DBW2 gauge action with inverse lattice spacing a�1 � 1:3 GeV, physical volume V � �2:4 fm�3,
and light quark masses down to about 1=4 the strange quark mass (m� � 400 MeV). Values of the
individual moments are found to be significantly larger than experiment, as in past lattice calculations, but
interestingly the chiral symmetry of domain wall fermions allows for a precise determination of the ratio
of the flavor nonsinglet momentum fraction to the helicity distribution, hxiu�d=hxi�u��d

, which is in very
good agreement with experiment. We discuss the implications of this result. Next, we show that the chiral
symmetry of domain wall fermions is useful in eliminating mixing of power divergent lower dimensional
operators with twist-3 operators. Finally, we compute the isovector tensor charge at renormalization scale
� � 2 GeV in the MS scheme, h1i�u��d � 1:192�30�, where the error is the statistical error only.
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I. INTRODUCTION

Quantum Chromodynamics (QCD) is the theory de-
scribing the strong interactions, and hence it is responsible
for the properties of hadronic matter. Unlike Quantum
Electrodynamics (QED), its nonperturbative nature, or
strong coupling constant, makes it difficult to understand
the low energy content of the theory. The lattice formula-
tion of QCD provides both a nonperturbative way of defin-
ing the theory and a very powerful tool to calculate its
properties.

Deep inelastic scattering of leptons on nucleons has
been the basic experimental tool in probing QCD [1–12].
These experiments have given rise to the parton model and,
through extensive fits, have indirectly allowed the mea-
surement of the parton distribution functions, the basic
structural blueprint for hadrons. Connecting these experi-
ments to the underlying theory of QCD is an important
theoretical endeavor. During the last few years lattice
computations have provided many interesting results for
nucleon matrix elements [13–24], in both quenched and
full QCD. These calculations provide first-principles val-
ues for the moments of structure functions at leading twist.
One of the major unresolved issues in these previous
calculations is the approach to the chiral limit; computa-
tional limitations have restricted calculations to relatively
large quark masses, introducing ambiguities in the extrapo-
lation to the chiral limit. Furthermore, values calculated
using the lattice regularization have significantly overesti-
mated results from fits to the experimental data [13,15,25],
leading to suggestions in the literature that strong suppres-
sion in the chiral limit is required to resolve the problem
[26].
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We address this question with a calculation using do-
main wall fermions [27–29]. Preliminary results have been
given in [17,19,20]. The use of domain wall fermions
allows us to examine the source of several systematic
errors. Chiral symmetry at nonzero lattice spacing mini-
mizes discretization errors, O�a2� in this case. Thus we
work with relatively coarse lattice spacing, a � 0:15 fm,
and therefore larger physical volume L � 2:4 fm. This
means calculations with light quark masses will not suffer
unduly large finite size corrections. In this study the light-
est quark mass is roughly 1=4 of the strange quark mass, as
light as has been used in nucleon structure calculations.
Chiral symmetry makes the renormalization properties of
operators simpler since there is less mixing with unwanted
operators. Here operators are nonperturbatively renormal-
ized, reducing a significant source of systematic error. We
have also chosen to use the DBW2 gauge as it substantially
reduces the already small explicit chiral symmetry break-
ing for domain wall fermions with finite extra fifth dimen-
sion [30,31].

The remainder of this paper is organized as follows. In
Sec. II we briefly recall the polarized and unpolarized
structure functions of the nucleon arising from deep in-
elastic scattering and the operators that arise from their
operator product expansions. The lattice transcription of
operators and correlation functions are described in
Sec. III. Perturbative and nonperturbative aspects of op-
erator renormalization are discussed in Sec. IV. Details of
the numerical simulation are given in Sec. V. Sec. VI,
containing the presentation and discussion of results, is
the main part of the paper. We summarize the present study
and comment on future calculations in Sec. VII.
-1 © 2006 The American Physical Society
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II. NUCLEON STRUCTURE FUNCTIONS

The cross-section for deep inelastic scattering of leptons
on a nucleon target is given by the square of the matrix
element for an initial state lepton-proton pair to scatter to a
final state of a lepton and hadrons. After summing over all
possible final states, the square of the matrix element is
computed using the optical theorem which relates the
summed, squared, matrix element to the forward matrix
element between nucleon states of the product of two
electromagnetic currents.

�� L��W��; (1)

W�� � i
Z
d4xeiqxhNjTfJ��x�; J��0�gjNi; (2)

where L�� and W�� are leptonic and hadronic tensors,
respectively, and q is the spacelike four-momentum trans-
fered to the nucleon by scattering off the electron through a
virtual photon. The leptonic part is handled in perturbation
theory since the QED coupling constant is small; the
hadronic part, however must be treated nonperturbatively
which is the focus of this paper.

The hadronic tensor is conveniently split, W�� �

W���� 	Wf��g. The symmetric piece defines the unpolar-
ized, or spin-average structure functions F1 and F2 (and F3
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if we consider neutrino scattering).

Wf��g�x;Q2� �

�
�g�� 	

q�q�

q2

�
F1�x;Q

2�

	

�
p� �

�

q2 q
�
��
p� �

�

q2 q
�
�
F2�x;Q

2�

�
;

while the antisymmetric piece defines the polarized struc-
ture functions g1 and g2

W�����x;Q2� � i�����q�

�
s�
�
�g1�x;Q2� 	 g2�x;Q2��

�
q 
 sp�
�2 g2�x;Q2�

�
: (3)

p� and s� are the nucleon momentum and spin four-
vectors, � � q 
 p, s2 � �m2

N is our choice of normaliza-
tion, x � Q2=2�, Q2 � �q2 > 0 and mN is the nucleon
mass.

At the leading twist in the operator product expansion of
the two electromagnetic currents in Eq. (2), the moments of
the structure functions can be factorized, at scale �, into
hard perturbative contributions (the Wilson coefficients)
and low energy matrix elements of local gauge invariant
operators. Adopting the notation of [32],
2
Z 1

0
dxxn�1F1�x;Q2� �

X
q�u;d

c�q�1;n��
2=Q2; g����v�q�n ���;

Z 1

0
dxxn�2F2�x;Q2� �

X
q�u;d

c�q�2;n��
2=Q2; g����v�q�n ���;

2
Z 1

0
dxxng1�x;Q2� �

1

2

X
q�u;d

e�q�1;n��
2=Q2; g����a�q�n ���;

2
Z 1

0
dxxng2�x;Q

2� �
1

2

n
n	 1

X
q�u;d

�e�q�2;n��
2=Q2; g����d�q�n ��� � e

�q�
1;n��

2=Q2; g����a�q�n ����

(4)

where c�q�i;n , e�q�i;n are the Wilson coefficients and v�q�n ���, a
�q�
n ���, d

�q�
n ��� are the nonperturbative matrix elements. At the

leading twist v�q�n ��� and a�q�n ��� are related to the parton model distribution functions hxniq and hxni�q:

hxn�1iq � v�q�n hxni�q �
1

2
a�q�n (5)

To determine v�q�n ���, a
�q�
n ��� and d�q�n ��� we need to compute nonperturbatively the following matrix elements:

1

2

X
s

hp; sjOq
f�1�2


�ng

jp; si � 2v�q�n ��� � �p�1
p�2

 
 
p�n

	 
 
 
 � tr� � hp; sjO5q
f��1�2


�ng

jp; si

�
1

n	 1
a�q�n ��� � �s�p�1

p�2

 
 
p�n

	 
 
 
 � tr�hp; sjO�5�q
��f�1��2


�ng

jp; si

�
1

n	 1
dqn��� � ��s�p�1

� s�1
p��p�2


 
 
p�n
	 
 
 
 � tr� (6)

fg implies symmetrization and � � antisymmetrization of indices. The nucleon states jp; si are normalized so that
hp; sjp0; s0i � �2��32E�p���p� p0��s;s0 . The operators O are
-2
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O q
�1�2


�n �

�
i
2

�
n�1

�q��1
D
$

�2

 
 
D

$

�n
q� trace;

O5q
��1�2


�n �

�
i
2

�
n

�q���5D
$

�2

 
 
D

$

�n
q� trace;

(7)

where D
$

� ~D�D
 

and ~D, D
 

are covariant derivatives
acting on the right and the left, respectively.

In Drell-Yan processes the transversity distribution hxi�q
can be measured (for details see [33–35]). The relevant
matrix element is

hp; sjO�q
��f�1�2


�ng

jp; si �
2

mN
hxni�q��� � ��s�p�� s�p��

�p�1
p�2

 
 
p�n

	 

 
� tr�

where

O �q
���1�2


�n �

�
i
2

�
n

�q�5���D
$

�1

 
 
D

$

�n
q� trace: (8)
1The representations of H(4) are denoted as dC
n , where d is the

dimension of the representation, C is the charge conjugation and
the subscript distinguishes between different representations of
the same dimensionality and charge conjugation.
III. LATTICE MATRIX ELEMENTS

The nonperturbative calculation of the matrix elements
described in the previous section (structure function mo-
ments) proceeds, as do all Euclidean lattice calculations,
through the computation of nucleon three- and two- point
correlation functions,

C�;O
3 pt � ~p; t; 	� �

X

;�

�
�hJ�� ~p; t�O�	� �J
� ~p; 0�i; (9)

C2 pt� ~p; t� �
X

;�

�
1	 �4

2

�

�
hJ�� ~p; t� �J
� ~p; 0�i; (10)

where �J� ~p; 0� and J� ~p; t� are interpolating fields with the
quantum numbers of the nucleon and definite momentum.
�
� is a Dirac matrix projection operator which is taken as

� �
1	 �4

2
(11)

for unpolarized matrix elements, and

� �
1	 �4

2
i�5�k; �k � 4� (12)

for polarized matrix elements. 1	�4

2 projects out the positive
parity part of the baryon propagator. For the proton a
typical choice for the interpolating field is [36]

J
� ~p; t� �
X
~x;a;b;c

e�i ~p
 ~x�abc�uTa �y1; t�C�5db�y2; t��uc;
�y3; t�

���y1 � x���y2 � x���y3 � x� (13)

with charge conjugation matrix C � �4�2, 
 a spinor
index, and a, b, c color indices. The functions ��x� are
smearing functions that are designed to maximize the
overlap of the interpolating field with the ground state of
the nucleon. For the source we used ��x� � 1 when x is
094503
within a box of size R� 1 fm and zero outside this box. For
the sink we took a point sink, ��x� � ��x�. We have
optimized the size of the box to maximize the overlap of
the source to the ground state. This setup works well for
zero spatial momentum of the proton, and since we studied
only this case so far, this was all we needed to do. For
nonzero momentum this smearing is not optimal; one must
resort to other smearing methods such as gauge invariant
Gaussian or Wuppertal smearing [13,15].

In the limit when the Euclidean time separation between
all operators is large, t� 	� 0, the desired matrix ele-
ment between ground states dominates the correlation
function,

C2pt� ~p; t� � ZN
EN� ~p� 	mN

2E� ~p�
e�EN� ~p�t 	 
 
 


C�;O
3pt � ~p; t; 	� � ZN

X

;�;s;s0

�
�
u
�p; s�hp; sjOjp; s0i �u��p; s0�

�2E� ~p��2

� e�EN� ~p�t 	 
 
 
 (14)

where u�p; s� is the nucleon spinor satisfying the Dirac
equation, and h0jJ
� ~p; t�jp; si �

�������
ZN
p

u
�p; s�. Using
Eq. (6) and (14) (or Eq. (8)) the desired matrix elements
can be extracted from the ratio of three point functions to
two-point functions. In practice we would like to achieve
the asymptotic behavior of Eq. (14) with as small as
possible t. For that reason the smeared interpolating op-
erator J is essential. For more details on the technical
aspects of the lattice calculation the reader may refer to
[13,15,37,38].

The momentum fraction hxiq carried by each valence
quark in the nucleon is computed in Euclidean space by
inserting into the correlation function the operator

O q
44 � �q

�
�4D
$

4 �
1

3

X
k

�kD
$

k

�
q: (15)

D
$

is the lattice covariant derivative, or difference operator,

D
$

� ~D�D
 

(16)

with

~Dq �
1

2
�U��x�q�x	 �̂� �U

y
��x� �̂�q�x� �̂��

�qD
 

�
1

2
� �q�x	 �̂�Uy��x� � �q�x� �̂�U��x� �̂��

(17)

and q, �q are the quark fields. Oq
44 belongs to the 3	1

representation1 of the hypercubic group H(4) and does
not mix with any lower dimensional operators under re-
normalization [32,39]. The ratio,
-3
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Rhxiq �
C

�;Oq
44

3 pt

C2 pt
� mNhxiq; (18)

then yields the momentum fraction.
Similarly, the helicity distribution hxi�q for each valence

quark is computed from the operator

O 5q
f34g � i �q�5��3D

$

4 	 �4D
$

3�q; (19)

belonging to the 6�3 representation of H(4). It also does not
mix with lower dimensional operators under renormaliza-
tion [32,39]. The ratio yields

Rhxi�q �
C

�;O5q
f34g

3 pt

C2 pt
� mNhxi�q: (20)

The lowest moment of the transversity, h1i�q, related to
the tensor charge of the nucleon, is computed in Euclidean
space using the operator

O �q
34 � �q�5�34q; (21)

with ��� �
i
2 ���; ���. This operator belongs to the 6	1

representation of H(4) and does not mix with any lower
dimensional operators under renormalization [32,39].
Again

Rh1i�q �
C

�;O�q
34

3 pt

C2 pt
� h1i�q: (22)

Finally the twist-3 matrix element d1 related to g1 and g2

is given by the operator

O 5q
�34� � i �q�5��3D

$

4 � �4D
$

3�q; (23)

belonging to the 6	1 representation of H(4). O5q
�34� is allowed

to mix with lower dimensional operator O�q
34 if the lattice

fermions do not respect chiral symmetry. The mixing
coefficient in this case is linearly divergent with the inverse
lattice spacing and hence a nonperturbative subtraction is
required [14]. The use of domain wall fermions eliminates
this problem as first shown in [19] and in Sec. VI. d1 is
given by the ratio

Rd1
�
C

�;O5q
�34�

3 pt

C2 pt
� d1: (24)
IV. RENORMALIZATION

The local operators discussed in the previous section
arise from an operator product expansion and therefore
must be renormalized. The renormalized operators defined
at scale � are obtained from lattice-regularized operators
defined with lattice spacing a.
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O i��� � Zi��; a�Oi�a� 	
X
j�i

adj�diZij��; a�Oj�a�;

(25)

where Oj are a set of operators allowed by symmetries to
mix among themselves, and dj is the dimension of each
operator. If mixing with lower dimensional operators oc-
curs, the mixing coefficients are power divergent, and
hence must be computed nonperturbatively to accurately
subtract them. The mixing of lattice operators is more
complicated than that of the continuum operators since
not all of the continuum symmetries are respected on the
lattice. In particular, O�4� rotational symmetry in
Euclidean space is broken down to the hypercubic group
H(4). As a result, an irreducible representation of O�4� is
reducible under H(4) and hence mixing of operators that
would not occur in the continuum can occur on the lattice.
For a detailed analysis of the H(4) group representations
see [32,39] and references therein. The lattice operators are
selected carefully so mixing with lower dimensional op-
erators does not occur and thus no power divergences are
encountered. In general, the breaking of rotational symme-
try makes the calculation of higher spin operators (and thus
higher moments of structure functions) difficult.

The breaking of chiral symmetry (e.g., by the lattice)
results in mixings with lower dimensional operators for the
dn matrix elements. The problem is avoided by using chiral
lattice fermions such as domain wall, overlap, or fixed
point fermions.

In order to renormalize the quark bilinear operators
studied here, we employ the nonperturbative renormaliza-
tion (NPR) method introduced in [40]. This method has
been shown to work very well in the case of domain wall
fermions [41,42]. For quark bilinears without derivatives
we only need to compute a single quark propagator from a
point source; the Fourier transform then yields the quark
propagator S�pa; 0� in momentum space which is suffi-
cient to calculated all of the needed vertices.

S �pa; 0� �
X
x

e�ip
xS�x; 0�; (26)

where the lattice momentum p� is

p� �
2�
L�

n� �n� � 0;
1;
2; . . .�; (27)

where L� is the linear lattice size in direction �. Because
the NPR method relies on matrix elements of the operators
between off-shell quark and gluon states, the calculation
proceeds in a fixed gauge which, for convenience, is
chosen to be the Landau gauge.

In the case of operators containing derivatives, a single
quark propagator is not sufficient to build the quark bi-
linears we need. One way to proceed is the method in [43]
where propagators with momentum sources instead of
point sources are prepared in Landau gauge and derivative
-4
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(difference) operators are constructed at the sink point
where values at all neighboring points are available. This
method works well when operators with many derivatives
are needed but is expensive if many values of momentum
are desired.

In our case we are only interested in operators with one
derivative which can be constructed from a point-source
propagator and a point-split-source propagator with appro-
priate gauge links attached at the source.

S ��pa; 0� �
X
x

e�ip
x
1

2
�S�x;��̂�U����̂�

� S�x; �̂�Uy��0��: (28)

Following this strategy, we compute the matrix elements of
derivative operators with many values of momentum by
computing four additional quark propagators on each
gauge configuration.

Following [41], we define the amputated, bare, vertex
function for each operator O,

V O�p2� �
1

hSy�p�i
hSy�p�OS�p�i

1

hS�p�i
(29)

and a corresponding projector that enforces the tree-level
renormalization condition

TrPVO / 1: (30)

We choose the following,

O q
f44g ! P q�1

44 � �4p4 �
1

3

X
i�1;3

�ipi; (31)

O 5q
f34g ! P 5q�1

34 � i�5
1

2
��3p4 	 �4p3�; (32)

O �q
34 ! P�q�1

34 � �5�34: (33)

Defining the renormalized operator at scale �2 � p2 as
Oren��� � ZO��; a�O�a�, the renormalized vertex takes
the form

V O
ren�p

2� �
ZO

Zq
VO�p2�; (34)

and after projection,

�Oren
�p2� �

ZO

Zq
�O�p

2�

�
1

TrP 2
O�p�

Tr�PO�p�V
O�p2��

ZO

Zq
: (35)

From this we extract the required renormalization constant
ZO that ensures the same renormalization condition at
scale � as in the free case.

�Oren
��2� �

ZO

Zq
�O��2� � 1: (36)
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A. Anomalous dimensions and matching

In order to compute the renormalization group invariant
(RGI) constants [40], we divide out the running of the
operator at hand, calculated in continuum perturbation
theory. To be sensible, this is done at large enough mo-
mentum so the operator runs perturbatively. The momen-
tum cannot be taken too large, or lattice artifacts will spoil
the continuum running of the operator. Thus the momen-
tum scale where the RGI constant is defined must satisfy

�QCD � ��
1

a
: (37)

In addition, it is convenient to match the RI/MOM
regularization used in NPR with the MS scheme since
the latter is conventionally used in the Wilson coefficient
calculation. For the derivative operators the matching from
the RI/MOM scheme in Landau gauge to MS can be done
using the conversion factor [43]

ZMSMOM�p� � 1	

s
4�

CF

�
Gn 	 Sn�1 �

2�n� 1�

n�n	 1�

�

�
P
�
p�h��p��2

p2P
�
h��p�

2

�
	O�
2

s�; (38)

where CF �
N2
c�1

2Nc
is the quadratic Casimir for the SU�Nc�

gauge group, 
s the strong coupling constant,

Gn �
2

n�n	 1�
�2Sn	1 � 3� Sn�1� 	

2

n	 1

� 4
Xn
j�2

1

j
�2Sj � Sj�1� � 1; (39)

Sn �
Xn
j�1

1

j
; (40)

and

h��p� �
X

�2;...;�n

c��2...�n
p�2

 
 
p�n

: (41)

The conversion factor ZMSMOM depends on the direction of
the momentum p and on the coefficients c�1;...;�n

because
the renormalization condition breaks O�4� invariance. The
coefficients c�1;...;�n

are defined using the conventions in
[43]. In the present case for the momentum fraction and
helicity operators we have

c�� � ��4��4 �
1

3

X3

k�1

��k��k; (42)

and

c�� � ��3��4 	 ��4��3; (43)

respectively.
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For matching the tensor bilinear we use results from
[44].

ZMSMOM � 1�
�

s
4�

�
2 CF

216
��4320
�3� � 4815�CF

� 1252TFnf 	 �5987� 3024
�3��CA� 	O�
3
s�

(44)

where 
�k� is the Riemann zeta function, CA � Nc and
TF � 1=2 for the SU�Nc� group.

In our analysis, we first match �O to MS and then use
the MS running of the operators to extract the RGI renor-
malization constant.

Following the conventions of [41], the continuum two-
loop running of the operators is parametrized by

CO��2� � 
s���
��0

�
1	


s���
4�

� ��1 � ��1 ��0�

�
; (45)

where the anomalous dimension of the operator is

�O �
X
i

��i�O

�

s
4�

�
i	1

(46)

�� Oi �
��i�O
2�0

(47)

�� i �
�i
�0
; (48)

and �0;1 are the first two coefficients in the weak coupling
expansion of the beta function

��
s�
4�

� ��0

�

s
4�

�
2
� �1

�

s
4�

�
3
� . . . : (49)

The two-loop running of 
s is given by [45,46]


s
4�
�

1

�0 ln��2=�2
QCD�

�
�1 ln ln��2=�2

QCD�

�3
0ln2��2=�2

QCD�
(50)
TABLE II. Anomalous dimensions of quark bilinear operators
used in this paper in quenched (nf � 0) QCD.

Operator �0 �1

Oq
44 64=9 96.69

O5q
f34g 64=9 96.69

O�q
34 8=3 724=9

TABLE I. The one- and two-loop expansion coefficients of the
quenched QCD � function.

�i quenched (nf � 0) value

�0 11
�1 102

094503
The values of the �i’s and the �i’s used in this analysis are
given in Tables I and II respectively. For �QCD we take the
quenched value [47], �QCD � 238
 19 MeV.
V. NUMERICAL DETAILS

We work in the quenched approximation and use domain
wall fermions to compute the matrix elements described in
the previous sections. We use the DBW2 gauge action
[48,49] at lattice spacing a�1 � 1:3 GeV (� � 0:87),
with lattice size 163 � 32 and fifth dimension Ls � 16.
This action has been shown to significantly reduce the
explicit chiral symmetry breaking of domain wall fermions
with finite fifth dimension relative to the Wilson gauge
action [31]. This relatively coarse lattice spacing was
chosen to give a large physical volume (2.4 fm spatial
size) and enable calculations with light quark masses to
study the chiral behavior of the matrix elements. An earlier
calculation of the nucleon axial charge showed that such a
large volume is necessary to avoid significant finite volume
errors [21] which, based on that study, we may expect to be
a few percent for pion masses in the range 390 MeV–
850 MeV. The residual quark mass for Ls � 16 at this
lattice spacing and for the DBW2 action is mres �
0:7 MeV [31], truly negligible compared to the input quark
masses in our simulation, 0:02 � mf � 0:1, which span a
range from about one-quarter to 2 times the strange quark
mass [31].

To calculate three point correlation functions we use box
sources with size �1:2 fm and sequential-source propaga-
tors with point sinks. For details see [21]. The source time
FIG. 1. The three point correlation function for the operator
Oq

44 and bare quark mass mf � 0:04. Octagons are the up quark
contribution and diamonds are the down quark contribution.
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FIG. 2. The three point correlation function for the operator
O5q
f34g and bare quark mass 0.04. Octagons are the up quark

contribution and diamonds are the down quark contribution.

FIG. 4. The three point correlation function for the operator
O�q

34 and bare quark mass 0.04. Octagons are the up quark
contribution and diamonds are the down quark contribution.
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is t � 10 and the source-sink time separation is 10 lattice
units, approximately 1.5 fm, which provides a sufficiently
large time separation to observe clear plateaus. Figures 1–
4 show typical plateaus for the matrix elements studied in
this work. Our calculation is done using 416 independent
gauge configurations produced using the overelaxed heat-
FIG. 3. The three point correlation function for the operator
O5q
�34� and bare quark mass 0.040. Octagons are the up quark

contribution and diamonds are the down quark contribution.
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bath algorithm described in [31]. All statistical errors are
jackknife estimates.

For the calculation of renormalization constants we use
120 lattices and fix to Landau gauge using the technique
described in [41]. Two-loop continuum running is used to
extract the RGI renormalization constants in all cases. In
order to eliminate remaining scaling violations we fit the
data linearly in �ap�2 and define the renormalization con-
stant from the intercept (as done in [41]). The fitting range
used is �pa�2 2 �1:2; 1:9�.
VI. RESULTS AND DISCUSSION

The nucleon mass has been determined on a subset of
this ensemble of lattices previously [31]. For the present
analysis, we fit the two-point correlation function to a
single exponential from time t � 6 to 15. The fitted nu-
cleon mass for each quark mass is given in Table III; they
are consistent with those reported in [31].

The central question we sought to answer with this study
is why lattice results for the first moments of the polarized
and unpolarized structure functions disagree with fits to
experimental measurements [13,15,25,26,50,51].
Preliminary results from this study and one using two
flavors of dynamical domain wall fermions have been
reported in [17,19,20]. The discrepancy is large ( *

50%), and holds for dynamical as well as quenched calcu-
lations. A plausible explanation is that the quarks simu-
lated in these past studies, valence and sea, have been too
heavy. Here we use as light a quark mass that has been
simulated to date for nucleon structure calculations,
-7



TABLE III. The nucleon mass in lattice units. Values are from
fully covariant, single exponential, fits to the two-point correla-
tion functions in the range 6 � t � 15. Errors are statistical only.

mf mN (error) �2 (dof)

0.02 0.856(10) 5.9(8)
0.04 0.967(6) 1.9(8)
0.06 1.064(5) 3.5(8)
0.08 1.155(4) 5.1(8)
0.10 1.241(4) 6.4(8)

FIG. 5. The bare momentum fraction. m� is the pseudoscalar
mass. Octagons are the up quark contributions and diamonds are
the down quark contributions. Disconnected diagrams are not
included.

TABLE IV. Lowest moment of unpolarized structure functions
for u and d quarks and the flavor nonsinglet combination. Errors
are statistical only. Values are not renormalized.

mf hxiu hxid hxiu�d

0.020 0.446(18) 0.184(11) 0.262(16)
0.040 0.446(7) 0.191(4) 0.255(6)
0.060 0.457(5) 0.2012(28) 0.256(3)
0.080 0.464(4) 0.2092(21) 0.2548(25)
0.100 0.471(3) 0.2160(18) 0.2549(21)
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roughly one-quarter of the strange quark mass, in order to
investigate the chiral regime. If the problem is related to
the sea quark mass, a resolution will have to wait for future
dynamical fermion calculations using lighter sea quark
masses than have been used already.2

In Fig. 5 and Table IV we present our results for the
momentum fraction, hxiq, of the up and down valence
quarks. These results do not contain disconnected dia-
grams. Figure 6 shows the isovector matrix element
hxiu�d where disconnected diagrams do not contribute
(for degenerate u, d quarks). The central values are ob-
tained from a constant fit over the range 13 � t � 16,
based on the plateau in Fig. 1 (the same range is used for
all matrix elements in this work). The quark mass depen-
dence is mild and appears linear. The renormalization
constant corresponding to the momentum fraction is
ZMS�2 GeV� � 1:02�10�, essentially one, (see Fig. 13
and Table VII). The renormalized results are all signifi-
cantly higher than the value 0.154(3) extracted from the
experimental data of [7,10,12] by Dolgov et al. [15], and
the more recent value of 0.180(5) extracted by the parame-
terization of [52]. In addition, there is no apparent curva-
ture as m2

� ! 0 that leads us to believe that in the chiral
limit the two results would agree. Thus, we do not attempt
to extrapolate to m2

� � 0. This is the same behavior wit-
nessed in previous studies; in particular, our MS values for
hxiq are quite consistent with the recently reported
quenched improved Wilson fermion, continuum and chiral
limit, value in [25], suggesting good scaling of domain
wall fermions. Finally, we should mention that a recent
overlap calculation finds a smaller value than ours, but is
result is unrenormalized [53].

Figure 7 shows the first moment of the helicity distribu-
tion hxi�q for the up and down quarks (tabulated in
Table V). As before, these results do not contain discon-
nected diagrams, and in Fig. 8 we display the isovector
matrix element hxi�u��d where disconnected diagrams do
not contribute. Again, the quark mass dependence is mild
FIG. 6. The bare flavor nonsinglet momentum fraction.

2The RBC and UKQCD collaborations are embarking on a
large scale project this year to generate an extensive ensemble of
2	 1 flavor domain wall fermion lattices with sea quark masses
as light as 1=5 the strange quark mass. Among many other
quantities, nucleon structure will be studied
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FIG. 7. The bare helicity distribution. Octagons are the up
quark contributions and diamonds are the down quark contribu-
tions. Disconnected diagrams are not included.

FIG. 8. The bare flavor nonsinglet helicity distribution.
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and appears linear, the renormalization constant is essen-
tially unity, ZMS�2 GeV� � 1:02�9� (see Fig. 14 and
Table VII), and the renormalized moments lie above the
value 0.196(4) extracted from the experimental data of
[5,6] by Dolgov et al. [15].

Since chiral symmetry requires that the renormalization
constants of the momentum fraction and the helicity dis-
tribution be the same, we can consider the ratio of the bare
matrix elements in which the renormalization constants
and matching factors cancel. A similar ratio worked well
in the case of the axial charge, gA [21], and we saw already
that the explicit calculations of these constants gave the
same result well within statistical errors. Figure 9 shows
the ratio together with the value extracted from experiment
[5–12,15]. As it is argued in [15], it is difficult to estimate
the systematic errors associated with the experimental
extraction of the values of both hxiu�d and hxi�u��d but
it is almost certain that these systematic errors are smaller
TABLE V. Lowest moment of the polarized structure fucn-
tions. Errors are statistical only. u and d valence quark contri-
butions. �u��d denotes the flavor nonsinglet combination.
Errors are statistical only. Values are not renormalized.

mf hxi�u hxi�d hxi�u��d

0.020 0.271(21) �0:060�13� 0.331(23)
0.040 0.261(7) �0:069�4� 0.330(8)
0.060 0.260(4) �0:0671�23� 0.328(5)
0.080 0.263(3) �0:0664�16� 0.330(4)
0.100 0.2667(26) �0:0667�12� 0.3335(29)
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than the statistical errors of the lattice calculation. For that
reason the comparison of lattice results to experiment is not
out of order. Interestingly, our results are in very good
agreement with experiment; a discrepancy is not evident
at all. Note that the jackknife determination of the ratio is
determined relatively precisely since the error on the re-
normalization constants does not enter and the numerator
and denominator are highly correlated.

In [21] the axial and vector matrix elements displayed
very different finite volume behavior as the quark mass was
reduced; the axial matrix element, being sensitive to low
energy physics, decreased drastically in the limit mf ! 0
in the small volume study. If similar behavior is operative
here, the mild quark mass dependence of the matrix ele-
ments suggests that finite volume effects are small.

In [51] the quark mass dependence near the chiral limit
of hxiu�d but not of hxi�u��d, was computed in quenched
chiral perturbation theory, so we can not say what the chiral
perturbation theory prediction is for the ratio. For hxiu�d
FIG. 9. The ratio of the flavor nonsinglet momentum fraction
to the helicity distribution (octagons). The experimental expec-
tation is marked by the burst symbol.
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TABLE VI. The twist-3 matrix element d1. u and d valence
quark contributions. Errors are statistical only. Values are not
renormalized.

mf d1u d1d

0.020 0.045(21) �0:029�14�
0.040 0.075(8) �0:031�5�
0.060 0.109(5) �0:0354�29�
0.080 0.140(4) �0:0405�20�
0.100 0.167(3) �0:0457�15�

FIG. 10. The bare d1. Octagons are the up quark contributions
and diamonds are the down quark contributions. Disconnected
diagrams are not included.
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alone, the chiral perturbation theory formula allows a wide
range of values at the physical point, depending on the
values of various unknown low energy constants. The
authors of [51] investigate the quark mass dependence
for several values of the unknown parameters. The most
natural choice demonstrates a smaller dependence on the
quark mass than that predicted by full QCD chiral pertur-
bation theory.

Our results suggest that whatever systematic error
causes the discrepancy in the individual moments from
experimental expectations appears to mostly cancel in their
ratio. Although our calculation is quenched, it is instructive
to look at the full QCD chiral perturbation theory formulas
found in [50,54].

hxiu�d � C
�

1�
3g2

A 	 1

�4�f��
2 m

2
� ln

�
m2
�

�2

�
	 e��2�

m2
�

�4�f��
2

�

(51)

hxi�u��d � ~C
�

1�
2g2

A 	 1

�4�f��
2 m

2
� ln

�
m2
�

�2

�

	 ~e��2�
m2
�

�4�f��2

�
(52)

where the normalization is such that the physical pion
decay constant is f� � 93 MeV, C and ~C are unknown
constants, and e��2� and ~e��2� are counter terms evaluated
at the renormalization scale�. In Fig. 16 we plot the above
formulas for� � 1 GeV. The unknown constants C and ~C
are chosen so that the formulae reproduce the experimental
result at the physical pion mass point, and the counter
terms are set to zero in order to isolate the effect of the
chiral logarithm. We see that there is a strong dependence
on the pion mass. As a result, when m� � 400 MeV, the
momentum fraction is roughly 50% larger than at the
physical point, while the first moment of the helicity is
about 30% larger. This indicates that the discrepancy be-
tween the lattice data and experiment may be due to the
unphysically large masses used in current lattice simula-
tions. On the other hand, the large size of the one-loop
perturbative corrections suggests that chiral perturbation
theory at this order is unreliable. The effects of the counter
terms and higher order contributions may also be large and
could tend to cancel the large one-loop corrections.
Nevertheless, it is worth noting that our quenched results
at pion masses of about 400 MeV differ from experiment
by roughly the same amount as one-loop chiral perturba-
tion theory in full QCD predicts. The observation of the
large one-loop corrections was first made by the authors of
[26,55–57].

On the other hand the ratio of the momentum fraction to
the first moment of the helicity (Fig. 17) is a milder
function of the quark mass. The difference of the experi-
mental result from the value at m� � 400 MeV is about
094503
10%, not wildly inconsistent with the lattice result shown
in Fig. 9.

The conclusion from this discussion is that the discrep-
ancy between lattice and experimental results for the quark
momentum fraction and helicity distribution is most likely
due to strong mass dependence in these functions and will
be resolved by pushing lattice simulations further into the
light quark mass region. Since dynamical results so far are
similar to quenched [19,20], this probably holds in that
case too. It may also be of interest to obtain the next higher
order results in chiral perturbation theory for these quan-
tities, though this seems a more daunting task.

We now turn to another interesting feature in our calcu-
lation, the twist-3 matrix element d1. Although it is not
measurable in deep inelastic scattering of electrons on
protons, it serves as an example of what can be expected
for the dn matrix elements. As discussed in Sec. IV, the
operator used to calculate d1, O5q

����, mixes with the lower
dimensional operator O�q

�� when chiral symmetry is explic-
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FIG. 12. The bare flavor nonsinglet transversity.
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itly broken. With domain wall fermions, unlike Wilson
fermions, chiral symmetry is not broken (mres is small
enough to ignore in this study), so power divergent mixing
should not occur. Results are summarized in Table VI.
Figure 10 shows, unlike the Wilson fermion result [15],
this matrix element is small in the chiral limit. In fact, the
power divergence in the Wilson fermion case switches the
sign of the u and d quark contributions. Using Wilson
fermions, the QCDSF collaboration found similar results
for d2 after a nonperturbative subtraction of the power
divergence [38]. These results confirm our expectations
that the domain wall fermion formulation avoids the power
divergence present for Wilson fermions. Because the value
of d1 computed here and QCDSF’s value of d2 appear
small in the chiral limit, we conclude that the Wandzura-
Wilczek relation between moments of g1 and g2 [58],
which assumes vanishing dn, is at least approximately
true. This relation is not obvious in a confining theory [59].

Finally, we have computed the first moment of the trans-
versity distribution, h1i�q, for up and down quarks (Fig. 11)
and the isovector combination h1i�u��d (Fig. 12). The
transversity is an important target of the RHIC spin pro-
gram at Brookhaven National Laboratory (see [60,61] and
references therein). In both cases the quark mass depen-
dence is mild and appears to be linear. The renormalization
constant (Fig. 15 and Table VII) is ZMS�2 GeV� �
0:872�11�. Naive linear extrapolation to the chiral limit
yields h1i�u��d � 1:193�30� for � � 2 GeV in the MS
scheme. This result contains an unknown systematic error
from the chiral extrapolation which may be small given the
mass dependence exhibited in Fig. 12. We note that the
FIG. 11. The bare transversity. Octagons are the up quark
contributions and diamonds are the down quark contributions.
Disconnected diagrams are not included.
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calculation of the flavor nonsinglet tensor charge is similar
to gA which also exhibited mild mass dependence and
whose value agrees well with experiment [21]. We caution
the reader that the momentum fraction and helicity distri-
bution also exhibited mild mass dependence but are known
to disagree with fits to the experimental data. Our value is
consistent with another recent calculation [62].
FIG. 13. Renormalization constant for the momentum fraction.
The diamonds are the renormalization group invariant points.
The octagons are the raw data.
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FIG. 14. Renormalization constant for the helicity distribution.
The diamonds are the renormalization group invariant points.
The octagons are the raw data.

TABLE VII. The MS renormalization constants at � �
2 GeV. Errors are statistical only.

Zhxiq 1.02(9)
Zhxi�q 1.02(10)
ZT 0.872(11)
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VII. CONCLUSIONS

We have reported on a quenched calculation of the first
moments of the polarized and unpolarized structure func-
tions of the nucleon. We have used domain wall fermions
in a relatively large physical volume, ��2:4 fm�3. The
FIG. 15. Renormalization constant for the transversity. The
diamonds are the renormalization group invariant points. The
octagons are the raw data.
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large volume is important to minimize finite volume errors
in nucleon matrix element calculations as shown earlier in
the calculation of the axial charge, gA [21]. The chiral
symmetry of domain wall fermions may also be useful in
unraveling the mystery of the large discrepancy between
lattice calculations and experiment for the moments of
structure functions. While our results for the individual
moments show no evidence of the chiral logarithm pre-
dicted in [50,51,54,63] for pion masses as low as 390 MeV,
the ratio of the momentum fraction to the first moment of
the helicity distribution is in very good agreement with the
experimental value (Fig. 9). We note that the ratio is
computed on the lattice more accurately than the individual
moments. This agreement, taken together with chiral per-
turbation theory calculations, leads us to conclude that the
discrepancy between lattice calculations and fits to experi-
ment is most likely due to strong mass dependence of these
functions in the light quark regime. Thus, ultimately the
difference will be resolved as lattice calculations push into
this regime.

A recent large scale, detailed, investigation of the dis-
crepancy in low moments of nucleon structure functions
was reported in [25]; using improved Wilson fermions, the
authors performed continuum and chiral extrapolations but
did not resolve the problem. The agreement with our
results suggests that scaling violations for domain wall
fermions are mild (the coarsest lattice spacing used in
[25] was about 0.1 fm compared to 0.15 fm used here).
FIG. 16. The leading chiral logarithm dependence for the first
moment of the helicity and the momentum fraction. The curves
are normalized so that at the physical point the experimental
result is recovered.
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FIG. 17. The leading chiral logarithm dependence for the ratio
of the momentum fraction to the first moment of the helicity. The
curve is normalized so that at the physical point the experimental
result is recovered.

NUCLEON STRUCTURE FUNCTIONS WITH DOMAIN . . . PHYSICAL REVIEW D 73, 094503 (2006)
Our calculation of the d1 matrix element (Fig. 10) in-
dicates that the domain wall formalism eliminates power
divergent mixing in this class of matrix elements. This
suggests that a precision calculation of d2 with domain
wall (or other chiral) fermions is possible and should be
undertaken. Since the mixing with lower dimensional op-
erators induced by explicit chiral symmetry breaking is
linearly divergent with a�1, care must be taken to mini-
mize mres.

Finally, we have computed the first moment of the trans-
versity distribution, or tensor charge, which will be mea-
sured at Brookhaven National Laboratory as part of the
RHIC spin program. We find h1i�u��d � 1:193�30� at� �
2 GeV in the MS scheme, with unknown systematic error
stemming from the linear chiral extrapolation. The mild
quark mass dependence in the tensor charge suggests this
094503
systematic error is small, as does the similarity to the
calculation of gA. On the other hand, such mild mass
dependence is also observed in the momentum fraction
and helicity distribution, hence further study of the chiral
extrapolation of this observable is needed in order to obtain
a reliable estimate of the systematic error.

An unknown systematic error due to quenching exists in
our results. Two flavor calculations using Wilson fermions
with relatively heavy quark masses exist [15,64], we have
begun two flavor domain wall fermion calculations
[19,20,65], and 2	 1 flavor domain wall fermion calcu-
lations are just beginning. These studies begin to address
the quenching error. In addition, systematic uncertainties
due to continuum, chiral and infinite volume extrapolations
must be addressed as in the extensive quenched study using
improved Wilson fermions reported in [25]. This study
suggests domain wall fermions should facilitate these ex-
trapolations. Recent results from chiral perturbation theory
[66,67] may also prove useful.
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