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We derive factorization relations for the transverse helicity amplitudes in B! K�‘�‘� at leading
order in �=mb, in the kinematical region with an energetic kaon and a soft pion. We identify and compute
a new contribution of leading order in �=mb to the B! K�‘�‘� amplitude which is not present in the
one-body decay B! K�‘�‘�. As an application we study the forward-backward asymmetry (FBA) of
the lepton momentum angular distribution in B! K�‘�‘� decays on and off the K� resonance. The FBA
in these decays has a zero at q2

0 � q2
0�MK��, which can be used, in principle, for determining the Wilson

coefficients C7;9 and testing the standard model. We point out that the slope of the q2
0�M

2
K�� curve contains

the same information about the Wilson coefficients as the location of the zero, but is less sensitive to
unknown nonperturbative dynamics. We estimate the location of the zero at leading order in factorization,
and using a resonant model for the B! K�‘�‘� nonfactorizable amplitude.
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I. INTRODUCTION

The rare electroweak penguin decays b! s� and b!
s‘�‘� are sensitive probes of the flavor structure of the
standard model (SM), and provide a promising testing
ground for the study of new physics effects (see Ref. [1]
for a recent review of the experimental situation). Several
clean tests have been proposed in these decays, which are
sensitive to the chiral structure of the quark couplings in
the standard model. Examples of such tests involve mea-
suring the photon polarization in b! s� and the location
of the zero of the forward-backward asymmetry in b!
s‘�‘� [2].

Our understanding of these decays has advanced con-
siderably over the past few years, through the derivation of
factorization relations for exclusive B! K���‘�‘� and
B! K�� decays at large recoil. First derived at lowest
order in perturbation theory [3,4], these factorization the-
orems were proved to all orders in�s [5–11] using the soft-
collinear effective theory [12,13].

In this paper we introduce a new factorization relation
for the multibody rare decays B! K�‘�‘� in the kine-
matical region with a soft pion and an energetic kaon, at
leading order in �=mb. The schematic form of the facto-
rization relation is given below in Eq. (40). This extends
the application of factorization to multibody rare B!
K�‘�‘� decays with small invariant mass.

A particularly clean test for new physics effects in these
decays is based on the forward-backward asymmetry of the
(charged) lepton momentum in B! K�‘�‘� with respect
to the decay axis q � p‘� � p‘� . This is defined as

AFB�q
2� �

1

d��q2�=dq2

�Z 1

0
d cos��

d��q2; ���

dq2d cos��

�
Z 0

�1
d cos��

d��q2; ���

dq2d cos��

�
(1)
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where �� is the angle between ~p‘� and ~q in the rest frame
of the lepton pair.

As pointed out in [2,14], due to certain form factor
relations at large recoil [3,15], this asymmetry has a zero
at q2

0 which depends mostly on Wilson coefficients in the
weak Hamiltonian with little hadronic uncertainty. The
position of the zero was computed in [4,16,17], using the
complete leading order factorization formula. The most
updated result, including isospin violation effects, is [17]

q2
0 � �2mBmb

Re�Ceff
7 �q

2
0��

Re�Ceff
9 �q

2
0��
�1� ���s�� � �fact

�

�
4:15� 0:27 GeV2 �B� ! K���;
4:36�0:33

�0:31 GeV2 �B0 ! K�0�:
(2)

Here �� �s�mb� is a radiative correction and �fact denotes
factorizable corrections which break the form factor rela-
tions. Precise measurements of the position of the zero q2

0
can give direct information about new physics effects
through the values of the Wilson coefficient Ceff

9 (with
Ceff

7 determined from B! Xs� decays).
The branching ratios of the B! K�‘�‘� exclusive

modes have been measured [18] with the results

B �B! K�‘�‘��

�

�
�7:8�1:9

�1:7 � 1:2� 	 10�7 �BABAR�;

�16:5� 2:3� 0:9� 0:4� 	 10�7 �Belle�;

(3)

where the BABAR errors are statistical and systematic, and
the Belle errors are statistical, systematic and from model
dependence, respectively. Differential distributions of the
q2 spectrum are also available, as binned branching ratios.
First measurements of the forward-backward asymmetry
AFB�q2� have been presented by the Belle Collaboration
[18], but due to large errors the position and even existence
of a zero are still inconclusive.
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In practice, the K� is always observed through its strong
decay products K� ! K�. We point out that this has
several interesting implications. The multibody factoriza-
tion relation proven here contains a new factorizable con-
tribution to the decay amplitude of leading order in �=mb,
which is not present in the B! K�‘�‘� factorization
relation. This introduces a shift in the position of the zero
of the forward-backward asymmetry (FBA) in this region.
As an application of the new factorization relations, we
compute the correction to the position of the zero arising
from this effect.

Another novel effect is the existence of a zero of the
FBA also for a nonresonant K� pair, which occurs at a
certain dilepton invariant mass q2

0�MK�� depending on the
hadronic invariant massMK�. In principle, this extends the
applicability of the SM test using the zero of the FB
asymmetry also to nonresonant B! K�‘�‘� decays. In
practice, however, the calculation of the position of the
zero is complicated by the appearance of additional non-
perturbative contributions to the amplitude. We estimate
the unknown nonfactorizable amplitude in B! K�‘�‘�

in terms of a K� resonant model.
We propose an alternative test of the SM using the slope

of the q2
0�M

2
K�� curve, which can be shown to contain the

same information about the Wilson coefficients as the
location of the zero itself. In contrast to the absolute
position of the zero, which depends on less well-known
hadronic parameters, the slope of the zero curve can be
shown to be less sensitive to such effects.

In Sec. II we introduce the soft-collinear effective theory
(SCET) formalism and write down the effective
Lagrangian for the rare B! Xse�e� decay. Section III
presents the factorization relations for the B! K�‘�‘�

helicity amplitudes in the kinematical region with a soft
pion and a hard kaon. Section IV lists the expressions for
distributions in these decays, and gives a qualitative dis-
cussion of the zero of the FBA in the nonresonant region.
Section V contains a numerical analysis of the asymmetry,
and finally Sec. VI summarizes our results.

II. SCET FORMALISM

In the standard model the �S � 1 rare B! Xs‘
�‘�

decays are mediated by the weak Hamiltonian

HW � �
GF���

2
p ��s�t

X10

i�1

CiOi��� (4)

with ��s�q � VtbV�ts. The dominant contributions come from
the radiative penguin O7 � �emb=4�2� �s	�
PRF

�
b and
the two operators containing the lepton fields ‘ � e;�,

O9 �
�
�
��s��PLb�� �‘�

�‘�;

O10 �
�
�
� �s��PLb�� �‘���5‘�:

(5)

We use everywhere in this paper the operator basis for
094027
O1–6 defined in Ref. [19]. Smaller contributions to the
amplitude arise from T products of the operators in
Eq. (4) with the electromagnetic current.

We choose the kinematics of the decay such that the total
dilepton momentum q� � �p‘� � p‘��� points along the
� ~e3 direction, and has the components q��q0;0;0;�j ~qj�,
expressed in usual four-dimensional coordinates a� �
�a0; ~a�. The hadronic system moves in the opposite direc-
tion � ~e3 in the B rest frame. We define the light-cone unit
vectors n� � �1; 0; 0; 1�, �n� � �1; 0; 0;�1�. They can be
used to project any vector a� onto light-cone directions,
according to a� � n�a� and a� � �n�a�. Finally, we
introduce a basis of orthogonal unit vectors "� �

1��
2
p 	

�0; 1;
i; 0�, "0�1=
�����
q2

p
�j ~qj;0;0;q0�.

We will be interested in the kinematical region with
q2 � m2

b, for which the hadronic system has a large
light-cone momentum component along n. This defines
the hard scale Q � �n  pX �mb � �, with ��
500 MeV the typical scale of the strong interactions.

The effective Hamiltonian in Eq. (4) is matched in the
SCETI onto

HW � �
GF���

2
p ��s�t

�
�
f� �‘��‘�J

�
V � �

�‘���5‘�J
�
A g (6)

where the currents J�V;A where each of the currents has the
general form

J�i � c�i�1 �!� �qn;!�
�
?PLbv

� �c�i�2 �!�v
� � c�i�3 �!�n

�� �qn;!PRbv

� b�i�1L�!j�J
�1L���!j� � b

�i�
1R�!j�J

�1R���!j�

� �b�i�1v�!j�v
� � b�i�1n�!j�n

��J�10��!j� (7)

with i � V, A, and integration over !j � �!1; !2� is im-
plicit on the right-hand side. This expansion contains the
most general operators up to order O���, with �2 � �=Q.
The subleading operators are defined as

J�1L;1R�� �!1; !2� � �qn;!1
��1L;1R���

�
1

�n  P
igB�

?n

�
!2

bv;

J�10��!1; !2� � �qn;!1

�
1

�n  P
igB6 ?n

�
!2

PLbv;

(8)

with f��1L��� ;�
�1R�
�� g � f�?��

?
�PR; �

?
��
?
�PRg. The collinear

gauge invariant fields are defined as qn � Wy�n, igB� �

Wy� �n  iDc; iD
?
c��W, with �n the collinear quark field and

W � exp��g� �n  An;q�=� �n  q�� a Wilson line of the col-
linear gluon field. We use throughout the notations of
Ref. [6] with n  v � �n  v � 1.

The Wilson coefficients of the leading order SCET
operators appearing in the matching of J�V;A are [12]
-2
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c�V�1 �!;�� �
�
Ceff

9 � 2mb���
n  q

q2 Ceff
7 ����1� ��!;���

�

	

�
1�

�sCF
4�

fv�!;��
�
�O��2

s�Q��; (9)

c�A�1 �!;���C10

�
1�

�sCF
4�

fv�!;��
�
�O��2

s�Q��: (10)

The effective Wilson coefficients Ceff
7;9 include the contri-

butions of the operatorsO1–6 andO8. For convenience they
are listed in the Appendix, together with the functions
fv�!;�� containing the O��s�Q�� contribution to the
Wilson coefficient of the vector current in SCET, and
��!;�� giving the additional contribution from the tensor
current.

The Wilson coefficients of theO��� SCETI operators are
given at leading order in �s�Q� by

b�V�1L �!1; !2� � �
2n  q

q2

�
Ceff

7 �
�x!

8mb
eu �C2t?�x;mc�

�
;

b�V�1R �!1; !2� �

�
2mb���

�n  q

q2 Ceff
7 � C

eff
9

�
1

!

�
2n  q

q2

�
�x!

8mb
eu �C2t?�x;mc�

�
; (11)

b�A�1L �!1; !2� � 0; (12)

b�A�1R �!1; !2� � C10
1

!
; (13)

with !1 � x!, !2 � � �x!, and �x � 1� x. We neglect
here smaller contributions from the operators O3–6 and the
gluon penguin O8, which will be retained only in the
leading order SCET Wilson coefficients c�V;A�1 �!;��. The
complete expression can be extracted from Ref. [4]. The
Wilson coefficients �Ci are defined in the Appendix. The
function t?�x;mc� appears in matching from graphs with
both the photon and the transverse collinear gluon emitted
from the charm loop [4] and is given in Eq. (A8) of the
Appendix.

The coupling of the virtual photon �� ! ‘�‘� to the
light quarks can also occur through diagrams with inter-
mediate hard-collinear quarks propagating along the pho-
ton momentum [9]. (Such a description is appropriate only
for a range of the dilepton invariant mass q2 � 1:5 GeV2

which can be considered hard collinear; see below.) Such
contributions are mediated by new terms in the SCETI

effective Lagrangian, which in the SM contains only one
operator at leading order,

H sp �
4GF���

2
p ��s�t

X
q�u;d;s

b�q�sp �!j�� �q �n;!3
n6 PLbv�

	

�
�qn;!1

6n�
2
PLsn;!2

�
: (14)
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The Wilson coefficient is given by

b�q�sp �z� �
��s�u

��s�t

�
�C2 �

�C1

Nc

�
�qu �

�
�C4 �

�C3

Nc

�
�O��s�Q��

(15)

where we neglect again smaller contributions proportional
to C8.

For application to exclusive B! M form factors, with
M � �;�; . . . a light meson, the SCETI effective
Lagrangian in Eq. (6) has to be matched onto SCETII

operators. This requires taking into account the interaction
with the soft spectator quark in the B meson [5,13].
Working to leading order in SCETII, this matching contains
two types of operators [3,5,6,8,9],

J�i ! c�i�1 �!�O
�
nf � �c

�i�
2 �!�v

� � c�i�3 �!�n
��O0nf

� J�i;f � �i;VJ
�
sp �    : (16)

The first type are the so-called ‘‘nonfactorizable’’ opera-
tors, denoted here as O�

nf , O
0
nf . They are defined such that

they include the contributions of the leading operators in
the SCETI Lagrangian. The second type of operators are
the so-called factorizable and spectator interaction opera-
tors, denoted as J�f and J�sp, respectively. Although their
form is similar, they arise in matching from different
operators in SCETI, as follows. The operators J�f are
obtained from the O��� operators in the SCETI current.
The spectator operators contribute only to J�V in Eq. (6),
and arise from the SCETI weak nonleptonic effective
Hamiltonian Eq. (14). The ellipses denote terms sup-
pressed by powers of �=mb.

The matrix elements of the nonfactorizable operators in
Eq. (16) corresponding to a B! Mn transition are parame-
trized in terms of soft form factors. We define them as [3]

hMn�pM�jO0nfj
�Bi � 2EM0�EM;��; (17)

hMn�pM�jO
�
nf"
�
��j �Bi � 2EM?�EM�; (18)

where in the first matrix element Mn is a pseudoscalar
meson, and in the second Mn is a transversely polarized
vector meson.

The factorizable operators in Eq. (16) are nonlocal soft-
collinear four-quark operators. As mentioned above, they
are of two types, denoted as factorizable (f) and spectator
(sp) types. The J�i;f operators have the generic form

J�i;f �
Z

dxdzdk�b�i��z�J�x; z; k��� �qk��Sbv�� �qn;!1
�Cqn;!2

�

(19)

where b�z� are SCETI Wilson coefficients, and J are jet
functions. They are given in explicit form in Eq. (29)
below. We use a momentum space notation for the nonlocal
soft operator, defined by
-3
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FIG. 1. Leading order SCETI graphs contributing to the fac-
torizable amplitude for �B! �Kn�� leptons. (a) the T product
fJ�V;A; iL

�1�
q�n
g, where the filled circle represents the SCET current

J�V;A; (b) spectator-type contribution, with the virtual photon
attaching to the light current quark; the intermediate quark
propagator can be either hard collinear along the photon direc-
tion �n�, or hard, depending on the ratio n  q�=q2 being greater
or less than 1, respectively. After matching onto SCETII these
graphs contribute to the operators Ji;f and Jsp, respectively.
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� �qik�b
j
v��0� �

Z d�
4�

e��i=2��k� �q
�
�
n
2

�
Y��; 0�bjv�0� (20)

with Y��; 0� � P exp�ig
R
d�n�A

���n=2�� a soft Wilson
line along the direction n�.

There are two jet functions, defined as Wilson coeffi-
cients appearing in the matching of T products of the
SCETI currents in Eq. (8) with the ultrasoft-collinear sub-
leading Lagrangian L�1�q� , onto SCETII [5,6,20]

T� �qn;!1
igB?�n;!2

�ia�0��igB6 ?n qn�
jb
!�0�y�

� i�ab��y���
�2��y?�

1

!

Z 1

0
dx

	
Z dk�

4�
eik�y�=2

�
Jk�x;z;k��

�
�n6 ��?�

ji
�

�qn;x!
6n�
2
qn;� �x!

�

��n6 �5�
�
?�

ji
�

�qn;x!
6n�
2
�5qn;� �x!

��

�J?�x;z;k���n6 ��?�
�
?�

ji
�

�qn;x!
6n�
2
��?qn;� �x!

��
(21)

with !1 � z! and ! � !1 �!2. The jet functions are
generated by physics at the hard-collinear scale �2

c �Q�,
and have perturbative expansions in �s��c�. At lowest
order in �s��c� they are given by [5,6]

J?;k�x; z; k�� �
��sCF
Nc

��x� z�
1

�xk�
: (22)

Finally, the spectator-type operators have the form

J�sp �
Z 1

0
dzbsp�z�

Z
dk�Jsp

�
k� �

q2

n  q

�

	 � �qk��
� �6nn6 PLbv�

�
�sn;z!
6n�
2
PLqn;��z!

�
: (23)

The jet function Jsp�k�� is the same as the jet function
appearing in the factorization relation for B! �‘ �
. It can
be extracted from the results of Ref. [21] and is given at
one-loop order by

Jsp�k�� �
1

k� � i�

�
1�

�sCF
4�

�
L2 � 1�

�2

6

��
(24)

with L � log���n  qk� � i��=�
2�.

The matrix elements of the factorizable and spectator
operators in the �B! Mn transition at large recoil are
computed as convolutions of the product of collinear and
soft matrix elements. Adding also the nonfactorizable con-
tribution, the generic form of the factorization relation for
the hadronic matrix element for �B! Mn � leptons is
094027
written as [5] (with i � V, A)

hMnjJij �Bi�c
�i�
j 2EM

BM�
Z

dxdzdk�b
�i��z�Jj�x;z;k��

	h0j �qk��Sbvj �B�v�ihMnj �qn;!1
�Cqn;!2

j0i

�
Z

dxbsp�x��M�x�
Z

dk�Jsp�k��h0j �qk��Sbvj �Bi

(25)

The nonperturbative soft and collinear matrix elements
appearing in this relation are given by the B-meson and
light meson light-cone wave functions, respectively. We
list here their expressions, adopting the following phase
conventions for the meson states

���; �0; ��� �
�
u �d;

1���
2
p �u �u� d �d�; d �u

�
;

�B�; �B0� � �b �u; b �d�:
(26)

The light mesons’ light-cone wave functions are given by

h �Kn�pK�j �sn;!1

�6nPLqn;!2
j0i �

i
2
fK �n  pK�K�x�;

h �K�n�pK� ; ��j�sn;!1

�6n��?qn;!2
j0i �

1

2
fTK� �n  pK��

��
? �

?
K� �x�;

(27)

and the B-meson light-cone wave function is defined as [3]

h0j �uik�b
j
vjB��v�i � �

i
4
fBmB

	

�
1� v6

2
�6n��B

��k�� � n6 �
B
��k����5

�
ji
:

(28)

The matrix element of the �qk�bv appearing in the last term
of Eq. (25) can be obtained from this by the substitution
n� $ �n�.

Factorization in multibody B decays

We consider here the application of the SCET formalism
to rare �B! �Kn�‘�‘� decays into final states containing
-4
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one energetic hadron �Kn and a soft hadron �. The heavy-
light currents in Eq. (8) contribute to such processes again
through T products with the ultrasoft-collinear subleading
Lagrangian [13]. Typical diagrams in SCETI contributing
to these T products are shown in Fig. 1.
094027
After integrating out the modes with virtuality p2
hc �

�Q connected with the hard-collinear degrees of freedom,
these T products are matched onto SCETII [5]. Performing
a Fierz transformation of the four-quark operators, one
finds the following result for the factorizable operators,
J�i;fact � �
1

2!

Z
dxdzdk�b

�i�
1L�z�J?�x; z; k��� �qk�n6 �

?
���?PRbv�

�
�sn;!1

6n�
2
��?qn;!2

�

�
1

2!

Z
dxdzdk�b

�i�
1R�z�Jk�x; z; k��� �qk�n6 �

?
�PRbv�

�
�sn;!1

6n�
2
PLqn;!2

�

�
1

!

Z
dxdzdk��b

�i�
1v�z�v� � b

�i�
1n�z�n���Jk�x; z; k��� �qk�n6 PLbv�

�
�sn;!1

6n�
2
PLqn;!2

�
: (29)
The coefficients bj�z� are related to the Wilson coefficients
bj�!1; !2� of Eqs. (11) as bj�z� � bj��1� z�!; z!�; the
labels of the collinear fields are parametrized as !1 � x!,
!2 � �!�1� x�, ! � !1 �!2 � �n  pM, with pM the
momentum of the collinear meson Mn produced by the
collinear part of the operator.

Finally, the spectator-type factorizable operators arise
from diagrams where the photon attaches to the light
current quark; see Fig. 1(b). Although the spectator quark
is not involved in these contributions, we will continue to
use the same terminology as in the B! Mn case, due to the
similarity of the corresponding operators.

The effective theory treatment of these contributions
depends on the relative size of the virtuality of the photon
q2 and the typical hard-collinear scale mb�. These two
scales correspond to the two terms k� � q2=n  q� i" in
the propagator of the intermediate quark in Fig. 1(b).

Several approaches are used in the literature to deal with
these contributions, which we briefly review in the follow-
ing. One possible approach, used in [4,17] in QCD facto-
rization, is to keep both terms in the propagator, and not
expand in their ratio. From the point of view of the effec-
tive theory, this approach is equivalent to treating the
photon as a hard-collinear mode moving along the photon
�n� direction [9]. This approach is certainly appropriate for
real photons, and for hard-collinear photons q2 �
1:5 GeV2. It is not clear whether it can be also applied to
photons with q2 � 4 GeV2, as is the case here.

In this approach the spectator-type effective
Hamiltonian in Eq. (14) contributes to exclusive decays
through T-ordered products with the leading order SCETI

Lagrangian describing photon-quark couplings [9,21].
After matching onto SCETII, these T products are matched
onto one single operator, which can be written as an
addition to J�V , and is given by

J�sp �
8�2

q2

X
q�u;d;s

eq
Z 1

0
dzb�q�sp �z�

Z
dk�Jsp

�
k� �

q2

n  q

�

	 � �qk��� 6n�n6 PLbv�
�

�sn;!1

6n�
2
PLqn;!2

�
: (30)
For consistency with the other factorizable operators in-
cluded, we work to tree level in �s�Q�, but keep terms of
O��s��c�� in the matrix elements of the factorizable
operators.

In the kinematical region we are interested in, a more
appropriate treatment of these contributions makes use of
an expansion in powers of n  q�=q2 � 0:37. This is simi-
lar to the approach adopted in Ref. [22] for weak annihi-
lation contributions to B! �‘�‘�. The SCETII operators
obtained in this way are similar to those in Eq. (30), except
that the soft operator is local. Keeping terms to second
order in n  q�=q2, the spectator operator in this approach
reads

J�sp �
16�2

q2

X
q

eq

�
q�

q2 � �q�
���n6 PLb�

�

�
g��

q2 �
2q�q�

q4

�
� �q������iD

 

��n6 PLb�
�

	
Z 1

0
dzb�q�sp �z�

�
�sn;!1

6n�
2
PLqn;!2

�
: (31)

In this paper we will adopt the latter approach to the
treatment of the spectator amplitude, working at leading
order in n  q�=q2. We quote our results in terms of the
first approach, which has an additional convolution over
k�. However, it is straightforward to translate between the
two approaches, simply by replacing

Jsp�k�� $
n  q

q2 (32)

below [in, e.g., Eqs. (53) and (69)]. The advantage of this
approach is that the predictions are independent on the
details of the matrix elements of the nonlocal soft operator
(the B-meson light-cone wave functions), but can be com-
puted exactly in the soft pion limit to second order in the
n  q�=q2 expansion.

In order to have a clean power counting of the transition
amplitudes, we divide the phase space of the B!
K�‘�‘� decay into several regions, shown in Fig. 2:
(I) T
-5
he region with one soft pion and one energetic
kaon B! Kn�S, E���, EK�Q andM2

K���Q.
This region will be the main interest of our paper.
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FIG. 2. The phase space of the decay B! K�‘�‘� at q2 �
4 GeV2, in variables �MK�; E��. The 3 regions shown corre-
spond to (I) soft pion E� ��; (II) collinear pion and kaon E� �
Q;EK > 1 GeV; (III) soft kaon EK < 1 GeV. The shaded region
E� � 0:5 GeV shows the region of applicability of chiral per-
turbation theory.
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(II) T
he region B! �Kn�n�K� describing decays into
an energetic K� pair with a small invariant mass
MK� ��. This is dominated by one-body decays
into a collinear meson B! K�n, followed by K�n !
Kn�n. This region will be treated essentially the
same way as a one-body decay.
(III) T
he region with a soft kaon and an energetic pion
EK ��, E� �Q. The decay amplitude in this
region is suppressed by �=Q relative to that in
the other two regions I, II, and will be neglected
in the rest of the paper.
We will use the SCET formalism described above to
derive a factorization relation in region (I). The matrix
elements of the nonfactorizable operators are parametrized
in terms of soft nonperturbative matrix elements, in anal-
ogy with the B! Mn transition. We define them as com-
plex functions of the momenta of the final state hadrons,
with mass dimension zero,

hMnM0SjO
�
nf"
�
��j �Bi � BMM

0

? �EM; pM0 �;

hMnM0SjO
0
nfj

�Bi � BMM
0

0 �EM; pM0 �:
(33)

The matrix elements of the factorizable- and spectator-
type operators are given again by convolutions as in
Eq. (25), with a different soft matrix element,

hMnM
0
SjJij �B�v�i

�
Z

dxdzdk�b�i��z�Jj�x; z; k��hM0Sj �qk��Sbvj �B�v�i

	 hMnj �qn;!1
�Cqn;!2

j0i

�
Z

dxbsp�x��M�x�
Z

dk�Jsp�k��h0j �qk��Sbvj �Bi:

(34)
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These factorization relations contain several new had-
ronic nonperturbative matrix elements, which we define
next. The new �B! � soft matrix element is defined in
terms of the soft operator

O��k�� �
Z d�

4�
e��i=2��k� �u

�
�
n
2

�
Yn��; 0��?�

n6
2
PRbv�0�

(35)

appearing in the term in Eq. (29) proportional to b1R�z�,
and in the spectator operator. In the latter, one has to take
into account that the lightlike separation between the fields
is along the direction �n�, rather than n� as in the factor-
izable operators J�i;fact.

The matrix element of the operator O� defines a soft
function S as

h���p��jO��k��j �B
0�v�i���g?�
� i"

?
�
�p



�S�k�;t

2;p�� �

(36)

with t � mBv� p�. For simplicity of notation, we will
drop the kinematical arguments of the soft function
S�k�; t2; � whenever no risk of confusion is possible,
and show explicitly only its dependence on the integration
variable k�. The matrix elements of the spectator operator
in Eq. (30) are obtained from Eq. (36), with the replace-
ments n$ �n and "?�
 ! �"?�
.

The function S�k�� is the B physics analog of a gener-
alized parton distribution function (GPD), commonly en-
countered in nucleon physics [23]. The support of this
function is the range �n  p� � k� � 1, and its physical
interpretation is different for positive and negative values
of k�. For k� > 0 (the resonance region) the soft function
gives the amplitude of finding a u �d pair in the �B0 meson,
while for k� < 0 (the transition region), the soft function
gives the amplitude for the b! u transition of the �B0

meson into a �� meson. The soft function S�k�� is con-
tinuous at the transition point k� � 0 [23], which is im-
portant for ensuring the convergence of the k�
convolutions in the factorization relation Eq. (40).

We recall here the main properties of the soft function
S�k��, which were discussed in Refs. [24,25]. Time invari-
ance of the strong interactions constrains it to be real. Its
zeroth moment with respect to k� is given byZ 1

�p��
dk�S�k�; t

2; p�� � � �
1

4
n  pfT�t

2� (37)

with fT�t2� the B! � tensor form factor defined as

h��p0�j �qi	�
bj �B�p�i � fT�t2��p�p0
 � p
p0��: (38)

Its Nth moments with respect to k� are related in a similar
way to �B! � form factors of dimension 3� N heavy-
light currents of the form �q�n  iD�Nbv [25].

In the soft pion region, chiral symmetry can be used to
relate S�k�; t2; � in the region k� > 0 to one of the
B-meson light-cone wave functions �B

��k�� defined in
-6
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Eq. (28), according to [26]

S�k�; t
2; � �

gfBmB

4f�

1

v  p� ��
�B
��k��: (39)

Here g is the BB�� coupling appearing in the leading order
heavy hadron chiral effective Lagrangian [27–30]. No
such constraint is obtained using chiral symmetry for
S�k�; t2; � in the transition region (k� < 0).

Collecting all the contributions, the amplitude for B!
MnM0S � leptons is given by a sum of factorizable and
nonfactorizable terms, corresponding to the matrix ele-
ments of the SCETII operators in Eq. (16). This leads to
a factorization relation for such processes, which can be
written schematically as

A�B!�MnM0S�� leptons�

� ci� �n pM�BMM
0

�
Z
dz
Z
dxdk�bi�z�Jj�x;z;k���M�x�S�k�;pM0 �

�
Z
dxbsp�x��M�x�

Z
dk�Jsp�k��S�k�;pM0 �: (40)

This factorization relation has several important properties
[26]. First, the nonfactorizable contributions to the decay
amplitudes of semileptonic and radiative decays satisfy
symmetry relations following from the universality of the
soft matrix element BK�? . They contribute only to the
decays �B! �MnM

0
S�h��1‘

�‘� into final hadronic states
with total helicity �1. Second, the amplitude for �1
helicity is factorizable, and given by a convolution as
seen in the second term of Eq. (40). Finally, the factoriz-
able terms contain a new source of strong phases, arising
from the region k� � 0 where the jet function develops a
nonzero absorptive part. This represents a new, factorizable
mechanism for generating final state rescattering.

Treating the spectator amplitudes in an expansion in
powers of n  q�=q2 according to Eq. (31), the soft matrix
elements are given by B! � form factors of dimension-3
and 4 local operators. The leading order term contains the
form factors of the vector current

h��p��j �u��bj �B�p�i�f��t2��p�p����f��t2��p�p���:

(41)

The f��t2� form factors appear in the matrix element of
Eq. (31) in the combination f� � f�. In the hard photon
approach, the last term of Eq. (40) has the form Asp �

fT�t2�
R

1
0 dxbsp�x��M�x�, which follows from making the

substitution of Eq. (32) in this relation, and using Eq. (37).
At subleading order in n  q�=q2, the form factors of

dimension-4 currents �u��iD�b are also needed. They can
be computed in the soft pion limit using chiral perturbation
theory methods as discussed in Ref. [31].

In the following section we derive the detailed form of
these factorization relations for the �B! K�‘�‘� decays.
094027
III. FACTORIZATION RELATIONS FOR
�B! K�‘�‘�

The decay amplitudes �B! �Kn�‘
�‘� into an energetic

kaon and one soft pion can be parametrized in terms of 6
independent helicity amplitudes H�V;A�� � �B! �Kn�� with
� � �1; 0. They are defined as the matrix elements of
the two hadronic currents in Eq. (6),

H�V;A�� � �B! �Kn�� � "��� h �K�jJ�V;Aj �B�v�i: (42)

Working at leading order in 1=mb, the helicity ampli-
tudes can be written as a sum of nonfactorizable and
factorizable terms, arising from the corresponding
SCETII operators in Eq. (16),

H�V;A�� �B! Kn�� �
X

i�nf;f;sp

H�V;A�;i� �B! Kn��: (43)

The three contributions to each helicity amplitude are
computed as described in Sec. II. The nonfactorizable
terms are given in terms of the soft functions BK�i defined
in Eq. (33), and the factorizable and spectator contributions
are given by factorization relations of the form shown in
Eq. (40). In this section we present explicit results for the
transverse helicity amplitudes.

We start by recalling the results for the one-body decays
B! K�n‘

�‘�. The factorization relations for this case are
well known [4–7,9,10] and are given by (with i � V, A)

H�i�� � �B! �K�n� � 0; (44)

H�i�� � �B! �K�n�

� c�i�1 �n  pK�
BK�
? �m2

B

Z 1

0
dzb�i�1L�z�

BK�
J? �z�: (45)

Note that the leading order spectator operator does not
contribute to the decay with a transverse vector meson in
the final state.

The function BK
�

J? �z� appearing in the factorizable term
is defined as a convolution of the jet function with the light-
cone wave functions of the K� and B mesons,

BK
�

J? �z� �
fBf

T
K�

mB

Z
dxdk�J?�x; z; k���

�
B �k���

?
K� �x�:

(46)

Using the result for the jet function Eq. (22) at leading
order in �s��c�, the integrals can be performed explicitly,
and the function J?�z� is given by

BK
�

J? �z� �
��sCF
Nc

fBf
T
K�

mB

1

�B�

�?K� �z�

�z
(47)

with the first inverse moment of the B wave function

��1
B� �

Z 1
0
dk�

�B
��k��
k�

: (48)
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TABLE I. The transverse helicity amplitudes H�i�� with i � V,
A, for the different charge states in �B! �Kn�‘

�‘� decays, at
leading order in �=Q. The building blocks H�i�nf , H�i�f , H�q�sp are
given in Eqs. (51)–(53).

H�i�� H�i��
�B0 ! K���‘�‘� H�i�nf � �i;V

2
3H
�u�
sp H�i�f

KS�
0‘�‘� 1

2 �H
�i�
nf � �i;V

1
3H
�d�
sp �

1
2H
�i�
f

B� ! K��0‘�‘� 1��
2
p �H�i�nf � �i;V

2
3H
�u�
sp �

1��
2
p H�i�f

KS�
�‘�‘� 1��

2
p �H�i�nf � �i;V

1
3H
�d�
sp �

1��
2
p H�i�f
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The corresponding amplitudes for the charge conjugate
mode B! K�n‘

�‘� are obtained from this by exchanging
H� $ H�. The vanishing of the right-handed helicity
amplitude at leading order in �=mb is a general result
for the soft (nonfactorizable) component of the form fac-
tors in B! Mn, combined with the absence of the factor-
izable contribution for this particular transition. This result
is usually expressed as two exact symmetry relations
among the tensor and vector B! V form factors at large
recoil [3,15].

We proceed next to discuss the multibody decays �B!
�K�‘�‘�, in the kinematical region with q2 � 4 GeV2.

According to the discussion in the subsection of Sec. II,
the form of the factorization relation is different in the
three regions of the Dalitz plot shown in Fig. 2. Our main
interest is in region I, with one energetic kaon, and a soft
pion. In this paper we prove a new factorization relation for
the transverse helicity amplitudes in this region.

We consider for definiteness the mode �B0 !
K�n ��‘�‘�. Collecting the partial results in the subsec-
tion of Sec. II, we find the following results for the trans-
verse helicity amplitudes in this mode (with i � V, A),
valid in region I,

H�i�� � �B0 ! K�n �
�‘�‘�� � H�i�nf � �i;V

2
3H
�u�
sp ; (49)

H�i�� � �B0 ! K�n �
�‘�‘�� � H�i�f (50)

where the three terms correspond to the nonfactorizable,
spectator, and factorizable terms in Eq. (43), respectively.
They are given by

H�i�nf � c�i�1 � �n  pK;��
BK�
? ; (51)

H�i�f � �
1

2
fK�"��  p��

Z 1

0
dzdxb�i�1R�z�

	
Z 1
�p��

dk�Jk�x; z; k��S�k���K�x�; (52)

H�q�sp �
�4��2

q2 fK� �n  pK��"
�
�  p��

Z 1

0
dxb�q�sp �x��K�x�

	
Z 1
�p��

dk�Jsp�k��S�k��: (53)

The nonfactorizable operators contribute only to the left-
handed helicity amplitudes, and are given by the soft
functions BK�? . They are the same for both i � V and A
amplitudes. Furthermore, the same soft functions would
appear also in factorization relations for semileptonic de-
cays into multibody states, such as �B! �n�‘ �
. This
universality is the analog of the form factor relations for
the nonfactorizable amplitudes [3,15], well known from
one-body decays, to the multibody case.

The factorizable operators give nonvanishing contribu-
tions H�i�f to the right-handed helicity amplitudes. The
094027
appearance of these contributions is a new effect, specific
to the multibody decays [10,26]. On the other hand, the
spectator operator contributes only to the left-handed he-
licity amplitudes.

The helicity amplitudes for all other �B! Kn�‘�‘�

decays can be obtained in a similar way. The results are
tabulated in Table I.

The structure of these results displays universality of
hard-collinear effects. This is manifested as the fact that all
factorizable terms H�i�f depend on the same x, k� convolu-
tion,

If�z; p�� �
Z 1

0
dx
Z 1
�p��

dk�Jk�x; z; k��S�k���K�x�;

(54)

and all spectator contributions depend on the same k�
integral,

Isp�n  q� �
Z 1
�p��

dk�Jsp�k��S�k��: (55)

This universality is similar to that appearing in other
factorization relations in exclusive decays. Examples are
the relation between the rare leptonic decays Bs ! ‘�‘��
and the radiative leptonic decay B! �‘ �
 [21], and the
relation among factorizable contributions in heavy-light
form factors at large recoil, and the nonleptonic B decays
into two light mesons [20]. The integral Isp�n  q� appears
also in the leading order factorization relation for exclusive
semileptonic radiative decay B! ��‘ �
 [25], and could
be determined from measurements of this decay.

Treating the spectator amplitude using the n  q�=q2

expansion, the amplitudeH�q�sp can be obtained as explained
from Eq. (53), at leading order in this expansion, by the
substitution of Eq. (32),

H�q�sp � �
4�2

q2 �n  q
fKmB �n  pK�"��  p��fT�t2�

	
Z 1

0
dzb�q�sp �z��K�z�: (56)

In the numerical estimates of this paper, we will use the
leading order chiral perturbation theory result in Eq. (39)
-8
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for the soft function S�k�� in the resonance region k� > 0.
The contribution to the k� convolutions in H�i�f and H�q�sp

from the transition region �n  p� � k� � 0 will be ne-
glected, which can be expected to be a good approximation
for very soft pions (the region E� � 500 MeV, corre-
sponding to the lower shaded region in Fig. 2). We empha-
size that, although the use of the chiral perturbation theory
result for S�k�� is restricted to part of region (I), the
factorization relations proved in this paper are valid over
the entire region (I). Their unrestricted application requires
a model for the soft function S�k�� whose validity extends
beyond the limitations of chiral perturbation theory.

With these approximations, additional universality
emerges, connecting the amplitudes in this problem to
other B decays, to all orders in the perturbative expansion
at the hard-collinear scale. The factorizable helicity ampli-
tudes H�i�f take a simpler form, and can be written as

H�i�f �
1

2
m2
BSR�p��

Z 1

0
dzb�i�1R�z�

BK
J �z� (57)

where the nonperturbative dynamics is contained in the
factorizable convolution defined as

BKJ �z� �
fBfK
mB

Z 1

0
dx
Z 1

0
dk�Jk�x; z; k���

�
B �k���K�x�:

(58)

The same function appears also in the factorizable contri-
bution to the B! K form factors at large recoil [5], and in
the factorization relation for nonleptonic decays B! KM
with M � �;K; . . . a light meson [20]. The pion momen-
tum dependence in Eq. (57) is contained in the function
SR�p�� given by [26]
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SR�p�� �
g
f�

"��  p�
v  p� � �� i�B�=2

(59)

with � � mB� �mB ’ 50 MeV.
A similar result is obtained for the spectator amplitude at

leading order in chiral perturbation theory, for which we
find (treating the q2 as a hard-collinear scale)

H�q�sp �
4�2

q2 fBfKmB� �n  pK�
�
g
f�

"��  p�
v  p� � �

�

	
Z 1

0
dxb�q�sp �x��K�x�

Z 1
0
dk�Jsp�k���B

��k��:

(60)

The k� convolution in this relation is identical to that
appearing in the leading order factorization relation for
radiative semileptonic decays B! �‘ �
.

Adopting the approach of expanding in n  q�=q2, the
result for H�q�sp requires the B! � form factors, for which
one finds at leading order in heavy hadron chiral perturba-
tion theory [27–30]

mBfT�t
2� � f��t

2� � f��t
2� � �g

fBmB

f�

1

E� � �
: (61)

We will use these expressions together with Eq. (56) in the
numerical evaluations of Sec. V.
IV. DECAY RATES AND THE FB ASYMMETRY

The differential decay rate for B! K�‘�‘� is given by
(see, e.g., [32])
1

�0

d2�

dq2d cos��dM
2
K�dE�

�
q2

2�4��3m2
Bm

5
b

f2sin2���jH
V
0 j

2 � jHA
0 j

2� � �1� cos2����jH
V
�j

2 � jHA
�j

2 � jHV
�j

2 � jHA
�j

2�

� 4 cos��Re�HV
�HA�

� �H
V
�H

A�
� �g (62)
with �0 � G2
F�

2=�32�4�j��s�t j2m5
b. We denoted �� the

angle between the direction of the positron momentum
and the decay axis in the rest frame of the lepton pair, for
a fixed configuration of the hadronic state K� defined by
�MK�; E��.

Integrating over cos�� one finds for the FBA defined as
in Eq. (1)

AFB / Re�HV
�H

A�
� �H

V
�H

A�
� �: (63)

This defines a triply differential asymmetry depending on
�q2;MK�; E��. Integrating also over E� gives a doubly
differential AFB depending only on �q2;MK��. We denote
them with the same symbol, and distinguish between them
by their arguments.

The condition for a zero of the FBA can be written down
straightforwardly using the expressions for the helicity
amplitudes in factorization given previously in Sec. III.
The equation for the zero is different in the two regions (I)
and (II), according to the different form of the factorization
relations in each of them. It is convenient to write this
equation in a common form in both regions, as

Re �c�V�1 �MK�; q2� � a� � 0: (64)

The quantity a stands for the contribution of the factoriz-
able- and spectator-type amplitudes, and, in general, is a
function of all kinematical variables �MK�; q2; E��.

In region (II) with a collinear kaon and pion, this cor-
rection is given by the (complex) quantity

aII � �
m2
B

EK� �n  q
Ceff

7

BK
�eff

J?

BK
�

?

(65)
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where the factorizable coefficient, BK
�eff

J? , which has im-
plicit dependence on �MK�; q2�, is defined byZ 1

0
dzb�V�1L �z�

BK�
J? �z� � �

2n  q

q2 Ceff
7 

BK�eff
J? : (66)

The zero of the FBA in region (II) was considered previ-
ously in Refs. [2,4,14,16,17], treating the problem as a one-
body decay B! K�‘�‘�.

In region (I) with a soft pion and a collinear kaon, this
correction contains two terms, arising from the spectator
and the factorizable contributions, respectively. We adopt
everywhere in the following the leading order chiral per-
turbation theory results for the amplitudes given in
Eqs. (57) and (60). Working at tree level in matching at
the scale � � Q, but to all orders in the hard-collinear
scale, one finds

aI � �eqS�R�p��
h�q�sp

BK�?

�

�
m2
B

4EK

�
2
jSR�p��j

2Ceff
9

BKJ BKeffJ

jBK�? j2
: (67)

The first term contains the contribution of the spectator
amplitude, and depends on the charge states of the final and
initial state through the superscript q � u; d, denoting the
flavor of the quark attaching to the photon. The quantity
h�q�sp , given by

h�q�sp �
4�2

q2 fBfKmB� �n  pK�
Z 1

0
dxb�q�sp �x��K�x�

	
Z 1

0
dk�Jsp�k���B

��k��; (68)

depends on kinematic variables only through the explicit
factor of �n  pK=q

2, to the order in which we are working.
For completeness, we quote also the expression for this
amplitude at leading order in n  q�=q2, which is used in
the actual numerical computation of Sec. V,

h�q�sp �
4�2

q2 �n  q
fBfKmB� �n  pK�: (69)

The first term in Eq. (67) contributes to Re�aI� with an
undetermined sign, depending on the unknown BK�? .

The second term in Eq. (67) is due to the right-handed
helicity amplitudesH�i�� . Its dependence on E� is explicit in
SR�p��, and the remaining factors depend only on
�MK�; q

2�. The factorizable coefficients in the numerator
are defined asZ 1

0
dzb�V�1R �z�

BK
J �z� �

1

�n  pK
Ceff

9 
BKeff
J ; (70)

Z 1

0
dzb�A�1R �z�

BK
J �z� �

1

�n  pK
C10BKJ (71)

where we kept only the tree level matching result for
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b�A�1R �z�. Numerical evaluation of these factorizable ampli-
tudes in the next section shows that the contribution of this
term to Re�aI� is positive.

To explore the implications of these results, let us as-
sume as a starting point that the helicity amplitudes H� in
both regions are dominated by the nonfactorizable contri-
butions, proportional to BK�? [in region (I)], and BK

�

? [in
region (II)]. This corresponds to taking a � 0 in both
regions. In this approximation, the condition for the zero
of the FBA reads simply Re�c�V�1 � � 0, which can be solved
exactly. For the B! Mn transition, this condition repro-
duces the well-known result following from the large
energy form factor relations [2,4,14–16].

Since the zero of the FBA is related to the vanishing of
the Wilson coefficient Re�c�V�1 �, such a zero must be present
also for B decays into multibody states containing one
energetic kaon [33]. In particular, the FBA in B!
Kn�‘�‘� must have a zero at a certain point q2

0 �
q2

0�MK��, which depends only on the invariant mass of
the hadronic system. Adding the second term in Eq. (64)
shifts the position of this zero, and introduces a depen-
dence on the pion energy, q2

0 � q2
0�MK�; E��. This extends

the well-known result for the zero of the FBA in B!
K�‘�‘� to multibody hadronic states.

It is interesting to comment on existing computations of
the decay amplitudes and FB asymmetry in B! K�‘�‘�

[4,14,16,17], which keep only the K� resonant amplitude.
Of course, this is justified in region (II), where the pion and
the kaon are collinear. However, in region (I) this contri-
bution is in fact parametrically suppressed, since by lead-
ing order soft-collinear factorization, the K�nKn�S vertex
does not exist at leading order in O��=mb�.

Computing the factorizable corrections in region (I)
parametrized by the term aI requires that we know the
nonfactorizable soft function BK�? . There are several pos-
sible ways of determining BK�? from data. For example,
according to Eq. (49), the helicity amplitude jHA

�j receives
no factorizable or spectator contributions. Assuming that it
can be isolated, its measurement would give a clean deter-
mination of jBK�? j. Another method involves measuring
H�V�� in decays with a neutral kaon in the final state, for
which the spectator contribution is small (see Table I). We
assume that the factorizable coefficients can be computed
in perturbation theory. We postpone a detailed numerical
analysis for Sec. V, and discuss in the following general
properties of the zero of the FBA which are independent of
the details of the hadronic parameters.

Qualitative discussion of the zero of the FBA

Before proceeding with the details of the numerical
study, we would like to discuss some of the qualitative
properties of the zero of the FBA in the multibody decay
B! K�‘�‘�. The general behavior of the solution can be
seen by studying the solutions of the simplified equation
-10
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FIG. 3 (color online). Plot of the zero in the forward-backward
asymmetry as a function of the parameter F of Eq. (73), for
several values ofMK�. The top (green) curve has the lowestMK�
and the bottom (blue) one has the highest MK�. F0 corresponds
to the value of F in the absence of factorizable and spectator
corrections. The maxima of the curves, labeled by F�, lie to the
left of F0 for all relevant values of MK�.
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C9 � 2mb
n  q

q2 C7 � a�MK�� � 0 (72)

where a�MK�� denotes the factorizable correction. In this
simplified version of Eq. (64) we have neglected additional
dependence of a on q2, which is adequate if one is inter-
ested in the qualitative change in the zero in the FBA at
fixed q2. We also have neglected here the radiative correc-
tions. They introduce small logarithmic dependence on
MK�, and do not change the qualitative features of the
solution.

It is convenient to write Eq. (72) in an equivalent form

n  q

q2 � �
1

2mbC7
�C9 � a�MK��� �

F�MK��

mB
: (73)

The solution to this equation gives the location, q2
0, of the

zero of the FBA:

q2
0�MK�� �

m2
B

F
�
M2
K�

F� 1
: (74)

The condition that the FBA zero lies in the physical region,
0 � q2

0 � �mB �MK��
2, imposes constraints on F �

F�MK��. The upper bound q2
0 � �mB �MK��

2 implies
that F�MK�� � 1, while from 0 � q2

0 we learn that

F�MK�� � 1�
M2
K�

m2
B �M

2
K�

� 1: (75)

In terms of the correction a the condition for the existence
of a FBA zero is therefore

a�MK�� � C9 �
2mbmB

m2
B �M

2
K�

C7: (76)

If the function F � F�MK�� is roughly constant and
satisfies the condition in (75), then Eq. (74) gives that the
zero of the FBA decreases with increasing MK�. These
conditions hold if a�MK�� � C9. Since we expect the
correction term to be small we also expect the FBA zero
to decrease as MK� increases.

We can gain further insights into the solution by consid-
ering q2

0 as a function of F for fixed MK� in Eq. (74).
Figure 3 shows plots of q2

0 vs F for several fixed values of
MK�. The sequence of curves moves down with increasing
MK�, which just restates the observation that at fixed F the
zero decreases with increasing MK�. The point F � F0

corresponds to a � 0. The maxima of the curves are at
F��MK�� � �1�MK�=mB�

�1, and, for physical values,
they lie to the left of F0, that is, F� <F0. To see how q2

0
depends on MK� when F � F�MK�� is not constant, con-
sider as a starting value a point on the top curve. An
increase in MK� first moves the point down to a lower
curve (as if F were constant), and then also along the lower
curve to a different value of F. The region to the right of F�
is most interesting since we expect the physical function to
lie in a region of F close to F0. In this region, if F increases
with MK� then q2

0 decreases with (increasing) MK�. The
094027
opposite is not necessarily true: whether q2
0 increases with

MK� or not depends on how steeply F decreases withMK�.
Next, we would like to understand what the effect of

changing a! a� �a is, corresponding to adding correc-
tion terms sequentially. A shift �F > 0 for fixed MK�
corresponds to moving to the right along a fixed curve. In
the region to the right of F� this decreases q2

0. Note that
�a � �2mbC7=mBC9��F and C7=C9 < 0. Therefore, an
increase in a gives an increase in q2

0.
V. NUMERICAL STUDY

We investigate in this section the numerical effects of the
new right-handed amplitude on the position of the zero of
the FB asymmetry. As explained, we treat separately the
decay amplitudes in the two regions (I) and (II), and ignore
the contribution from region (III). For definiteness, we
consider here the mode �B0 ! K���‘�‘� for which the
soft pion detection efficiency is better than for the neutral
pion modes.

The decay amplitudes in the collinear region (II) will be
represented by a Breit-Wigner model, as

HV
�� �B0!K���‘�‘���hV�� �B! �K��gK�K��"

�
� p��

	BWK� �MK��; (77)

HA
�� �B0 ! K���‘�‘�� � hA�� �B! �K��gK�K��"

�
�  p��

	 BWK� �MK��; (78)

and HV;A
� � 0, with hV;A� the one-body helicity amplitudes

for B! K�‘�‘� given above in Eq. (45). The Breit-
Wigner function corresponding to a K� resonance is de-
fined as
-11
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BW K� �M� �
1

M2 �M2
K� � iMK��K�

: (79)

Finally, the K�0K��� coupling with a charged pion can be
determined from the total K� ! K� width, � �
g2
K�K�p

3
�=�16�m2

K� �, with the result gK�K� � 9:1.
The factorization relations in region (I) require the non-

factorizable amplitude BK�? . In the absence of experimen-
tal information about this quantity, we adopt a K�

resonance model for it, defined as

BK�? �MK�;E�� � �n pK�BK
�

? gK�K��"�� p��BWK� �MK��;

(80)

where the kinematical factor �n pK� �2EK� �
1
mB
�m2

B�q
2�

can be chosen corresponding to an on-shell K� meson. For
the kinematical dependence of the soft function BK

�

? �q2�

we adopt a modified pole shape [17,36]

BK
�

? �q2� �
BK

�

? �0�

1� 1:55 q2

m2
B
� 0:575� q

2

m2
B
�2

(81)

and quote results corresponding to the two values
BK

�

? �0� � 0:3 and 0.1. These two choices should cover
both cases of soft-dominated and hard-dominated tensor
form factor.

We will use this model to define a FBA differential in
�q2;MK��, integrated over the pion energy E�. Separating
the contributions from regions (I) and (II), this is given by

AFB�q
2;MK�� �

Z
�I�
dE� Re�HV

�H
A�
� �H

V
�H

A�
� �

�
Z
�II�
dE� Re�HV

�H
A�
� �: (82)

The integration over E� can be simplified by approximat-
ing �n  pK � mB � �n  q in region I. Then the result can be
expressed in terms of three phase space integrals I0;1;2,
arising from region (I), and another integral �I0 in
region (II), defined as

Ij �
Z Ecut

�

Emin
�

dE�
j"�  p�j

2

�E� ���j
; j � 0; 1; 2; (83)

�I0 �
Z Emax

�

Ecut
�

dE�j"�  p�j2: (84)

These integrals depend implicitly on �MK�; q
2�.

Numerically, for Ecut
� � 500 MeV we find I0 �

0:019 GeV3, I1 � 0:047 GeV2, I2 � 0:12 GeV, and �I0 �
0:12 GeV3, at MK� � 1 GeV and q2 � 4 GeV2.

The zero of the FBA is given by the solution of the
equation

Re �c�V�1 � asp � af� � 0; (85)

where asp and af denote the factorizable contributions,
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arising from the spectator amplitude, and from the factor-
izable (both in one-body and in the two-body amplitudes).
The asp coefficient is given by

asp � �
2

3

g
f�

h�u�sp

�n  pK�gK�BK
�

?

I1

I0 � �I0

	 �M2
K� �M

2
K� � iMK��K� � (86)

where h�q�sp is defined in Eq. (69).
The factorizable term contains contributions from the

one-body decay amplitude, and from the new right-handed
amplitude appearing in the two-body mode,

af � �
2m2

B

�n  pK� �n  q
Ceff

7

BK
�eff

J?

BK
�

?

�I0

I0 � �I0

�
g2m4

B

4f2
�g

2
K�K�� �n  pK�

2� �n  pK� �
2 C

eff
9

BKJ BKeff
J

�BK
�

? �2

	 �M2
K� �M

2
K� �

2 I2

I0 � �I0
: (87)

We compute the factorizable matrix elements using the
leading order jet functions from Eq. (22). This gives for the
integrals of the factorizable functions J�z�

BKJ �
��sCF
Nc

fBfK
mB

1

�B�

Z 1

0
dz
�K�z�
1� z

; (88)

BK
�

J? �
��sCF
Nc

fBf
T
K�

mB

1

�B�

Z 1

0
dz
�T
K� �z�

1� z
; (89)

and for the effective ones

BKeff
J � BKJ

��
1�

2mb��� �n q

q2

Ceff
7

Ceff
9

�
�
euE2

K

mb �n q

�C2

Ceff
9

IBKJ

�
;

(90)

BK
�eff

J? � BK
�

J?

�
1�

2euEK�

8mb

�C2

Ceff
7

IBK
�

J?

�
; (91)

where

IBKJ �
Z 1

0
dzt?�z;mc��K�z�

�Z 1

0
dz
�K�z�
1� z

; (92)

IBK
�

J? �
Z 1

0
dzt?�z;mc��T

K� �z�
�Z 1

0
dz
�T
K� �z�

1� z
: (93)

For the computation of the integrals, we use the K��� light-
cone wave functions

�K�x� � 6x �x�1� 3a1K�2x� 1� � 3
2a2K�5�2x� 1�2 � 1��

(94)

and analogous for �?K� �x�, with coefficients a?iK� . The
values of the first two Gegenbauer moments are given in
Table II. Also listed there are the remaining hadronic
parameters used in the computation.
-12



TABLE II. Input parameters used in the numerical computa-
tion.

m1S
b 4:68� 0:03 GeV [37] fK 160 MeV

�mc� �mc� 1224� 57 MeV [38] fTK� 175 MeV
�s�MZ� 0.119 a1K 0.3
�B� 350 MeV a2K 0.1
g 0.5 [39] a?1K� 0.2
fB 200 MeV a?2K� 0.1
��s�u =�

�s�
t �0:0106� 0:0174i [40] gK�K� 9.1

TABLE III. Results for the effective Wilson coefficients and
factorizable and spectator matrix elements. The values of the
effective Wilson coefficients are at the scale � � 4:8 GeV and
q2 � 4 GeV2. The factorizable matrix elements are computed at
the scale �c � 1:5 GeV.

�Ceff
9 �NNLL 4:579� 0:082i BKJ 0.036

�Ceff
7 �NNLL �0:388� 0:020i BK

�

J? 0.035
q2 �nq
�npK

h�u�sp �0:135� 0:124i� GeV3
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FIG. 4 (color online). Plot of the position of the zero of the
forward-backward asymmetry q2

0 � q2
0�MX� as a function of the

invariant mass of the K� system, obtained by neglecting the
factorizable contributions to the helicity amplitudes, for different
values of the renormalization point �.
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The resulting values of the factorizable matrix elements
are tabulated in Table III, which also lists the effective
Wilson coefficients Ceff

7;9 (computed at � � 4:8 GeV, q2 �

4 GeV2). The effective matrix elements BKeff
J and BK

�eff
J?

depend on �MK�; q
2�, partly through implicit dependence

of the integrals IBKJ and IBK
�

J? . To gain some understanding
of the relative importance of the terms that contribute to the
effective matrix elements, we quote these integrals at
MK� � mK� , q2 � 4:0 GeV2: IBKJ � �0:704� 2:564i
and IBK

�

J? � �0:566� 2:67i.
It is straightforward to estimate the numerical impor-

tance of each term in the correction a appearing in Eq. (64)
for the zero of the FBA. To this end, we evaluate atMK� �
mK� , q2 � 4:0 GeV2, and use Ecut

� � 500 MeV and
BK

�

? �0� � 0:3 in the model of Eq. (81). We obtain (all in
GeV units)

asp ���0:016� 0:014i��M2
K� �M

2
K� � iMK��K� �;

af � �0:533� 0:321i� � �0:004� 0:003i��M2
K� �M

2
K� �

2:

(95)

We have kept explicit the rapidly varying dependence on
the inverse Breit-Wigner function, so we may get some
idea of the relative size of the coefficients. The first term in
the factorizable amplitude can be regarded as a negative
correction to Re�Ceff

9 � in c�V�1 of about �10%. Thus it
effectively shifts the zero of the FBA upwards by the
same amount. The second terms in af and asp are negligible
on resonance but may be important at large MK�.

Using this model, we solve for the zeros of the FBA in
B! K�‘�‘� decays, finding q2

0 for given �MK�;Ecut
� �.
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The results are shown in Figs. 4 and 5. In Fig. 4 we plot the
result for q2

0�MK�� obtained by neglecting the factorizable
and spectator terms [the solution to Re�c�V�1 � � 0] for three
values of the renormalization scale, � � 2:4, 4.8, 9.6 GeV.
We used here next-to-next-to-leading logarithmic (NNLL)
results for the Wilson coefficients and the 2-loop matrix
elements of the operators O1;2 obtained in Ref. [41]. The
position of the zero at threshold is

q2
0jMK��MK�M�

� 3:75�0:12
�0:25 GeV2 (96)

where the uncertainty includes only the scale dependence.
This result depends only mildly on MK�, as seen from
Fig. 4.

In Fig. 5 we show also the effect of including the
factorizable and spectator terms in Eq. (85), for three
values of the cutoff on the pion energy Ecut

� � 300 MeV,
500 MeV, and 700 MeV separating regions I and II. The
parameters used in evaluating this plot are listed in
Tables II and III. For comparison, we present in Fig. 5
results with BK

�

? �0� � 0:3 (left panel) and BK
�

? �0� � 0:1
(right panel). The latter choice effectively amplifies the
factorizable and spectator corrections, and can be taken as
a conservative upper bound of these effects. The depen-
dence of the results onEcut

� is an artifact of the separation of
regions discussed above and indicates the uncertainty in
this procedure. For this reason, we have taken rather ex-
treme values of Ecut

� . The overall trend of q2
0�MK�� decreas-

ing towards the right of the plots is readily understood from
the qualitative discussion in the subsection of Sec. IV: it
follows from the correction term a being small. Similarly,
that the inclusion of spectator and factorizable corrections
tends to increase the value of q2

0 for fixed MK� follows
from positivity of a.
-13
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FIG. 5 (color online). Plot of the position of the zero of the forward-backward asymmetry q2
0 � q2

0�MK�� as a function of the
invariant mass of the K� system. The plots show the change in the position of the zero due to the spectator and factorizable amplitudes,
Eq. (64), for three values of the pion energy cutoff Ecut

� � 300, 500 MeV, and Ecut
� � 700 MeV separating regions I and II. The dotted

(blue) line denotes the position of the zero in the absence of the factorizable and spectator contributions (for � � 4:8 GeV). The
nonfactorizable matrix element is taken to be BK

�

? �0� � 0:3 (left panel) and BK
�

? �0� � 0:1 (right panel).
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The results show a marked dependence (especially for
small MK�) of the zero position on the pion energy cutoff
Ecut
� which separates regions (I) and (II). This is essentially

due to the dominance of the factorizable contribution in
region (II). A conservative way to use our results is to take
the smaller value of Ecut

� � 300 MeV, for which the chiral
perturbation theory result can be expected to be the most
precise.

So far, our considerations were restricted to the case of
�B0 ! K���‘�‘� decays. Going over to the CP conjugate

mode B0 ! K���‘�‘�, the position of the zero could
change because of direct CP violation present in the spec-
tator amplitude H�q�sp , which is furthermore enhanced by a
4�2 factor [see Eq. (53)]. Denoting the factorizable cor-
rections analogous to asp and af for theCP conjugate mode
with �ai, we find

�a sp���0:016�0:014i��M2
K��M

2
K� � iMK��K� �; (97)

such that the CP asymmetry in the position of the zero is
induced through the finite K� width, and is small. Beyond
tree level, such an effect will be introduced at order �s�Q�
through matching corrections to bsp.

We consider next another observable, the slope of the
curve for the zero of the FBA in Fig. 5. From Eq. (74), this
is given by

dq2
0�M

2
K��

dM2
K�

� �
1

F� 1
�

�
M2
K�

�F� 1�2
�
m2
B

F2

�
dF�M2

K��

dM2
K�

:

(98)

F�M2
K�� is defined in Eq. (73) and depends on the Wilson

coefficients C7;9, also on the factorizable contributions
a�MK��. The last term contributes through the MK� de-
pendence of a�MK��, and is
094027
dF�M2
K��

dM2
K�

�
mB

2mbC7

da�M2
K��

dM2
K�

’ 0:02; (99)

where we used the result in Eq. (95) for asp�MK�� and
neglected the tiny contribution from af. The contribution
of this term to Eq. (98) is multiplied with a factor of order
1–2. Thus, even assigning this estimate a conservative
error of �200%, its contribution to the slope in Eq. (98)
for valuesMK� � 1 GeV is negligible compared to the first
term depending only on F (recall that F� 4). This is also
seen in the curves in Fig. 5, whose slopes are essentially the
same for all choices of the hadronic parameters considered.
This shows that a measurement of the slope of the zero
could provide a useful source of information about the
Wilson coefficients C7;9, but without the hadronic uncer-
tainties associated with the absolute position of the zero.
VI. CONCLUSIONS

We studied in this paper the helicity structure of the
exclusive rare �B! �K�‘�‘� decays in the region of phase
space with one energetic kaon and a soft pion. In this
region the helicity amplitudes are given by new factoriza-
tion relations, containing a universal soft matrix element,
and a new nonperturbative matrix element for the B! �
transition analogous to the off-forward parton distribution
functions.

The most important difference with the �B! �K�n‘
�‘�

decays at large recoil is the appearance in the multibody
case of a nonvanishing right-handed helicity amplitude
�B! � �K��h��1‘

�‘� at leading order in �=mb. This can
be computed in factorization, in terms of the B! � off-
forward matrix element of a nonlocal heavy-to-light op-
erator. In the soft pion limit this nonperturbative matrix
-14
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element can be computed in chiral perturbation theory, and
is related to the B-meson light-cone wave function [26].

We explored the implications of these results for the
existence of a zero of the forward-backward asymmetry of
the lepton momentum, pointing out two new results. First,
the FBA has a zero also for nonresonant B! K�‘�‘�

decays, occurring at a determined value of the dilepton
invariant mass q2

0�MK��, depending on the hadronic invari-
ant mass MK�. Second, there are calculable corrections to
the position of the zero, which can be computed in facto-
rization. We use the factorization relations derived in this
paper to compute these correction terms. We present ex-
plicit numerical results working at leading order in chiral
perturbation theory [26], and show that the results for the
zero of the FBA in �B! � �K��K�‘�‘� hold to a good
precision also in the nonresonant region.
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APPENDIX: EFFECTIVE WILSON COEFFICIENTS

We collect here for convenience the expressions for the
effective Wilson coefficients used in the numerical study of
Sec. IV. Working to NNLL order, they are given by

Ceff
9 �C9�

�
�C1�

�C2

3

��
8G�mc��

4

3

�
� �C3

�
8G�mc�

�
4

3
G�0��

16

3
G�mb��

2

27

�
� �C4

�
4G�0��

8

3
G�mc�

�
16

3
G�mb��

14

9

�
� �C5

�
8G�mc��4G�mb��

14

27

�

� �C6

�
8

3
G�mc��

4

3
G�mb��

2

9

�

�
�s
4�

�
2 �C1

�
F�9�1 �q

2��
F�9�2 �q

2�

6

�

� �C2F
�9�
2 �q

2��Ceff
8 F

�9�
8

�
(A1)

and

Ceff
7 � C7 �

4

9
�C3 �

4

3
�C4 �

1

9
�C5 �

1

3
�C6

�
�s
4�
� �C2F

�7�
2 �q

2� � Ceff
8 F

�7�
8 �q

2��: (A2)

They are expressed in terms of the modified Wilson coef-
ficients �C1–6, which are defined by expressing the opera-
tors O1–6 of Ref. [19] in terms of the basis of [42] using 4-
dimensional Fierz identities. They are given by [4]
094027
�C1 �
1
2C1; �C2 � C2 �

1
6C1;

�C3 � C3 �
1
6C4 � 16C5 �

8
3C6; �C4 �

1
4C4 � 8C6;

�C5 � C3 �
1
6C4 � 4C5 �

2
3C6; �C6 �

1
2C4 � 2C6;

(A3)

where Ci are the Wilson coefficients in the operator basis
of Ref. [19]. Their complete NNLL expressions are given
in Ref. [43]. The �Ci coefficients coincide with the Wilson
coefficients in the basis of Ref. [42], but are different
beyond leading log approximation. The relation between
the two sets of coefficients can be found in Refs. [4,19].
The effective Wilson coefficient Ceff

8 is given by

Ceff
8 � C8 �

4
3

�C3 �
1
3

�C5: (A4)

The one-loop function G�mq� is given by

G�mq� �
Z 1

0
dxx�1� x� log

�
�q2x�1� x� �m2

q � i�

�2

�
:

The functions F�9�1;2�q
2�, F�7�2 �q

2� appearing in the 2-loop
matching conditions are listed in Eqs. (54)–(56) of the
second reference in Ref. [41]. The functions F�7;9�8 �q2� are
given in Eqs. (82), (83) of Ref. [4].

We list here the functions fv and � appearing in the
expression of the Wilson coefficient c�V�1 , Eq. (9),

fv�!;�� �
1

2
log2 m

2
b

�2 �
5

2
log
m2
b

�2 � 2 log
m2
b

�2 log
!
mb

� 2log2 !
mb
� 2Li2

�
1�

!
mb

�

�
3!� 2mb

mb �!
log

!
mb
�
�2

12
� 6; (A5)

��!;�� �
�sCF

4�

�
!

mb �!
log

!
mb
� log

m2
b

�2

�
: (A6)

In the numerical evaluation of the Wilson coefficient c�V�1

we replace the MS mass mb��� with the pole mass mpole
b

using the one-loop result

mb��� � mpole
b

�
1�

�sCF
4�

�
�6 log

�
mb
� 4

��
(A7)

and keeping only the term linear in �s.
Finally, we give here the function t?�x;mc� appearing in

the Wilson coefficient of the subleading O��� SCETI op-
erators. This is given in Eq. (27) of Ref. [4], which we
reproduce here for completeness,

t?�x;mc� �
4mB

�x!
I1�mc� �

4q2

�x2!2 �B0� �xm
2
B � xq

2; mc�

� B0�q
2; mc�� (A8)
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with

B0�s;mc� � �2

������������������
4m2

c

s
� 1

s
arctan

1���������������
4m2

c
s � 1

q ;

I1�mc� � 1�
2m2

c

�x�m2
B � q

2�
�L1�x�� � L1�x��

� L1�y�� � L1�y���:

(A9)

The function L1�x� and its arguments are defined as
094027
L1�x� � log
x� 1

x
log�1� x� �

�2

6
� Li2

�
x

x� 1

�
;

x� �
1

2
�

��������������������������������
1

4
�

m2
c

�xm2
B � xq

2

s
; (A10)

y� �
1

2
�

���������������
1

4
�
m2
c

q2

s
: (A11)
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