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In this article, we take the point of view that the charmed scalar meson D ,(2317) is the conventional ¢§
meson and calculate the strong coupling constant g, px Within the framework of the light-cone QCD sum
rules approach. The numerical values for the large scalar-DK coupling constant gp pgx support the
hadronic dressing mechanism. Just like the scalar mesons f(,(980) and a,(980), the D,;(2317) may have
small scalar c§ kernel of the typical c§ meson size. The strong coupling to the hadronic channels (or the
virtual mesons loops) may result in smaller mass than the conventional scalar ¢§ meson in the constituent
quark models, and enrich the pure ¢5 state with other components. The D,(2317) may spend part (or most

part) of its lifetime as virtual DK state.
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I. INTRODUCTION

The constituent quark model provides a rather success-
ful description of the spectrum of the mesons in terms of
quark-antiquark bound states, which fit into the suitable
multiplets reasonably well. However, the scalar mesons
below 2 GeV present a remarkable exception as the struc-
tures of those mesons are not unambiguously determined
yet [1]. The light scalar mesons are the subject of an
intense and continuous controversy in clarifying the had-
ron spectroscopy; the more elusive things are the constitu-
ent structures of the f,(980) and @((980) mesons with
almost the degenerate masses. Furthermore, the discovery
of the two strange-charmed mesons D,y(2317) and
D,,(2460) with spin-parity 0" and 1" respectively has
triggered hot debate on their nature, understructures, and
whether it is necessary to introduce the exotic states [2].
The mass of the D,;(2317) is significantly lower than the
values of the 0" state mass from the quark models and
lattice simulations [3]. The difficulties to identify the
D,,(2317) and D,,(2460) states with the conventional c5
mesons are rather similar to those appearing in the light
scalar mesons below 1 GeV. Those two states Dy(2317)
and D,,;(2460) lie just below the DK and D*K threshold,
respectively, which are analogous to the situation that the
scalar mesons a,(980) and f,,(980) lie just below the KK
threshold and couple strongly to the nearby channels. The
mechanism responsible for the low-mass charmed scalar
meson may be the same as the light scalar nonet mesons,
the f,(600), f,(980), a(980) and K;;(800) [4—6]. There
have been a lot of explanations for their nature, for ex-
ample, conventional c5§ states [7—9], two-meson molecular
state [10], four-quark states [11], etc. If we take the scalar
mesons ay(980) and f(980) as four-quark states with the
constituents of scalar diquark-antidiquark substructures,
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the masses of the scalar nonet mesons below 1 GeV can
be naturally explained [5,6].

There are other possibilities beside the four-quark state
explanations, for example, the scalar mesons a((980),
f0(980) and D,(2317) may have bare ¢g and c¢5 kernels
in the P-wave states with strong coupling to the nearby
threshold, respectively, the S-wave virtual intermediate
hadronic states (or the virtual mesons loops) play a crucial
role in the composition of those bound states (or reso-
nances due to the masses below or above the thresholds).
The hadronic dressing mechanism (or unitarized quark
models) takes the point of view that the f,(980), ay(980)
and D,y(2317) mesons have small ¢G and ¢35 kernels of
the typical ¢g¢g and c¢5 mesons size, respectively. The
strong couplings to the virtual intermediate hadronic states
(or the virtual mesons loops) may result in smaller masses
than the conventional scalar gg and cs5 mesons in the
constituent quark models, enrich the pure ¢g and c5§
states with other components [12,13]. Those mesons may
spend part (or most part) of their lifetime as virtual KK and
DK states [12,13]. Despite what constituents they may
have, we have the fact that they lie just a little below
the KK and DK threshold, respectively, the strong inter-
actions with the KK and DK thresholds will significantly
influence their dynamics, although the decay D, (2317) —
DK is kinematically suppressed. It is interesting to
investigate the possibility of the hadronic dressing mech-
anism.

In this article, we take the point of view that the scalar
mesons f(980), ay(980) and D,(2317) are the conven-
tional ¢g and c5 state, respectively, and calculate the values
of the strong coupling constant g, px Within the frame-
work of the light-cone QCD sum rules approach. The light-
cone QCD sum rules approach carries out the operator
product expansion near the light-cone x> = 0 instead of
the short distance x = 0 while the nonperturbative matrix
elements are parametrized by the light-cone distribution
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amplitudes which classified according to their twists in-
stead of the vacuum condensates [14,15].

The article is arranged as follows: in Sec. II, we derive
the strong coupling constant g px Within the framework
of the light-cone QCD sum rules approach; in Sec. III, we
discuss the numerical results; and in Sec. IV, we conclude.

II. STRONG COUPLING CONSTANT g, px WITH
LIGHT-CONE QCD SUM RULES

In the following, we write down the definition for the
strong coupling constant gp p»

(K(g)D(p)IDo(p + 9)) = gp,,pk- (1

We study the strong coupling constant g, px with the
scalar interpolating current Jp (x) and choose the two-
point correlation function 7, (p, q),

T.(p.q) =i f d*xe (K(@)|TEIR (), (O}0),  (2)

Jp,,(x) = ¢(x)s(x), 3

J2() = (x)y,,yse(x). 4)
Here the axial-vector current Jﬁ’ (x) interpolates the pseu-
doscalar D meson, and the external K state has four mo-
mentum ¢ with ¢> = M%. The correlation function
T,(p, q) can be decomposed as

T.(p.q) =T,(p% (p+ @))p, + T, (P~ (p + 9))q,.
(5)

due to the tensor analysis.

According to the basic assumption of current-hadron
duality in the QCD sum rules approach [16], we can insert
a complete series of intermediate states with the same
quantum numbers as the current operators J, (x) and
J2(x) into the correlation function 7, (p, ¢) to obtain the
hadronic representation. After isolating the ground state
contributions from the pole terms of the D,(2317) and D
mesons, we get the following result,

1

MZ
T+ ) = if [l R0y

1
+ lf3KM%(j;) dU(2U_3)fDCVi§D3K(ai

- Z[mcgz(u) + &%(u)(p g+ ”M%()}

PHYSICAL REVIEW D 73, 094020 (2006)

T,(p* (p + 9*)p,
_ (01 J2 I D(p)XDK | DoXDyo(p + @)U, | 0)
(Mp — pYMp, — (p + 9)%)
_ igDSUDKfoDSOMDsop,u
(Mp — P M5, — (p + q)°)

50

+ ...

+ e (6)

where the following definitions have been used,

Dyo(p + ) | Jp,(0) | 0y = fp Mp,,

, )
O1JR0) I D) = ifppu

Here we have not shown the contributions from the high
resonances and continuum states explicitly as they are
suppressed due to the double Borel transformation. In the
ground state approximation, the tensor structure
T,(p% (p + )*)q,, has no contributions and neglected.

In the following, we briefly outline the operator product
expansion for the correlation function T, (p, g) in pertur-
bative QCD theory. The calculations are performed at the
large spacelike momentum regions (p + ¢)*> < 0 and
p? < 0, which correspond to the small light-cone distance
x*> = 0 required by the validity of the operator product
expansion approach. We write down the propagator of a
massive quark in the external gluon field in the Fock-
Schwinger gauge first [17],

d*k
2m)*

1
—f dvg,Gh"(vx; + (1 — v)x,)
0

y AN Tl K+m
(2 Mz K2 — m2y T

1
WU(M - xz),ﬂ’:{”- 3

OIT{q;(x)q;(x2)}0)y = i

e*ik(xl —x3) i
k2 _ m2 J

-5
Here G4 is the gluonic field strength, and g, denotes the
strong coupling constant. Substituting the above ¢ quark
propagator and the corresponding K meson light-cone
distribution amplitudes into the correlation function
T,(p, q) in Eq. (2) and completing the integrals over the
variables x and k, finally we obtain the result,

2

1
6m [mz —(p+ Mq)z]z}

1

VT —Tp + aler + vay) PP

d(a, 1 —a—B,B)

Y ’ 1 _ 1 aj 1-B
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In calculation, the following two-particle and three-particle K meson light-cone distribution amplitudes are useful
[14,15,17-19],

x2 .
(K@), 55010 = ~ifsg, [ dueToi) + 2] + fi(x, = 220 [Cauetrrgo

fxM}

S

1 .
(K()a(x)iyss(0)]0) = ﬂ) du e g (),

M2 1 ,
fng ﬁ) due ™ o, (u),

<K(Q)Iﬁ(x)a-aBYSgsGuv(vx)s(O)|O> = if3l([(q,uCIagv,B - quagp,B) - (q;LQ,Bgvoz - QVQ,Bg,u,oz)]

% ]DaiQDBK(ai)eiq'x(a‘H%)y

<K(t])|l/_t()C)U'MV’}/5S(O)|O> = i(Qp,xV - qvxy,)

(10)

Xy X .
(K@, 758G g 05OI0) = fi| as( 0 = %) = 480 = 22%) | [ Datspapeirsorvey

q igx(a;tva
i gty dpr.) ] Dty oy (e v,
) - . Xoq Xgq _ .
(K(](x)7,856 p0)s0)10) = ifk| 4p( gap — ) = qul gpu — 22 Da;p 1 (a;)eldxitvas)
q X q X

+ife 2 (Goxg — qpra) f Da;py(a;)eis e tvas),
q-x

Here the operator G, is the dual of the G,p, Gop = 1 €455,G%, Da; is defined as Da; = da,dayda;8(1 — o —
a, — a3) and P(ay, ay, a3) = @) + ¢ — @ — @|. The twist-3 and twist-4 light-cone distribution amplitudes can be
parametrized as

5 27 81 .
ep(u, ) =1+ (30773 - §P2>C5/2(2M -1+ (‘3773603 - %PQ - EP202>C‘11/2(2M - 1),
1 T 5, 3 5. 3/2
®o(u, p) = 6u(l - M)<1 + (5773 - 57730)3 - %P - gp a2>C2 Qu — 1)>,

1
dskla;, p) = 360&1“2“,%(1 + As(a) — ay) + w3§(7a3 - 3)>,

& (a ) = 308%(w)(a; — a2>a§(§ T 2e(u)(1 - 2a3>),

11

i, ) = 1208 ()e(p) e, — ar)a azas, (1)

- 1

By 1) =305 gu)ad(1 — a)(5 + 2e(w)(1 — 20

- 1

o (a;, p) = _12052(1’«)“1“2“3(5 + e(u)(1 - 30‘3)>,

10
g2(u, p) = = & (u(l — w)(2u — 1),
{

wherZel Cé/27 Ci/2 and Cg/ 2 are Gegenbauzer polynomizals, By2By: T (Q% 03) = igp. oxfofo,Mp,
€ =3wy, 1= (f3x/f)m, +m;/My) and p*>= s M 2
m?/M?% [14,15,17-19]. The parameters in the light-cone X e Mp/Mig™ Moo/ M 4ol (12)

distribution amplitudes can be estimated from the QCD

sum rules approach [14,15,17-19]. In this article, the en-
ergy scale w is chosen to be u© = 1 GeV.

Now we perform the double Borel transformation with
respect to the variables Q3 = —p? and Q3 = —(p + q)*
for the correlation function T,(p?, (p + ¢)?) in Eq. (6), and
obtain the analytical expression for the invariant function
in the hadronic representation,

Here we have not shown the contributions from the high
resonances and continuum states explicitly for simplicity.
In order to match the duality regions below the thresholds
so and s;, for the interpolating currents J2(x) and Jp,_(x)
respectively, we can express the correlation function 7, at
the level of quark-gluon degrees of freedom into the fol-
lowing form,
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p(s, s')
(s = pIls' = (p + @)1
(13)

T (0% (p + @) = i [ dsds'

then we perform the double Borel transformation with
respect to the variables Q) = —p? and Q3 = —(p + g)?
directly. However, the analytical expressions for the spec-
tral density p(s, s’) is hard to obtain, we have to resort to
some approximations. As the contributions from the higher
twist terms are suppressed by more powers of 1/ — p? or
1/ — (p + g)?, the continuum subtractions will not affect
the results remarkably, here we will use the expressions in
Eq. (9) for the three-particle (quark-antiquark-gluon) twist-
3 and twist-4 terms. In fact, their contributions are of minor
importance; the dominating contributions come from the
two-particle twist-3 terms involving the ¢, () and ¢, (u).
We perform the same trick as Refs. [17,20] and expand the
amplitudes ¢,(u) and ¢,(u) in terms of polynomials of
1 — u,

N m2
©,(u) + dqo(,(u) Z bi(1 — u)* = bk< 7 )k, (14)

|

BBy T, = {M( o +uo (1 —ug M)/ M?
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then introduce the variable s’ and the spectral density is
obtained. After straightforward but cumbersome calcula-
tions, we can obtain the final expression for the double
Borel transformed correlation function T,(M3, M3) at the
level of quark-gluon degrees of freedom. The masses of the
charmed mesons are Mp = 2317 GeV and M, =
1.865 GeV, Mp/(Mp + Mp ) = 0.45, there exists an
overlapping working window for the two Borel parameters
M2 and M3. It is convenient to take the value M3 = M3,

M2/(M2 +M3) =3, M= (MiM3)/(M} + M3),
furthermore, the K meson light-cone distribution ampli-
tudes are known quite well at the value uy = % We can
introduce the threshold parameter s, and make the simple
replacement,

e—(mf#-uo(l—uo)M?()/Mz — e—(m%+u0(1—uo)Mf<)/M2 — e—So/M2

to subtract the contributions from the high resonances and
continuum states [17],

d
— e*So/MZ)<€0p(uo) + M) + e('”3+uo(1uo)M?c)/MZ[—2mec82(uo)

6d1/t0

l—a; d —
+f%KMk] dal/ 1 ﬂ%x(“l, I —a;— a; a3)<2u0 o 3)
U,

0~

_ 2fgm, MK(I— 0)[ dag
1

2me M2 (flfuo das (u
M? 0

as

“ap f“ﬁ da®d(a, 1 — a — B, B)
0 0

@ 1
% da, [ da + adt
aj uy—ay 0 l—uy A3

da'g l—a;

da, fal da)®(a,1 — «a
0

- ay, 0@)}}.

(15)

Up—as

A slight different manipulation (with the techniques taken in the Ref. [4]) for the dominating contributions comes from the
terms involving the two-particle twist-3 light-cone distribution amplitudes ¢, () and ¢, (u) leads to the following result,

M>M?
BypBypT, = je— (mi+ug(1—ug)My )/M2{f’( K

0T @)

1 da
X [ —
1=uq a3 0

MZ

m Z bk(M2

l—a, d —
+ faxMy f dar/ ] ﬂ@w(ab l—a) —as 013)@% - 3)
u, 3

2. .
k (So—meyi

) (1 — e~ (so—md)/M? ZMZ)> — 2f xkm.g>(up)
i=0

i!

2fl(m M%((l )

2 l—u U a;
d,Bf da®(a, 1 —a— B, ,8)+2me—CMK(f vdas [ dalf da
0 Uy—az 0

1‘42 (4%}

1 l—a3 @
+ f das ‘ dalf da)@(a, l—a— as ag)}. (16)
1 0

—uy A3 uy—as

In deriving the above expressions for ¢ ,(u) + [d¢, (1)]/(6du), we have neglected the terms ~M, here uy =

M2) and M? = (M?M2)/(M? + M3).

M2 /(M2 +

Matching the Eq. (12) with the Eqgs. (15) and (16) below the threshold s, we obtain two sum rules for the strong coupling

constant gD).ODIO
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22102
_ 1 e(Mg\O/M§>+<M§,/Mf){fKM My (e—mgw(l—uow;/w _ e—so/w)(@p(u) i d%(“))

fofp,Mp, myg 6du
—a; d
+ ef(mg+uo(1*u0)M )/M2|: 2mecg2(u0) + f3KMK[ da] f : %@3[((&1, 1 — ) T g, a3)
Uy~ 3
- 2 M 1 d
x(zu—3> ’C’(Lzlf(l— )[ a*f dﬁf dad(a,1—a— B, B)
aj M 1—uy @3
2 M2/ (1-ud a 1 d - a
~I—fKL§K<'/ dds [t dalj 1da+f it} 3dalf lda><D(a,l—a—a3, aﬂﬂ; 17)
M 0 a3 Jug—a; 0 1—uy X3 Jug—as 0
k (So—miyi
ng\oDK = 71 e(M2 /M2)+(M2 /Mz) (m +up(1— M())M )/Mz{fKMzMK Z bk<M2> (1 — e —(so— mZ)/Mz Z‘SOZV{? )>
foD;oM 50 ms k=0 Ml = b
—a da -
— 2fkm.g>(ug) + f3KMKf da, j 1 —39031((6?1, l —a; — a3 a3)<2 L 3)
Up—ay as
2 M-> d
M-y [ 22 “ap [ dadvia 1 —a—p.p
1—uy

2 ,M2 1—uy d u (e 1
+—f’f’"; K(f odas [ daI/ ]da-l-]
M 0 a3 Juy—as 0 1-

corresponding to the Eq. (15) and (16) respectively.

ITII. NUMERICAL RESULTS AND DISCUSSIONS

The parameters are taken as m, = (140 = 10) MeV,
m, = (1.25 + 0.10) GeV, A3 = 1.6 = 0.4, f3x = (0.45 =

0.15) X 1072 GeV2, w;=—12%+0.7, & =(0.20=*
0.06) GeV?, w, =02*0.1, G, = 0.25*0.15
[14,15,17-19],  fx = 0.160 GeV, My = 498 MeV,

Mp (2317) = 2.317 GeV, Mp = 1.865 GeV, fp =
(0.23 £ 0.02) GeV [21], and fp, =(0.225 =
0.025) GeV [8]. The duality thresholds s, in Egs. (17)
and (18) are taken as s, = (6.1 — 6.5) GeV to avoid pos-
sible contaminations from the high resonances and contin-
uum states, from the Fig. 1, we can see that the numerical
results are not sensitive to the threshold parameter s in this
region. The Borel parameters are chosen as 10 GeV? =
M? = M3 = 20 GeV? and 5 GeV? = M? = 10 GeV?, in
those regions, the values of the strong coupling constant
gp,,pk are rather stable from the sum rule in Eq. (17) with
the simple subtraction, which are shown in the Figs. 1-7.
However, the values from the sum rule in Eq. (18) with the
more sophisticated subtraction are not stable according to
the variations of the Borel parameter M?>.

The uncertainties of the five parameters 62, w4, @3, A3
and d, can not result in large uncertainties for the numeri-
cal values. The main uncertainties come from the five
parameters f3x, mg, m., fp and fp , small variations of
those parameters can lead to relatively large changes for
the numerical values, which are shown in the Figs. 2—6,
respectively. Taking into account all the uncertainties,
finally we obtain the numerical results for the strong cou-
pling constant,

d -« a
aas ) dalj da)fl)(a, 1-
0

uy 3 Up—as

a— o, a3)} (18)

[

gp,px = (9.37%]) GeV. (19)

The strong coupling constant g, px can be related to the
parameter /4 in the heavy-light Chiral perturbation theory
[22,23],
M2 — M3 |h|
MMp—5——F —. (20)
SUr MS f7T

Here the S are the scalar heavy mesons with 0*, the P are
the heavy pseudoscalar mesons with 0™, and the 7 stand
for the light pseudoscalar mesons. The parameter # has
been estimated with the light-cone QCD sum rules [23],

quark models [24], Adler-Weisberger type sum rule [25],
and extracted from the experimental data [9], the values are

8spr =

13 T T T T
12 4
1 4
10 -1 4
0 1\9\9 """ i Ry o — e o e o o
< st ]
[}
o f —=—5,=6.1GeV’; ]
S °f 2 ]
s[ o §,=6.3GeV ]
o s,=6.5GeV". ]
3 4
2 - 4
1 1 1 1 1

o
(<)
o

"2 3
M?(GeV?)

FIG. 1 (color online).
S0-

The gp  px with the parameters M? and
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13 T T T T
12[ ]
1" 7]
g 7
0 _ of:ﬁ - &—8—a—a g 5
el O O--nnm -O---nne O--nnnm O-==---{
% | |
O sf 2 2 ]
D sl —l—fK3:0.45*10 GeV ; ]
‘t | o 1,,=060*107GeV; ]
L f,=0.30*10°GeV". :
L ]

ol . ! . L . : : :
5 5 7 9 10

8
M?*(GeV?)

FIG. 2 (color online). The gp px with the parameters M 2 and

fx3-

listed in Table I, from those values we can estimate the
values of the corresponding strong coupling constant
gp,pk in the SU(3) limit for the light pseudoscalar me-
sons. The value of the dimensionless effective coupling
constant I'/k = 0.46(9) from Lattice QCD [27] is some-
what smaller than the values extracted from the experi-
mental data I'/k = 0.7373%, here the I' is the decay width
and the k is the decay momentum. Our numerical values
gD DK = (9.3737) GeV are somewhat larger compared to
the existing estimations in Refs. [9,23—-25] and about 4
times as large as the energy scale M = 2.317 GeV, and

favor the hadronic dressing mechanism.

13 T T T T
12| .
1| 7
g *
9 r o] : ; - . . . . - ]
. 8._ e} O--=mm O------ === O -==-- O------ <
3 ot |
O sl —n— ms=0.14GeV; ]
o 5| —o-m=0.15GeV; ]
‘I m_=0.13GeV. ]
,L ]
1k 7
0 [ " 1 " 1 " 1 " 1 "
5 6 7 8 9 10
M*(GeV?)

FIG. 3 (color online).
my.

The gp  px with the parameters M? and
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13 T T T '
12 ]
1| ]
10 _é\_ 4
S
R —
s -
O of —=—m =1.25GeV; ]
o i : ~o--m =1.35GeV; 1
N mc=1 .15GeV. ]
t ]
1L ]
ol ' : : : . ' :
5 6 7 8 9 10
M?*(GeV?)

FIG. 4 (color online). The gp px with the parameters M? and
me.

Here we will take a short digression to discuss the
hadronic dressing mechanism [12,13]; one can consult
the original literature for the details. In the conventional
constituent quark models, the mesons are taken as quark-
antiquark bound states. The spectrum can be obtained by
solving the corresponding Schrodinger’s or Dirac’s equa-
tions with the phenomenological potential which trying to
incorporate the observed properties of the strong interac-
tions, such as the asymptotic freedom and confinement.
The solutions can be referred as confinement bound states
or bare quark-antiquark states (or kernels). If we switch on
the hadronic interactions between the confinement bound
states and the free ordinary two-meson states, the situation

13 T T T T
12 ]
1k ]
10k . 7
0 >‘ o ; ; u ] ] ] - ] 4
W o SNSRI SRR Os-rer-0me-oan]
= ]
S of — fD=O.23GeV; ]
> sl o f =0.25GeV; .
of f =0.21GeV. ]
N ]
2k ]
1L ]
0 3 ) . ) | ) 1 , 1
. s 7 8 9 10
M*(GeV ?)

FIG. 5 (color online).
fp-

The gp px with the parameter M? and
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13 T T T T T T T T
12 [ ]
1L ]
10 ;\_ ]
oL . s L] ] n n ] n ] j
of o Os-meeee 0------0 O--nneem ORI O--nneei 0=
=t '-
é,)'i : — fDSO=O.225GeV;
> I —o—f =0.250GeV; 1
N f '=0.200GeV. ]
2+ = -
L ]

0 . ! ; ' . . : .
5 p 9 10

7 8
M*(GeV?)

FIG. 6 (color online). The gp px with the parameters M? and

Iy

becomes more complex. With the increasing hadronic
coupling constants, the contributions from the hadronic
loops of the intermediate mesons become larger and the
bare quark-antiquark states can be distorted greatly. There
may be double poles or several poles in the scattering
amplitudes with the same quantum number as the bare
quark-antiquark kernels; some stem from the bare quark-
antiquark kernels while the others originate from the con-
tinuum states. The strong coupling may enrich the bare
quark-antiquark states with other components, for ex-
ample, virtual mesons pairs and spend part (or most part)
of their lifetime as virtual mesons pairs.

13 T T T '
12 Qe 1
" 0 O----- LR O LT o O----- R i
10 — ]
[—a [ ] ] ]
oL || | | | |} | | | | -
S sb :
o L[ ]
O
o °r ]
L —u— Central Values; -
A o Up limit; ]
sf Down limit. ]
T ]
L N S
. o 7 8 9 10
2 2
M (GeV?)

FIG. 7 (color online). The gp px with the parameter M.
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TABLE I. Numerical values for the parameter s, and the
corresponding values for the strong coupling constant gp pk
in the SU(3) limit.

|l gp,pk (GeV) Reference
0.52 £0.17 5.5+ 1.8 [23]
0.536 5.68 [24]
<0.93 <9.86 [25]
0.57 — 0.74 6.0-7.8 [9]
10.203 [26]
0.887926 9.3+27 This work

The large values for the strong coupling constant gp  px
obviously support the hadronic dressing mechanism, the
D,;(2317) (just like the scalar mesons f(980) and
ay(980), see Ref. [4]) can be taken as having small scalar
c§ kernel of typical meson size with large virtual S-wave
DK cloud. In Ref. [26], the authors analyze the unitarized
two-meson scattering amplitudes from the heavy-light
Chiral Lagrangian, and observe that the scalar meson
D,,(2317) appears as the bound state pole with the strong
coupling constant gp px = 10.203 GeV. Our numerical
results gp px = (9.373]) GeV are certainly reasonable
and can make robust predictions. However, we take the
point of view that the scalar meson Dy(2317) be bound
state in the sense that it appears below the DK threshold; its
constituents may be the bare c§ state, the virtual DK pair
and their mixing, rather than the DK bound state.

IV. CONCLUSIONS

In this article, we take the point of view that the charmed
scalar meson D (2317) is the conventional ¢5 meson and
calculate the strong coupling constant g, px Wwithin the
framework of the light-cone QCD sum rules approach. The
numerical values for the scalar-DK coupling constant
gp,pk are compatible with the existing estimations
although somewhat larger, the large values support the
hadronic dressing mechanism. Just like the scalar mesons
f0(980) and a,(980), the scalar meson D,(2317) may have
small c¢5 kernel of typical ¢§ meson size. The strong
coupling to virtual intermediate hadronic states (or the
virtual mesons loops) can result in smaller mass than the
conventional scalar ¢§ meson in the constituent quark
models, enrich the pure c§ state with other components.
The D,,(2317) may spend part (or most part) of its lifetime
as virtual DK state.
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