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Nucleon form factors in QCD
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We calculate the electromagnetic and the axial form factors of the nucleon within the framework of
light cone sum rules (LCSR) to leading order in QCD and including higher-twist corrections. In particular
we motivate a certain choice for the interpolating nucleon field. We find that a simple model of the
nucleon distribution amplitudes which deviate from their asymptotic shape, but much less compared to the
QCD sum rule estimates, allows one to describe the data remarkably well.
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FIG. 1 (color online). Structure of QCD factorization for
baryon form factors.
I. INTRODUCTION

Form factors play an extremely important role in the
studies of the internal structure of composite particles as
the measure of charge and current distributions. In particu-
lar, the pioneering study of the nucleon form factors by
Hofstadter and collaborators [1] demonstrated that the
nucleons have a finite size of the order of a fermi. The
behavior of the form factors at large momentum transfers is
especially interesting. Already in the pre-QCD times it was
established that, if one can treat the hadrons at high mo-
mentum transfer as collinear beams of N valence quarks
located at small transverse separations and exchanging
intermediate gluing particles with which they interact via
a dimensionless coupling constant, then the spin-averaged
form factor behaves asymptotically as 1=�Q2�N�1 [2]. This
hard-exchange picture and the resulting dimensional power
counting rules [2,3] can be formally extended onto other
hard exclusive processes.

After the advent of quantum chromodynamics, this hard-
gluon-exchange picture was formalized with the help of the
QCD factorization approach to exclusive processes [4–6].
This approach introduces the concept of hadron distribu-
tion amplitudes (DAs). They are fundamental nonpertur-
bative functions describing the momentum distributions
within rare parton configurations when the hadron is rep-
resented by a fixed number of Fock constituents (quarks,
antiquarks, and gluons). It was shown that in the Q2 ! 1
limit, form factors can be written in a factorized form, as a
convolution of distribution amplitudes related to hadrons in
the initial and final state times a ‘‘short-distance’’ coeffi-
cient function that is calculable in QCD perturbation the-
ory. The leading contribution corresponds to DAs with
minimal possible number of constituents—three for bary-
ons and two for mesons.

The essential requirement for the applicability of this
approach is a high virtuality of the exchanged gluons and
also of the quarks inside the short-distance subprocess.
More generally, in the case of the nucleon form factors
the hard perturbative QCD (pQCD) contribution is only the
third term of the factorization expansion. Schematically,
one can envisage the expansion of, say, the Dirac electro-
magnetic nucleon form factor F1�Q2� of the form
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where C is a constant determined by the nucleon DAs,
while A�Q2� and B�Q2� are form-factor-type functions
generated by contributions of low virtualities, see Fig. 1.
The soft functions A�Q2� and B�Q2� are purely nonpertur-
bative and cannot be further simplified e.g. factorized in
terms of DAs. In the light-cone formalism, they are deter-
mined by overlap integrals of the soft parts of hadronic
wave functions corresponding to large transverse separa-
tions. Various estimates suggest that A�Q2� & 1=Q6,
B�Q2� & 1=Q4 and at very large Q2 they are further sup-
pressed by the Sudakov form factor. To be precise, in
higher orders in �s�Q� there exist double-logarithmic con-
tributions�1=Q4 [7] that are not factorized in the standard
manner; however, also they are suppressed by the Sudakov
mechanism [8–10]. Thus, the third term in (1) is formally
the leading one at large Q2 to power accuracy.

The main problem of the pQCD approach is a numerical
suppression of each hard gluon exchange by the �s=�
factor which is a standard perturbation theory penalty for
each extra loop. If, say, �s=�� 0:1, the pQCD contribu-
tion to baryon form factors is suppressed by a factor of 100
compared to the purely soft term. As the result, the onset of
the perturbative regime is postponed to very large momen-
tum transfers since the factorizable pQCD contribution
O�1=Q4� has to win over nonperturbative effects that are
suppressed by extra powers of 1=Q2, but do not involve
small coefficients. There is a growing consensus that
‘‘soft’’ contributions play the dominant role at present
energies. Indeed, it is known for a long time that the use
of QCD-motivated models for the wave functions allows
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FIG. 2 (color online). Schematic structure of the light cone
sum rule for baryon form factors.
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one to obtain, without much effort, soft contributions com-
parable in size to experimentally observed values (see,
e.g. [11–13]). A modern trend [14,15] is to use the concept
of generalized parton distributions (GPDs) to describe/
parametrize soft contributions in various exclusive reac-
tions, see [16–18] for recent reviews, and the models of
GPDs usually are chosen such that the experimental
data on form factors are described by the soft contributions
alone, cf. Refs. [19–21]. A subtle point for these
semiphenomenological approaches is to avoid double
counting of hard rescattering contributions ‘‘hidden’’ in the
model-dependent hadron wave functions or GPD
parametrizations.

The dominant role of the soft contribution for the pion
form factor at moderate momentum transfers, up to Q2 �
2–3 GeV2, is supported by its calculation [22,23] within
the QCD sum rule approach [24]. The application of the
method at higherQ2 faces the problem that the inclusion of
nonperturbative effects due to vacuum condensates
through the expansion over inverse powers of the Borel
parameter M2 interferes with the large-Q2 expansion of the
form factors, producing an ill-behaved series of the typeP
ncn�Q

2=M2�n. For the nucleon form factors, the QCD
sum rule approach only works in the region of small
momentum transfers Q2 < 1 GeV2 [25,26]. To extend the
results to higher Q2, it was proposed [27] to resum the
�Q2=M2�n contributions originating from the Taylor ex-
pansion of simple models for nonlocal condensates.
Another approach [23,28] is to use the so-called local
quark-hadron duality approximation, in which the conden-
sates are effectively neglected. The parameter-free results
for the pion and nucleon form factors obtained in this way
are in a rather good agreement with the existing data.

We also have to mention the dispersion approach of
Refs. [29,30] (see also [31]) which allows to analyze
form factors for all momenta (space and timelike) in a
largely model-independent manner in terms of spectral
functions on a hadronic level. Also, in the future, one
expects that the rapid development of lattice QCD will
allow one to calculate baryon form factors to sufficient
precision from first principles, see e.g. [32–35]. Such
studies are necessary and interesting in its own right, but
do not add to our understanding of how QCD actually
‘‘works’’ to transfer the large momentum along the nu-
cleon constituents, the quarks and gluons. The main moti-
vation to study ‘‘hard’’ processes has always been to
understand hadron properties in terms of quark and gluon
degrees of freedom; for example, the rationale for the
continuing measurements of the total inclusive cross sec-
tion in deep inelastic scattering is to extract quark and
gluon parton distributions. Similar, experimental measure-
ments of the form factors at large momentum transfers
should eventually allow one to determine baryon distribu-
tion amplitudes and this task is obscured by the presence of
large soft contributions which have to be subtracted.
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In Ref. [36] we have suggested to calculate baryon form
factors for moderately large Q2 using light cone sum rules
(LCSR) [37,38]. This technique is attractive because in
LCSRs soft contributions to the form factors are calculated
in terms of the same DAs that enter the pQCD calculation
and there is no double counting. Thus, the LCSRs provide
one with the most direct relation of the hadron form factors
and distribution amplitudes that is available at present,
with no other nonperturbative parameters.

The basic object of the LCSR approach is the correlation
function

Z
dx e�iqxh0jTf��0�j�x�gjN�P�i

in which j represents the electromagnetic (or weak) probe
and � is a suitable operator with nucleon quantum num-
bers. The other (in this example, initial state) nucleon is
explicitly represented by its state vector jN�P�i, see a
schematic representation in Fig. 2. When both the momen-
tum transfer Q2 and the momentum �P0�2 � �P� q�2

flowing in the � vertex are large and negative, the asymp-
totics of the correlation function is governed by the
light cone kinematics x2 ! 0 and can be studied using
the operator product expansion (OPE) Tf��0�j�x�g �P
Ci�x�Oi�0� on the light cone x2 � 0. The

x2-singularity of a particular perturbatively calculable
short-distance factor Ci�x� is determined by the twist of
the relevant composite operator Oi, whose matrix element
h0jOi�0�jN�P�i is given by an appropriate moment of the
nucleon DA. Next, one can represent the answer in form of
the dispersion integral in �P0�2 and define the nucleon
contribution by the cutoff in the quark-antiquark invariant
mass, the so-called interval of duality s0 (or continuum
threshold). The main role of the interval of duality is that it
does not allow large momenta jk2j> s0 to flow through the
�-vertex; to the lowest order O��0

s� one obtains a purely
soft contribution to the form factor as a sum of terms
ordered by twist of the relevant operators and hence in-
cluding both the leading- and the higher-twist nucleon
DAs. Note that, in difference to the hard mechanism, the
contribution of higher-twist DAs is only suppressed by
-2
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powers of j�P0�2j � 1–2 GeV2 (which is translated to the
suppression by powers of the Borel parameter after apply-
ing the usual QCD sum rule machinery), but not by powers
of Q2. This feature is in agreement with the common
wisdom that soft contributions are not constrained to small
transverse separations.

The LCSR expansion also contains terms generating the
asymptotic pQCD contributions. They appear at proper
order in �s, i.e., in the O��s� term for the pion form factor,
at the �2

s order for the nucleon form factors, etc. In the pion
case, it was explicitly demonstrated [39,40] that the con-
tribution of hard rescattering is correctly reproduced in the
LCSR approach as a part of the O��s� correction. It should
be noted that the diagrams of LCSR that contain the hard
pQCD contributions also possess soft parts, i.e., one should
perform a separation of hard and soft terms inside each
diagram. As a result, the distinction between hard and soft
contributions appears to be scale and scheme dependent
[39]. During the last years there have been numerous
applications of LCSRs to mesons, see [41,42] for a review.
Following the work [36] nucleon form factors were further
considered in this framework in Refs. [43–45] and the
weak decay �b ! p‘�‘ in [46]. The generalization to
the N�� transition form factor was worked out in [47].

In this paper, we go beyond the original work [36] in
several important aspects. First, we present a detailed study
using different interpolating currents for the nucleon and
choose one which appears to be the optimal. Second, we
calculate both the electromagnetic and weak decay form
factors. Third, we make an update of the parameters of
higher-twist DAs which feature prominently in this ap-
proach and are important numerically. We then formulate
a simple model for the DAs that provides a good descrip-
tion of the available experimental data. Finally, we include
a complete summary of higher-twist DAs and work out the
light cone expansion of three-quark currents for all Lorentz
structures, which extends the results given in [36]. The
presentation is organized as follows. Section II is introduc-
tory and contains the form factor definitions and some
general discussion. Section III is devoted to the construc-
tion of the sum rules. We present here our numerical results
and the conclusions. The final section IV is reserved for a
short summary and an outlook. The paper contains five
appendices devoted to a summary of correlation functions
to tree-level accuracy, summary of three-quark nucleon
distribution amplitudes, the OPE of generic three-quark
amplitudes to twist-5 accuracy, and the QCD sum rule
estimates for the parameters of higher-twist DAs.
II. PRELIMINARIES

A. Electromagnetic form factors of the nucleon

The matrix element of the electromagnetic current

jem
� �x� � eu �u�x���u�x� � ed �d�x���d�x� (2)
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taken between nucleon states is conventionally written in
terms of the Dirac and Pauli form factors F1�Q

2� and
F2�Q2�:

hN�P0�jjem
� �0�jN�P�i � �N�P0�

�
��F1�Q

2�

� i
���q�

2mN
F2�Q2�

�
N�P�; (3)

where P� is the initial nucleon momentum, P2 � m2
N ,

P0 � P� q, Q2 :� �q2, ��� �
i
2 ���; ���, and N�P� is

the nucleon spinor.
Experimental data on the scattering of electrons off

nucleons, e.g. e� � p! e� � p, is usually presented in
terms of the electric GE�Q2� and magnetic GM�Q2� Sachs
form factors which are related to F1;2�Q2� as

GM�Q2� � F1�Q2� � F2�Q2�; (4)

GE�Q2� � F1�Q2� �
Q2

4m2
N

F2�Q2�: (5)

In the Breit frame the form factors GE�Q2� and GM�Q2�
can be thought of, loosely speaking, as the Fourier trans-
forms of the charge distribution and magnetization density
in the nucleon.

The normalization of the form factors atQ2 � 0 is given
by the nucleon charges and magnetic moments

Gp
E�0� � 1; Gp

M�0� � �p � 2:792 847 337�29�;

Gn
E�0� � 0; Gn

M�0� � �n � �1:913 042 72�45�
(6)

for the proton and the neutron, respectively [48].
Experimentally one finds [49–59] that the magnetic

form factors of both the proton and the neutron can be
described by the famous dipole formula:

Gp
M�Q

2� �
�p

�1� Q2

�2
0
�2
; (7)

Gn
M�Q

2� �
�n

�1� Q2

�2
0
�2
; (8)

with �2
0 � 0:71 GeV2. For the electric form factor of the

neutron the measured values are close to zero [60,61]. In
the case of the electric form factor of the proton the
situation was controversial for some time, with the experi-
mental measurements using the classical method of
Rosenbluth separation producing very different results
compared to the ones obtained using the method of polar-
ization transfer. Recently it was argued [62–70] that the
former approach is not applicable for sufficiently large
momentum transfers, as the contribution of the electric
form factor to the spin-averaged cross section is strongly
contaminated by contributions of the two-photon ex-
change. The existing estimates [62–70] indicate that the
two-photon exchange corrections have the right sign and
-3
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order of magnitude to bring the values obtained via the
Rosenbluth separation to the ones measured using the
polarization transfer, although the situation is not finally
settled. In this work we rely on the polarization transfer
data [71–73].

B. Charged weak form factors

In order to describe charged current (CC) neutrino re-
actions like

�� � n! �� � p; (9)

��� � p! �� � n; (10)

one has to deal with matrix elements between nucleon
states of the vector VCC

� and the axial-vector current ACC
� :

VCC
� �x� � ��������x�; (11)

ACC
� �x� � �����5����x�; (12)

where � is an (iso)spinor consisting of an up and a down
quark and �� � 1=2��1 � i�2� is a linear combination of
the familiar Pauli matrices.

One defines the corresponding vector and the axial-
vector form factors as

hN�P0�jVCC
� �0�jN�P�i � �N�P0�

�
��FCC

1 �Q
2�

� i
���q

�

2mN
FCC

2 �Q
2�

�
N�P�;

hN�P0�jACC
� �0�jN�P�i � �N�P0�

�
��G

CC
A �Q

2�

�
q�

2mN
GCC
P �Q

2�

� i
���q

�

2mN
GCC
T �Q

2�

�
�5N�P�:

(13)

The vector form factors can be related with the electro-
magnetic ones with the help of isospin symmetry, to wit

hpj �u��djni � hpjj�emjpi � hnjj
�
emjni;

hpj �u���5djni � hpj� �u�
��5u� �d���5d�jpi:

(14)

The first relation gives, e.g.

FCC
1 �Q

2� � Fp1 �Q
2� � Fn1 �Q

2�;

FCC
2 �Q

2� � Fp2 �Q
2� � Fn2 �Q

2�:
(15)

The axial form factor GCC
A �Q

2� can be determined either
from quasielastic neutrino scattering or from pion electro-
production (with the help of current algebra). The neutrino
data are available for Q2 values up to 3 GeV2 [74–77].
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They were reanalyzed recently in [78]. The pion electro-
production data exist for Q2 < 1 GeV2, e.g. [79]. After the
inclusion of a finite pion mass correction in the analysis
[80], the extracted form factor agrees well with the deter-
minations in neutrino scattering. All the existing experi-
mental data for GCC

A �Q
2� at Q2 < 1 GeV2 are very well

described by the dipole formula:

GCC
A �Q

2� �
gA

�1� Q2

M2
A
�2
; (16)

with gA � 1:267	 0:004. The mass parameter is fitted
to be MA � 1:001	 0:020 GeV and MA � 1:013	
0:015 GeV from neutrino scattering and pion electropro-
duction, respectively.

The pseudoscalar form factor GCC
P �Q

2� can be extracted
separately from muon capture of the proton �� � p!
�� � n or from pion electroproduction. In this case only
the data for Q2-values below 0:2 GeV2 exist [81], which is
too low for the application of our method. Using partially
conserved axial current (PCAC) and the pion pole domi-
nance model one can express the pseudoscalar form factor
GCC
P in terms of the axial form factor GCC

A :

GCC
P �Q

2� �
4m2

NG
CC
A �Q

2�

Q2 �m2
�

: (17)

This form is consistent with the conservation of the flavor
nonsinglet axial current in the chiral limit (m2

� ! 0).
Finally, the tensor form factor GCC

T �Q
2� must vanish by

virtue of the isospin symmetry and T-invariance, so it is
normally not included. The reason why we leave it in
Eq. (13) is that in our approach the initial and the final
state nucleons are treated differently, so that T-invariance
is not manifest.

C. Neutral weak form factors

The cross section for elastic neutrino-proton and
neutrino-neutron scattering can be expressed in terms of
matrix elements of a vector VNC

� and an axial-vector ANC
�

neutral currents:

VNC
� �x� �

1
2��1�

8
3sin2	W� �u�

�u�x�

� �1� 4
3sin2	W� �d�

�d�x��; (18)
ANC� �x� �
1
2� �u�

��5u�x� � �d���5d�x��; (19)

where 	W is the Weinberg angle. The matrix elements of
neutral currents over the nucleon states are conventionally
written as
-4
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hN�P0�jVNC
� �0�jN�P�i � �N�P0�

�
��F

NC
1 �Q

2�

� i
���q�

2mN
FNC

2 �Q
2�

�
N�P�;

hN�P0�jANC
� �0�jN�P�i � �N�P0�

�
��G

NC
A �Q

2�

�
q�

2mN
GNC
P �Q

2�

� i
���q

�

2mN
GNC
T �Q

2�

�
�5N�P�:

(20)

The vector form factors FNC
1 and FNC

2 are, again, just linear
combinations of the electromagnetic form factors of the
nucleon. For the axial neutral weak form factors (GNC

A and
GNC
P ) there is little data, and only for Q2 < 1 GeV2 [82]

which is below the region we try to describe theoretically.
The tensor form factor GNC

T �Q
2� must vanish by virtue of

T-invariance; the reason we include it will become clear
later.

D. Light cone kinematics

Having in mind the practical construction of light cone
sum rules that involve nucleon DAs, we define a lightlike
vector z� by the condition

q 
 z � 0; z2 � 0 (21)

and introduce the second lightlike vector

p� � P� �
1

2
z�

m2
N

P 
 z
; p2 � 0; (22)

so that P! p if the nucleon mass can be neglected,
mN ! 0. The photon momentum can be written as

q� � q?� � z�
P 
 q
P 
 z

: (23)

We also need the projector onto the directions orthogonal
to p and z,

g?�� � g�� �
1

pz
�p�z� � p�z��; (24)

and use the notation

az � a�z�; ap � a�p�; (25)

for arbitrary Lorentz vectors a�. In turn, a? denotes the
generic component of a� orthogonal to z and p, in par-
ticular

q?� � q� �
pq
pz
z�: (26)

We use the standard Bjorken-Drell convention [83] for
the metric and the Dirac matrices; in particular, �5 �
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i�0�1�2�3, and the Levi-Civita tensor 
���� is defined
as the totally antisymmetric tensor with 
0123 � 1.

Assume for a moment that the nucleon moves in the
positive ez direction, then p� and z� are the only non-
vanishing components of p and z, respectively. The infinite
momentum frame can be visualized as the limit p� �Q!
1with fixed P 
 z � p 
 z� 1 whereQ is the large scale in
the process. Expanding the matrix element in powers of
1=p� introduces the power counting inQ. In this language,
twist counts the suppression in powers of p�. Similarly, the
nucleon spinor N��P; �� has to be decomposed in ‘‘large’’
and ‘‘small’’ components as

N��P; �� �
1

2p 
 z
�6pz6 � z6 6p�N��P; ��

� N�� �P; �� � N
�
� �P; ��; (27)

where we have introduced two projection operators

�� �
6pz6

2p 
 z
; �� �

z6 6p
2p 
 z

(28)

that project onto the ‘‘plus’’ and ‘‘minus’’ components of
the spinor. Note the useful relations

6pN�P� � mNN��P�; z6 N�P� �
2p 
 z
mN

N��P� (29)

that are a consequence of the Dirac equation 6PN�P� �
mNN�P�. Using the explicit expressions for N�P� it is easy
to see that ��N � N� �

�������
p�

p
while ��N � N� �

1=
�������
p�

p
.

Note that all expressions are invariant under the repar-
ametrization z� ! �z� where � is a real number; we will
use this freedom to set z� equal to the minus component of
the distance between the currents in the operator product.
III. LIGHT CONE SUM RULES FOR BARYON
FORM FACTORS

A. Choice of the current

As already mentioned, in the LCSR approach one of the
participating nucleons is replaced by a suitable interpolat-
ing current for which there are several choices. Altogether,
there exist three local operators with isospin I � 1=2 num-
bers that do not involve derivatives [84]. They can be
chosen as

�1�x� � "ijk�ui�x�C��u
j�x���5�

�dk�x�; (30)

�2�x� � "ijk�ui�x�C���uj�x���5���dk�x�; (31)

�3�x� �
2

3

ijk��ui�x�Cz6 uj�x���5z6 d

k�x�

� �ui�x�Cz6 dj�x���5z6 uk�x��; (32)

where u�x� and d�x� are the u-quark and the d-quark field
-5
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operators, respectively, i, j, k are color indices, C is the
charge-conjugation matrix [83], and z is a lightlike vector,
z2 � 0. The corresponding couplings

h0j�1�0�jN�P�i � �1mNN�P�;

h0j�2�0�jN�P�i � �2mNN�P�;

h0j�3�0�jN�P�i � fN�Pz�z6 N�P�

(33)

are well known, albeit with limited precision, from the vast
QCD sum rule literature, see Eq. (B13) in Appendix B for
the current estimates.

The operator �1 is known as the Ioffe current [85]. There
is overwhelming evidence (see, however [86]) that this
current gives rise to more accurate and reliable sum rules
compared to�2 [87]. By this reason we do not use�2 in the
construction of the LCSRs below. Both constants �1 and �2

do appear in the sum rules, however, as they determine the
normalization of the higher-twist-4 nucleon DAs.

In turn, the operator �3 is twist-3 and the corresponding
coupling fN determines the normalization of the leading-
twist nucleon DA [88]. Using the currents of lower twist is
in general advantageous, as the corresponding correlation
functions have lower dimension and are less affected by the
model-dependent continuum subtraction. LCSRs obtained
with this current are most close in spirit to pQCD factori-
zation. The price to pay is that this current couples both to
the spin J � 1=2 and spin J � 3=2 baryons and it is
unclear whether the unwanted J � 3=2 contributions to
the correlation function are sufficiently suppressed. This
current has been used more rarely in the practice of QCD
sum rule calculations, so that there is less experience.

In Ref. [36] a modification of the current (32) was used

�4�x� � 
ijk�ui�x�Cz6 uj�x���5z6 d
k�x�;

h0j�4�0�jN�P�i � fN�Pz�z6 N�P�;
(34)

which, in difference to �3, also couples to the isospin I �
3=2 states (e.g. the �-isobar).

A priori, it is not obvious whether using the pure
isospin-1=2 or, similarly, pure spin-1=2 currents improves
the accuracy of the sum rules. It is conceivable that the
summation over quantum numbers makes the duality ap-
proximation for taking into account contributions of heavy
resonances and the continuum more accurate and also
suppresses poorly known contributions of higher-
dimension (twist) operators. In a different context, there
have been various proposals to add together correlation
functions of opposite parity, [89], use chirally projected
quark fields, e.g. [90], etc.

We believe that there is no general recipe; one has to
consider each case separately and the conclusions can vary.
For the problem at hand, it was noticed in [45] that using
the currents�3 and�4 one obtains numerical results for the
nucleon form factors that differ significantly from one
another. In this work we demonstrate that this difference
094019
is due to the contamination of the sum rules [36] by the
contributions of isospin I � 3=2 states and, therefore, the
use of the pure-isospin current �3 is strongly preferred
compared to �4. On the other hand, the sum rules obtained
using �1 and �3 are complementary to a large extent and
both of them are useful. Nevertheless, using the Ioffe
current �1 produces the sum rules that are more stable
and seem to be superior in all respects, which makes this
current to be our final choice.

B. Correlation functions

We consider the set of correlation functions

Ti;em
� �P; q� � i

Z
d4xeiqxh0jT��i�0�j

em
� �x��jN�P�i;

Ti;a� �P; q� � i
Z

d4xeiqxh0jT��i�0�ja
��x��jN�P�i;

Ti;v� �P; q� � i
Z

d4xeiqxh0jT��i�0�jv
��x��jN�P�i;

(35)

where T denotes time-ordering, jN�P�i is the proton state
with four-momentum P�, P2 � m2

N , �i with i � 1, 3, 4 are
the nucleon currents defined in (30). Further, jem

� is the
electromagnetic current defined (2) whereas ja

� and jv
� are

the isospin-one axial and vector currents, respectively:

ja;nc
� �x� �

1
2� �u�x����5u�x� � �d�x����5d�x��;

ja;cc
� �x� � �u�x����5d�x�;

jv;nc
� �x� �

1
2� �u�x���u�x� �

�d�x���d�x��;

jv;cc
� �x� � �u�x���d�x�:

(36)

The correlation functions in (35) involve several invariant
functions that can be separated by the appropriate projec-
tions. Lorentz structures that are most useful for writing the
LCSRs are usually those containing the maximum power
of the large momentum p� � pz. We define, for the Ioffe
current

��T
1;em
z � �pz�fmNA

em
1 � q6 ?B

em
1 gN

��P�;

��T1;a
z � �pz�fmNA

a
1 � q6 ?B

a
1g�5N��P�;

��T1;v
z � �pz�fmNA

v
1 � q6 ?B

v
1gN

��P�;

(37)

where A and B depend on the Lorentz-invariants Q2 �
�q2 and P02 � �P� q�2. For the leading-twist current �3

we use instead

T3;em
z �

2�pz�3

m2
N

fmNA
em
3 � q6 ?B

em
3 gN

��P�;

T3;a
z �

2�pz�3

m2
N

fmNA
a
3 � q6 ?B

a
3g�5N��P�;

T3;v
z �

2�pz�3

m2
N

fmNA
v
3 � q6 ?B

v
3gN

��P�;

(38)

and similarly for �4:
-6
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T4;em
z �

2�pz�3

m2
N

fmNA
em
4 � q6 ?B

em
4 gN

��P�;

T4;a
z �

2�pz�3

m2
N

fmNA
a
4 � q6 ?B

a
4g�5N��P�;

T4;v
z �

2�pz�3

m2
N

fmNA
v
4 � q6 ?B

v
4gN

��P�:

(39)
The elastic nucleon form factor contribution of interest
corresponds to a pole term in the variable P02. For the
relevant projections we get
Aem
1 �

2�1Fem
1

m2
N � P

02 ; Bem
1 �

�1Fem
2

m2
N � P

02 ;

Aa;nc
1 �

2�1G
NC
A

m2
N � P

02 ; Ba;nc
1 �

�1G
NC
T

m2
N � P

02 ;

Av;cc
1 �

2�1F
v;cc
1

m2
N � P

02 ; Bv;cc
1 �

�1F
v;cc
2

m2
N � P

02 ;

Aa;cc
1 �

2�1G
CC
A

m2
N � P

02 ; Ba;cc
1 �

�1G
CC
T

m2
N � P

02 :

Aem
3;4 �

2fNFem
1

m2
N � P

02 ; Bem
3;4 �

�fNFem
2

m2
N � P

02 ;

Aa;nc
3;4 �

�2fNG
NC
A

m2
N � P

02 ; Ba;nc
3;4 �

fNG
NC
T

m2
N � P

02 ;

Av;cc
3;4 �

2fNF
v;cc
1

m2
N � P

02 ; Bv;cc
3;4 �

�fNF
v;cc
2

m2
N � P

02 ;

Aa;cc
3;4 �

�2fNG
CC
A

m2
N � P

02 ; Ba;cc
3;4 �

fNG
CC
T

m2
N � P

02 :

(40)
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FIG. 3 (color online). LCSR prediction (Ioffe current) for the
magnetic form factor of the proton normalized to the dipole form
factor Gp

M=��pGD�. The data points: �: SLAC 1994 [49]; �:
SLAC 1994 [50]; �: SLAC 1970 [51]
 ; �: Bonn 1971 [52]
 ; �:
Stanford 1966 [53]
 ; �: JLab 2004 [55];4: JLab 2005 [56]. ( 
 :
Data actually taken from [54]).
Note that the pseudoscalar form factor GP does not con-
tribute to the z�T� projection because of the condition
qz � 0. It can be extracted from the LCSR for other
structures, or through the relation to the axial form factor
in Eq. (17) which is exact to our accuracy.

On the other hand, the correlation functions can be
calculated in QCD for sufficiently large negative P02 and
q2 � �Q2 in terms of nucleon DAs using the OPE. The
corresponding expressions (to tree-level accuracy) are col-
lected in Appendix A. Matching between the two repre-
sentations one obtains the light cone sum rule that relates
the nucleon form factors with nucleon DAs. The precise
procedure was described many times in the literature (see
e.g. [36]) so we omit the technical steps. The resulting sum
rules depend on two parameters: the continuum threshold
s0 ’ �1:5 GeV�2 and Borel parameterM2 which defines the
scale at which the matching between the two representa-
tions is done. The dependence on the Borel parameter is
rather weak. For definiteness, in the plots shown below we
take M2 � 2 GeV2.
094019
C. Results: Ioffe current

In this section we present LCSR predictions for the
nucleon form factors that are obtained using the Ioffe
interpolating current �1 for the proton. The form factors
are plotted in the range of the momentum transfers 1 �
Q2 � 10 GeV2; for smaller Q2 our approach is not appli-
cable, for larger Q2 we expect that radiative corrections to
the sum rules (that include, in particular, the usual pQCD
contribution) will become dominant. The calculations are
done using two representative sets of nucleon distribution
amplitudes: asymptotic DAs (solid curves) and including
the corrections estimated using QCD sum rules (dashed
curves), see Appendices B, C, and D for the definitions. At
this stage we do not attempt to fit the form factors by tuning
the parameters of DAs, the difference between the solid
and the dashed curves gives more or less the range of form
factor values that can be obtained with the DAs of ‘‘rea-
sonable’’ shape.

The prediction for the proton magnetic form factor
normalized to the dipole form factor, Gp

M=��pGD�, where

GD � �1�Q2=0:71 GeV2�2;

is shown in Fig. 3. Both the Q2 dependence and the
magnitude of the form factor is reproduced rather well,
especially if using asymptotic DAs.

The result for the ratio of the proton electric form factor
to the magnetic for factor, �pG

p
E=G

p
M, is plotted in Fig. 4.

For completeness, we include on this plot the data obtained
both via Rosenbluth separation and the polarization trans-
fer techniques, although the former one is most likely
flawed. Most interestingly, this ratio appears to be very
sensitive to the shape of nucleon DAs. Whereas the experi-
mental data obtained via Rosenbluth separation could
-7
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FIG. 6 (color online). LCSR prediction (Ioffe current) for the
electric form factor of the neutron Gn

E�Q
2�. The data points: �:

SLAC 1993 [57]; �: Jefferson Lab 2001 [60]; �: Mainz 1999
[61].
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FIG. 4 (color online). LCSR prediction (Ioffe current) for the
electric form factor of the proton normalized to the magnetic
form factor: �pG

p
E=G

p
M. The data points obtained via

Polarization transfer: �: Jefferson LAB 2002 [73]; �:
Jefferson LAB 2001 [72]; �: Jefferson LAB 2000 [71]; The
data points obtained via Rosenbluth separation: �: SLAC 1994
[50]; �: SLAC 1994 [49]; �: SLAC 1970 [51]
 ; �: Bonn 1971
[52]
 ; �: Stanford 1966 [53]
 ; �: JLab 2004 [55]; 4: JLab
2005 [56]. ( 
 : Data actually taken from [54]).
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FIG. 7. LCSR prediction (Ioffe current) for the axial form
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nicely be described by asymptotic DAs alone, the polar-
ization transfer data require considerable corrections.

The LCSR predictions for the neutron are shown in
Figs. 5 and 6 for the magnetic and the electric form factors,
respectively. In this case, again, the magnetic form factor is
described reasonably well by asymptotic DAs, while the
magnitude and even the sign of the electric form factor
depends on their shape. Further, the LCSR prediction
for the axial form factor of the proton GCC

A normalized to
G�a�D � 1:267=�1�Q2�2 is shown in Fig. 7. Experi-
mentally, this ratio is close to 1. A more steep
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FIG. 5 (color online). LCSR prediction (Ioffe current) for the
magnetic form factor of the neutron normalized to the dipole
form factor Gn

M=��nGD�. The data points: �: SLAC 1993 [57];
�: Mainz 2002 [58]; �: Mainz 1998 [59].

factor GA normalized to GD � gA=�1�Q � .
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FIG. 8. LCSR prediction (Ioffe current) for the tensor form
factor GCC

T normalized to GCC
A .
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FIG. 9 (color online). Test of the isospin relations for the form
factor F1 (upper panels) and F2 (lower panels) using the asymp-
totic form of the nucleon DAs (left panels) and including
corrections estimated from QCD sum rules (right panels). The
lower and the upper solid curves show the r.h.s and the l.h.s. of
the relation in (41), obtained from the LCSRs using the current
�4 and normalized to the dipole form factor GD. The thick
dashed curves show the LCSR result obtained with the �3

current, in which case the isospin relation is satisfied identically.
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FIG. 10 (color online). LCSR results for the electromagnetic
form factors of the nucleon, obtained using the leading twist-3
interpolating current �3. Identification of the curves and the data
points is the same as in Figs. 3–6.
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Q2-dependence of the axial form factor compared to the
electromagnetic ones seems to be correctly reproduced,
and also the normalization agrees within 50% accuracy.

Last but not least, in Fig. 8 we show the LCSR result for
the form factor GCC

T normalized to GCC
A . As mentioned

above, this form factor is forbidden by T-invariance so
that this ratio has to be zero. In the LCSR approach the final
and the initial state nucleons are treated differently and the
T-invariance is not manifest. Smallness of GT is therefore
an indication of how good the nucleon state is separated
from the continuum by the simple duality assumption. We
observe that GCC

T =GCC
A strongly depends on the shape of

the nucleon DAs. It is small and negative for asymptotic
DAs but becomes positive if the DAs acquire large
corrections.

D. Results: Leading-twist currents

1. Checking isospin relations

One of the main motivations for our study is to find out
the optimal nucleon current for the calculation of nucleon
form factors within the framework of LCSR.

In Ref. [36] the current �4, Eq. (34), was used which in
difference to �3, Eq. (32), couples both to isospin I � 1=2
and I � 3=2 states. A priori, it is not obvious which current
is better since the summation over quantum numbers may
improve the accuracy of the duality approximation for the
continuum and also it usually suppresses poorly known
contributions of higher-dimension (twist) operators. The
new observation of this work is that this argumentation can
be tested by checking the isospin relations e.g. for the
vector current:

FCC
1 �Q

2� � Fp1 �Q
2� � Fn1 �Q

2�;

FCC
2 �Q

2� � Fp2 �Q
2� � Fn2 �Q

2�;
(41)

cf. (14). These relations are fulfilled identically if the �3

(or �1) current is used, because in this case the correlation
functions (35) satisfy isospin relations by themselves.
However, when using the �4 current, the extracted form
factors satisfy the relations in (41) only approximately,
within the sum rule accuracy. In particular, their violation
provides one with a direct measure of the contamination of
the nucleon contribution by isospin I � 3=2 states.

The results are shown in Fig. 9 for F1 and F2 on the two
upper and two lower panels, respectively. We see that
(unphysical) isospin breaking is relatively moderate in
case that asymptotic nucleon DAs are chosen, but it ex-
plodes if the DAs acquire significant corrections. The
situation with axial form factors proves to be similar.
Since the ultimate goal of our study is to determine nucleon
DAs from the comparison to the data, such a behavior
presents a crucial disadvantage. We conclude that the
LCSRs with the current �4 do not pass the test; they are
strongly contaminated with the isospin I � 3=2 contribu-
tions and do not allow for any quantitative form factor
094019
determinations. Hence, hereafter we drop the �4 current
and only consider �3 (and �1).

2. Nucleon form factors for �3

Here we present LCSR results for the nucleon form
factors, obtained using the interpolating current �3.
Electromagnetic form factors are shown in Fig. 10, and
weak form factors in Fig. 11, respectively. As above, the
calculations are done using asymptotic DAs (solid curves)
and including the corrections estimated using QCD sum
rules (dashed curves), see Appendices B, C, and D for
-9
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details. The agreement with the data is in general some-
what worse compared to the calculations using the Ioffe
current and, most interestingly, the corrections to asymp-
totic DAs ‘‘work’’ in opposite direction. We repeat that
nonzero values obtained for the tensor form factor GT are
artifact of our approach and can be used to quantify the
error estimates.

As a matter of principle, sum rules using all interpolat-
ing currents have to produce the same results. In practice it
has never been the case and the optimal choice of the
interpolating current is a very important part of the QCD
sum rule method. In our case it is possible that the differ-
ence between predictions based on �1 and �3 currents will
decrease when radiative corrections to the sum rules are
included. Still, on the basis of information that we have
now and the experience of QCD sum rule calculations with
baryons in general, we believe that the Ioffe current �1

provides the best option for the construction of the LCSRs.
The LCSRs based on the leading-twist current �3 are valid
and useful for making a consistency check since their
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FIG. 12. LCSR results (solid curves) for the electromagnetic
form factors of the nucleon, Fp1 (left) and Fp2 (right) obtained
using the interpolating current �1 (upper two panels) and �3

(lower two panels) and asymptotic nucleon DAs. On each plot,
the dashed-dotted curves show the contribution of leading-twist
DAs only, including the corresponding nucleon mass corrections.
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structure and the relative weight of DAs of different twist
is very different.

To illustrate this issue we show in Fig. 12 the LCSR
results for Fp1 and Fp2 obtained using the interpolating
current �1 (upper two panels) and �3 (lower two panels)
and asymptotic nucleon DAs. On each plot, solid curves
correspond to the sum of contributions of all twists and the
dashed-dotted curves show the contribution of leading-
twist DAs only, including the corresponding nucleon
mass corrections. Notice that the Q2 dependence of the
leading-twist and the higher-twist contributions is almost
the same. This is to be expected, since higher-twist cor-
rections to the sum rules are only suppressed by a power of
the Borel parameter, not a power of Q2. On the other hand,
the relative weight of the leading-twist and the higher-twist
terms depends strongly on the current: E.g. for Ioffe cur-
rent F1 is almost entirely higher twist, whereas for the �3

current the leading-twist contribution is dominant. Also for
F2 the sum rules based on the �3 current are more sensitive
to the leading-twist DAs and may be more useful to obtain
restrictions on the corresponding parameters. We expect
that such differences will be moderated upon inclusion of
the radiative corrections to the sum rules. However, the
Ioffe current-based sum rules will most likely still provide
higher accuracy for the form factors.

E. A model for the nucleon distribution amplitudes

The nucleon DAs provide the principal nonperturbative
input to the LCSRs. As we have seen, in many cases
experimental data are in between the LCSR calculations
that asymptotic and QCD sum rule-based DAs. This sug-
gests that a good description of the data is possible by
tuning the parameters of the DAs. As a demonstration, we
present here the results obtained using a simple model in
which the deviation from the asymptotic DAs is taken to be
one-third of that suggested by the QCD sum rule estimates.

The corresponding parameters are:

Au1 � 0:13; Vd1 � 0:30; fd1 � 0:33;

fu1 � 0:09; fd2 � 0:25;
(42)

where the first two refer to the leading twist-3 and the rest
correspond to twist-4. These values are not unreasonable,
since QCD sum rules are known to overestimate the matrix
elements of higher conformal spin operators, and we just
made the simplest assumption that all sum rule results have
to be rescaled by the same factor. Our leading-twist pa-
rameter V1 is very close to the phenomenological Bolz-
Kroll model [91]; A1 is somewhat bigger but the depen-
dence of the leading-order sum rules on this parameter is
weak. To this accuracy, the sum rules also do not depend on
the parameters �2 and fd2 ; this dependence is present,
however, in the transition form factors like �
N ! �.

The calculations using this model are shown by solid
curves for the electromagnetic form factors in Fig. 13 and
-10
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FIG. 13 (color online). LCSR results (solid curves) for the
electromagnetic form factors of the nucleon, obtained using
the model of the nucleon DAs (42) and the Ioffe current �1.
The dotted curves show the effect of the variation of the ratio
fN=�1 by 30%. Identification of the data points is the same as in
Figs. 3–6.
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weak form factors in Fig. 14, respectively. In addition, in

Fig. 15 we plot the corresponding
������
Q2

p
Fp2 =F

p
1 ratio. On the

same plots we show by the dotted curves the effect of the
variation of the couplings ratio fN=�1 (see Eqs. (33))
within a conservative 30% error range. This ratio deter-
mines the overall normalization of the leading-twist DAs
compared to higher twist so that the sensitivity to fN=�1 is
a good indication of the relative size of the leading-twist
contributions to the LCSRs.

One sees that the experimental data on the electromag-
netic form factors are reproduced very well, and, most
welcome, the unphysical tensor form factor GT becomes
consistent with zero. Also for the axial form factor there is
a good agreement, both in shape and normalization.

Last but not least, we can use the same set of DAs to
calculate the �
N ! � transition form factors within the
LCSR approach, following Ref. [47]. The results are
shown in Fig. 16. In this case we also get a much better
agreement with the experimental data on the electric form
factor compared to the calculations that use asymptotic or
sum rule-based DAs.

We should warn that the model in Eq. (42) is not based
on any systematic attempt to fit the data and in fact we
believe that any such fitting would be premature before the
radiative corrections to the LCSR are calculated. In addi-
tion, one has to take into account the scale dependence of
the parameters of the DAs and study in more detail the
dependence of the sum rules on the Borel parameter. Still,
the very possibility to describe many different form factors
using the same set of DAs is nontrivial and indicates the
self-consistency of our approach. The true parameters of
the DAs are probably not far from the numbers quoted in
Eq. (42), although at this stage we cannot give any error
estimates.
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IV. CONCLUSIONS

Following the proposal in Ref. [36] we have made a
comprehensive study of leading-order light cone sum rules
for the electromagnetic and weak nucleon form factors. We
presented detailed results that are obtained using different
interpolating currents for the nucleon and argue that the
Ioffe current appears to be the optimal. We make an update
of the QCD sum rule estimates of the shape parameters of
higher-twist DAs and also present a simple model that
seems to reproduce main features of the experimental
data remarkably well. In addition we included a complete
summary of higher-twist DAs and some new expressions
for the OPE of three-quark operators which extend the
results given in [36].

Our main conclusion in this work is that the LCSR
approach to baryon form factors seems to be sufficiently
accurate to allow one to get a quantitative description of
hard exclusive reactions with baryons. From the theory
point of view, this technique is attractive because in
LCSRs soft contributions to the form factors are calculated
in terms of the same DAs that enter the pQCD calculation
and there is no double counting. The asymptotic pQCD
limit, in fact, formally corresponds to a part of the two-
loop �2

s radiative correction to the sum rules. Thus, the
LCSRs provide one with the most direct relation of
the hadron form factors and distribution amplitudes that
is available at present, with no other nonperturbative
parameters.

We remind that the sum rules considered in this work are
tree level. Further progress in this direction requires the
calculation of the radiative one-loop correction to contri-
butions of twist-3 and twist-4 operators. It would also be
very valuable to have lattice evaluations for at least some
of the parameters that enter the DAs, most importantly the
fN=�1 ratio.
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APPENDIX A: SUMMARY OF CORRELATION
FUNCTIONS

In this appendix we present the tree-level results for the
correlation functions defined in Eqs. (37) and (38). The
correlation functions are expressed in terms of nucleon
DAs that are summarized in Appendix B below. We use
the following notations:
094019
~F�x3� �
Z x3

1
dx03

Z 1�x03

0
dx1F�x1; 1� x1 � x03; x

0
3�;

~~F�x3� �
Z x3

1
dx03

Z x03

1
dx003

Z 1�x003

0
dx1F�x1; 1� x1 � x

00
3 ; x

00
3 �

(A1)

and

F̂�x2� �
Z x2

1
dx02

Z 1�x02

0
dx1F�x1; x02; 1� x1 � x02�;

^̂F�x2� �
Z x2

1
dx02

Z x02

1
dx002

Z 1�x002

0
dx1F�x1; x

00
2 ; 1� x1 � x

00�;

(A2)

where F � A, V, T is a generic nucleon DA that depends
on the three valence quark momentum fractions, and also
shorthand notations for the combinations of the DAs:

V43 � V4 � V3;

V123 � V1 � V2 � V3;

V1345 � �2V1 � V3 � V4 � 2V5;

V12 345 � 2V1 � V2 � V3 � V4 � V5;

V123 456 � �V1 � V2 � V3 � V4 � V5 � V6;

(A3)

A34 � A3 � A4;

A123 � �A1 � A2 � A3;

A1345 � �2A1 � A3 � A4 � 2A5;

A12 345 � 2A1 � A2 � A3 � A4 � A5;

A123 456 � A1 � A2 � A3 � A4 � A5 � A6

(A4)

and also

T137 � T1 � T3 � T7;

T13 478 � 2T1 � T3 � T4 � T7 � T8;

T134 678 � T1 � T3 � T4 � T6 � T7 � T8:

(A5)

In addition, in this appendix we use

q3 � q� x3P; q2 � q� x2P:

In this notation we obtain, for the correlation functions
involving the Ioffe current �1:
-12
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Aem
1 � 2ed

Z 1

0
dx3

�
Q2 � q2

3

q4
3

~V123 �
x3

q2
3

Z �x3

0
dx1V3�xi� �

x2
3m

2
N

q4
3

~V43

�
� 2eu

Z 1

0
dx2

�
x2

q2
2

Z �x2

0
dx1��2V1 � 3V3 � A3��xi�

�
2x2m2

N

q4
2

VM�u�
1 �

Q2 � q2
2

q4
2

V̂123 �
Q2 � q2

2

q4
2

Â123 �
x2

2m
2
N

q4
2

�V̂1345 � 2V̂43 � Â34� �
2x2m2

N

q4
2

^̂V123 456

�
;

Bem
1 � �2ed

Z 1

0
dx3

�
1

q2
3

Z �x3

0
dx1V1�xi� �

m2
N

q4
3

VM�d�
1 �

x3m2
N

q4
3

� ~V123 � ~V43�

�
� 2eu

Z 1

0
dx2

�
1

q2
2

Z �x2

0
dx1�V1 � A1��xi�

�
m2
N

q4
2

�VM�u�
1 �AM�u�

1 � �
x2m2

N

q4
2

�V̂1345 � V̂123 � Â123 � 2V̂43 � Â34�

�
; (A6)

Aa;nc
1 �

Z 1

0
dx3

�
Q2 � q2

3

q4
3

~V123 �
x3

q2
3

Z �x3

0
dx1V3�xi� �

x2
3m

2
N

q4
3

~V43

�
�
Z 1

0
dx2

�
x2

q2
2

Z �x2

0
dx1�2A1 � 3A3 � V3��xi�

�
2x2m2

N

q4
2

AM�u�
1 �

Q2 � q2
2

q4
2

Â123 �
Q2 � q2

2

q4
2

V̂123 �
x2

2m
2
N

q4
2

�Â1345 � 2Â34 � V̂43� �
2x2m2

N

q4
2

^̂A123 456

�
;

Ba;nc
1 �

Z 1

0
dx3

�
1

q2
3

Z �x3

0
dx1V1�xi� �

m2
N

q4
3

VM�d�
1 �

x3m2
N

q4
3

� ~V123 � ~V43�

�
�
Z 1

0
dx2

�
1

q2
2

Z �x2

0
dx1�V1 � A1��xi�

�
m2
N

q4
2

�VM�u�
1 �AM�u�

1 � �
x2m2

N

q4
2

�Â1345 � V̂123 � Â123 � 2Â34 � V̂43�

�
: (A7)

For the correlation functions involving the leading-twist current �3 we get

Aem
3 � �

4

3
eu
Z 1

0
dx2

�
x2

q2
2

Z �x2

0
dx1�V1 � 2T1��xi� �

x2m
2
N

q4
2

�VM�u�
1 � 2T M�u�

1 � �
x2

2m
2
N

q4
2

�V̂12 345 � 2T̂13 478�

�
2x3

2m
4
N

q6
2

� ^̂V123 456 � 2 ^̂T134 678�

�
�

2

3
ed
Z 1

0
dx3f�x2 ! x3; F̂ ! ~F�g;

Bem
3 �

4

3
eu
Z 1

0
dx2

�
x2m

2
N

q4
2

�V̂123 � 2T̂137� �
2x2

2m
4
N

q6
2

� ^̂V123 456 � 2 ^̂T134 678�

�
�

2

3
ed
Z 1

0
dx3f�x2 ! x3�; F̂ ! ~Fg; (A8)

Aa;nc
3 �

2

3

Z 1

0
dx2

�
x2

q2
2

Z �x2

0
dx1�A1 � 2T1��xi� �

x2m2
N

q4
2

�AM�u�
1 � 2T M�u�

1 � �
x2

2m
2
N

q4
2

�Â12 345 � 2T̂13 478�

�
2x3

2m
4
N

q6
2

� ^̂A123 456 � 2 ^̂T134 678�

�
�

1

3

Z 1

0
dx3

�
x3

q2
3

Z �x3

0
dx1�V1�xi� � 2T1�xi�� �

x3m2
N

q4
3

�VM�d�
1 � 2T M�d�

1 �

�
x2

3m
2
N

q4
3

� ~V12 345 � 2 ~T13 478� �
2x3

3m
4
N

q6
3

�~~V123 456 � 2~~T134 678�

�
;

Ba;nc
3 � �

2

3

Z 1

0
dx2

�
x2m2

N

q4
2

�Â123 � 2T̂137� �
2x2

2m
4
N

q6
2

� ^̂A123 456 � 2 ^̂T134 678�

�
�

1

3

Z 1

0
dx3

�
x3m2

N

q4
3

� ~V123 � 2 ~T137�

�
2x2

3m
4
N

q6
3

�~~V123 456 � 2~~T134 678�

�
; (A9)

and, finally, for the correlation functions involving �4:

Aem
4 � �4eu

Z 1

0
dx2

�
x2

q2
2

Z �x2

0
dx1V1�xi� �

x2m2
N

q4
2

VM�u�
1 �

x2
2m

2
N

q4
2

V̂12 345 �
2x3

2m
4
N

q6
2

^̂V123 456

�

� 2ed
Z 1

0
dx3f�x2 ! x3; F̂ ! ~F�g;

Bem
4 � 4eu

Z 1

0
dx2

�
x2m

2
N

q4
2

V̂123 �
2x2

2m
4
N

q6
2

^̂V123 456

�
� 2ed

Z 1

0
dx3f�x2 ! x3�; F̂ ! ~Fg; (A10)
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Aa;nc
4 � 2

Z 1

0
dx2

�
x2

q2
2

Z �x2

0
dx1A1�xi� �

x2m
2
N

q4
2

AM�u�
1 �

x2
2m

2
N

q4
2

Â12 345 �
2x3

2m
4
N

q6
2

^̂A123 456

�

�
Z 1

0
dx3

�
x3

q2
3

Z �x3

0
dx1V1�xi� �

x3m
2
N

q4
3

VM�d�
1 �

x2
3m

2
N

q4
3

~V12 345 �
2x3

3m
4
N

q6
3

~~V123 456

�
;

Ba;nc
4 � �2

Z 1

0
dx2

�
x2m2

N

q4
2

Â123 �
2x2

2m
4
N

q6
2

^̂A123 456

�
�
Z 1

0
dx3

�
x3m2

N

q4
3

~V123 �
2x2

3m
4
N

q6
3

~~V123 456

�
; (A11)

Av;cc
4 � �2

Z 1

0
dx2

�
x2

q2
2

Z �x2

0
dx1�V1 � A1 � 2T1��xi� �

x2m2
N

q4
2

�VM�u�
1 �AM�u�

1 � 2T M�u�
1 �

�
x2

2m
2
N

q4
2

��V̂12 345 � Â12 345 � 2T̂13 478� �
2x3

2m
4
N

q6
2

� ^̂V123 456 �
^̂A123 456 � 2 ^̂T134 678�

�
;

Bv;cc
4 � 2

Z 1

0
dx2

�
x2m

2
N

q4
2

�V̂123 � Â123 � 2T̂137� �
2x2

2m
4
N

q6
2

� ^̂V123 456 �
^̂A123 456 � 2 ^̂T134 678�

�
; (A12)

Aa;cc
4 � 2

Z 1

0
dx2

�
x2

q2
2

Z �x2

0
dx1�V1 � A1 � 2T1��xi� �

x2m2
N

q4
2

�VM�u�
1 �AM�u�

1 � 2T M�u�
1 �

�
x2

2m
2
N

q4
2

��V̂12 345 � Â12 345 � 2T̂13 478� �
2x3

2m
4
N

q6
2

� ^̂V123 456 �
^̂A123 456 � 2 ^̂T134 678�

�
;

Ba;cc
4 � 2

Z 1

0
dx2

�
x2m

2
N

q4
2

�V̂123 � Â123 � 2T̂137� �
2x2

2m
4
N

q6
2

� ^̂V123 456 �
^̂A123 456 � 2 ^̂T134 678�

�
: (A13)
In all expressions the functions with a ‘‘tilde’’ and a ‘‘hat’’
have x3 and x2 as an argument, respectively, cf. (A1) and
(A2). Also, in the terms involving two integrations over the
momentum fractions, the remaining momentum fraction is
replaced by using x1 � x2 � x3 � 1. The results in (A10)
agree with the corresponding expressions in [36] up to two
misprints: a factor two in the VM�u�-term and the sign of
the V123 456 contribution; the other expressions are new.

The answers for the neutral vector current jv;nc
� are easily

obtained from the corresponding expressions for the elec-
tromagnetic current by a substitution eu ! 1=2 and ed !
�1=2. Also, since the currents �1 and �3 are pure isospin
I � 1=2, the correlation functions involving the flavor-
094019
changing charged currents jv;cc
� and ja;cc

� are given in terms
of the corresponding correlation functions involving the
flavor-conserving currents by exact isospin relations

A v;cc
i � 2Av;nc

i ; Bv;cc
i � 2Bv;nc

i ;

Aa;cc
i � 2Aa;nc

i ; Ba;cc
i � 2Ba;nc

i i � 1; 3:

(A14)

These relations are not manifest because they involve
isospin relations between different nucleon DAs and pro-
vide a nontrivial check of the calculation.

The Borel transformation and the continuum subtraction
are performed by using the following substitution rules:
Z
dx

%�x�

�q� xP�2
� �

Z 1

0

dx
x

%�x�

�s� P02�
! �

Z 1

x0

dx
x
%�x� exp

�
�

�xQ2

xM2 �
�xm2

N

M2

�
;

Z
dx

%�x�

�q� xP�4
�
Z 1

0

dx

x2

%�x�

�s� P02�2
!

1

M2

Z 1

x0

dx

x2 %�x� exp
�
�

�xQ2

xM2 �
�xm2

N

M2

�
�
%�x0�e

�s0=M2

Q2 � x2
0m

2
N

;

Z
dx

%�x�

�q� xP�6
� �

Z 1

0

dx

x3

%�x�

�s� P02�3
! �

1

2M4

Z 1

x0

dx

x3 %�x� exp
�
�

�xQ2

xM2 �
�xm2

N

M2

�
�

1

2

%�x0�e
�s0=M2

x0�Q2 � x2
0m

2
N�M

2

�
1

2

x2
0

Q2 � x2
0m

2
N

�
d
dx0

%�x0�

x0�Q
2 � x2

0m
2
N�

�
e�s0=M2

; (A15)

where M is the Borel parameter, s � 1�x
x Q2 � �1� x�m2

N, and x0 is the solution of the corresponding quadratic equation
for s � s0:

x0 � �
���������������������������������������������������������
�Q2 � s0 �m2

N�
2 � 4m2

NQ
2

q
� �Q2 � s0 �m2

N��=�2m
2
N�: (A16)
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The contributions�e�s0=M2
in Eq. (A15) correspond to the

‘‘surface terms’’ arising from successive partial integra-
tions to reduce the power in the denominators �q�
xP�2N � �s� P02�2N��x�2N with N > 1 to the usual dis-
persion representation with the denominator ��s� P02�.
Without continuum subtraction, i.e. in the limit s0 ! 1
these terms vanish.
094019
In addition, in the hadronic representation for the same
correlation functions one has to make the substitution

1

m2
N � P

02 ! e�m
2
N=M

2
: (A17)

As an example, we present here the final sum rules for Fp1 ,
Fp2 , and GNC

A obtained using the Ioffe current:
Fem
1 �Q

2� �
1

2�1

�Z 1

x0

dx
�
�
%a2�x�
x
�
%a4�x�

x2M2

�
exp

�
�

�xQ2

xM2 �
xm2

N

M2

�
�
%a4�x0�e��s0�m2

N�=M
2

Q2 � x2
0m

2
N

�
;

Fem
2 �Q

2� �
1

�1

�Z 1

x0

dx
�
�
%b2�x�
x
�
%b4�x�

x2M2

�
exp

�
�

�xQ2

xM2 �
xm2

N

M2

�
�
%b4�x0�e��s0�m2

N�=M
2

Q2 � x2
0m

2
N

�
;

GNC
A �Q

2� �
1

2�1

�Z 1

x0

dx
�
�
%c2�x�
x
�
%c4�x�

x2M2

�
exp

�
�

�xQ2

xM2 �
xm2

N

M2

�
�
%c4�x0�e��s0�m2

N�=M
2

Q2 � x2
0m

2
N

�
;

(A18)

with

%a2�x� � 2ed

�
~V123 � x

Z �x

0
dx1V3�xi��

�
� 2eu

�
x
Z �x

0
dx1��2V1 � 3V3 � A3��xi� � V̂123 � Â123

�
;

%a4�x� � 2edfQ2 ~V123 � x2m2
N

~V43g � 2eufQ2�V̂123 � Â123� � x2m2
N�V̂1345 � 2V̂43 � Â34� � 2xm2

N�V
M�u�
1 � ^̂V123 456�g;

%b2�x� � �2ed

�Z �x

0
dx1V1�xi�

�
� 2eu

�Z �x

0
dx1�V1 � A1��xi�

�
;

%b4�x� � �2edm2
NfV

M�d�
1 � x� ~V123 � ~V43�g � 2eum2

Nf�V
M�u�
1 �AM�u�

1 � � x�V̂1345 � V̂123 � Â123 � 2V̂43 � Â34�g;

%c2�x� �
�

~V123 � x
Z �x

0
dx1V3�xi�

�
�

�
x
Z �x

0
dx1�2A1 � 3A3 � V3��xi� � Â123 � V̂123

�
;

%c4�x� � fQ
2 ~V123 � x2m2

N
~V43g � fQ2�Â123 � V̂123� � x2m2

N�Â1345 � 2Â34 � V̂43� � 2xm2
N�A

M�u�
1 � ^̂A123 456�g: (A19)

Form factors of the neutron are obtained by the substitution eu $ ed.

APPENDIX B: NUCLEON DISTRIBUTION AMPLITUDES

In the following we give a summary of the three-quark distribution amplitudes from twist-3 to twist-6 as obtained in
[92]. The DAs are defined by the matrix element of the renormalized three-quark operator at lightlike separations

4h0j"ijkui��a1z�u
j
��a2z�dk��a3z�jPi � S1mNC����5N��� � S2mNC����5N��� � P1mN��5C���N�� � P2mN��5C���N��

� V1�p6 C�����5N
��� � V2�p6 C�����5N

��� �
V3

2
mN��?C�����

?�5N
���

�
V4

2
mN��?C�����

?�5N
��� � V5

m2
N

2pz
�z6 C�����5N

��� �
m2
N

2pz
V6�z6 C�����5N

���

� A1�p6 �5C���N
�
� � A2�p6 �5C���N

�
� �

A3

2
mN��?�5C�����

?N���

�
A4

2
mN��?�5C�����

?N��� � A5
m2
N

2pz
�z6 �5C���N

�
� �

m2
N

2pz
A6�z6 �5C���N

�
�

� T1�i�?pC�����
?�5N

��� � T2�i�?pC�����
?�5N

���

� T3
mN

pz
�i�pzC�����5N

��� � T4
mN

pz
�i�zpC�����5N

���

� T5
m2
N

2pz
�i�?zC�����?�5N��� �

m2
N

2pz
T6�i�?zC�����?�5N���

�mN
T7

2
��??0C�����

??0�5N
��� �mN

T8

2
��??0C�����

??0�5N
���; (B1)
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where for brevity we do not show the Wilson lines that
make this operator gauge-invariant; �, �, � are Dirac
indices and C is the charge-conjugation matrix [83].
Each DA F � Vi, Ai, Ti, Si, Pi can be represented as

F�aj; Px� �
Z

Dxe
�iPx

P
i

xiai
F�xi�; (B2)

where the functions F�xi� depend on the dimensionless
variables xi, 0< xi < 1,

P
ixi � 1 which correspond to

the longitudinal momentum fractions carried by the quarks
inside the nucleon. The integration measure is defined as

Z
Dx �

Z 1

0
dx1dx2dx3
�x1 � x2 � x3 � 1�: (B3)

Distribution amplitudes can be expanded in contribu-
tions of operators with a given conformal spin [92]. This is
convenient since operators with different spin do not mix
094019
under renormalization in one loop. More importantly, only
the operators with the same spin can be related by equa-
tions of motion so that the truncation of the conformal spin
expansion at a certain order produces a self-consistent
approximation. In Ref. [92] the contributions of the leading
and the next-to-leading order in conformal expansion have
been taken into account.

To this accuracy one obtains twist-3 DAs:

V1�xi;�� � 120x1x2x3��
0
3�����

�
3 ����1� 3x3��;

A1�xi;�� � 120x1x2x3�x2� x1��
�
3 ���;

T1�xi;�� � 120x1x2x3��
0
3����

1
2��

�
3 ��

�
3 �����1� 3x3��:

(B4)

Twist-4 distribution amplitudes:
V2�xi;���24x1x2��
0
4�����

�
4 ����1�5x3��;

A2�xi;���24x1x2�x2�x1��
�
4 ���;

T2�xi;���24x1x2��0
4�����

�
4 ����1�5x3��;

V3�xi;���12x3� 0
4����1�x3�� �4 ����1�x3�10x1x2�� �4 ����x

2
1�x

2
2�x3�1�x3���;

A3�xi;���12x3�x2�x1��� 
0
4� 

�
4 ����� 

�
4 ����1�2x3��;

T3�xi;���6x3���
0
4� 

0
4��

0
4�����1�x3�����4 � 

�
4 ��

�
4 �����1�x3�10x1x2�

����4 � 
�
4 ��

�
4 �����x

2
1�x

2
2�x3�1�x3���;

T7�xi;���6x3���
0
4� 

0
4��

0
4�����1�x3�����4 � 

�
4 ��

�
4 �����1�x3�10x1x2�

����4 � 
�
4 ��

�
4 �����x

2
1�x

2
2�x3�1�x3���;

S1�xi;���6x3�x2�x1����
0
4� 

0
4��

0
4��

�
4 � 

�
4 ��

�
4 �������

�
4 � 

�
4 ��

�
4 �����1�2x3��;

P1�xi;���6x3�x1�x2����
0
4� 

0
4��

0
4��

�
4 � 

�
4 ��

�
4 �������

�
4 � 

�
4 ��

�
4 �����1�2x3��:

(B5)

Note that T3 and T7 differ only in the sign of the �-contributions, while P1 and S1 differ only in the sign of the �- and
 -contributions.

Twist-5 distribution amplitudes:

V4�xi; �� � 3� 0
5����1� x3� �  

�
5 ����1� x3 � 2�x2

1 � x
2
2�� �  

�
5 ����2x1x2 � x3�1� x3���;

A4�xi; �� � 3�x2 � x1��� 0
5��� �  

�
5 ����1� 2x3� �  �5 ���x3�;

T4�xi; �� �
3
2���

0
5 �  

0
5 � �

0
5�����1� x3� � ���5 �  

�
5 � �

�
5 �����1� x3 � 2�x2

1 � x
2
2��

� ���5 �  
�
5 � �

�
5 �����2x1x2 � x3�1� x3���;

T8�xi; �� �
3
2���

0
5 �  

0
5 � �

0
5�����1� x3� � ���5 �  

�
5 � �

�
5 �����1� x3 � 2�x2

1 � x
2
2��

� ���5 �  
�
5 � �

�
5 �����2x1x2 � x3�1� x3���;

V5�xi; �� � 6x3��
0
5��� ��

�
5 ����1� 2x3��;

A5�xi; �� � 6x3�x2 � x1���5 ���;

T5�xi; �� � 6x3��
0
5��� � �

�
5 ����1� 2x3��;

S2�xi; �� �
3
2�x2 � x1�����

0
5 �  

0
5 � �

0
5���� � ��

�
5 �  

�
5 � �

�
5 �����1� 2x3� � ��

�
5 �  

�
5 � �

�
5 ����x3�;

P2�xi; �� �
3
2�x2 � x1������

0
5 �  

0
5 � �

0
5���� � ���

�
5 �  

�
5 � �

�
5 �����1� 2x3� � ���

�
5 �  

�
5 � �

�
5 ����x3�;

(B6)
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Note that T4 and T8 differ only in the sign of the
�-contributions, while P2 and S2 differ only in the sign
of the �- and  -contributions. Note that the results for S2

and P2 quoted in [92] contain misprints.
Finally, twist-6 distribution amplitudes:

V6�xi; �� � 2��0
6��� ��

�
6 ����1� 3x3��;

A6�xi; �� � 2�x2 � x1��
�
6 ;

T6�xi; �� � 2��0
6��� �

1
2��

�
6 ��

�
6 ��1� 3x3��:

(B7)

In all cases � is the renormalization scale.
The coefficients in the above expansions can be ex-

pressed in terms of eight nonperturbative parameters fN ,
�1, �2, fu1 , fd1 , fd2 , Au1 , Vd1 which are defined in Appendix D,
see also [92], Sec. II B. The corresponding relations read,
for the leading conformal spin:

�0
3 � �0

6 � fN; �0
4 � �0

5 �
1
2�fN � �1�;

�0
4 � �0

5 �
1
6�2;  0

4 �  0
5 �

1
2�fN � �1�:

(B8)

For the next-to-leading spin, for twist-3:

��3 �
21
2 fNA

u
1 ; ��3 �

7
2fN�1� 3Vd1 �; (B9)

for twist-4:

��4 �
1
4�fN�3� 10Vd1 � � �1�3� 10fd1 ��;

��4 � �
5
4�fN�1� 2Au1� � �1�1� 2fd1 � 4fu1 ��;

 �4 � �
1
4�fN�2� 5Au1 � 5Vd1 � � �1�2� 5fd1 � 5fu1 ��;

 �4 �
5
4�fN�2� A

u
1 � 3Vd1 � � �1�2� 7fd1 � f

u
1 ��;

��4 �
1
16�2�4� 15fd2 �;

��4 �
5
16�2�4� 15fd2 �; (B10)

for twist-5:

��5 � �
5
6�fN�3� 4Vd1 � � �1�1� 4fd1 ��;

��5 � �
5
3�fN�1� 2Au1� � �1�fd1 � f

u
1 ��;

 �5 � �
5
6�fN�5� 2Au1 � 2Vd1 � � �1�1� 2fd1 � 2fu1 ��;

 �5 �
5
3�fN�2� A

u
1 � 3Vd1 � � �1�f

d
1 � f

u
1 ��;

��5 �
5
36�2�2� 9fd2 �;

��5 � �
5
4�2f

d
2 ; (B11)

and for twist-6:

��6 �
1
2�fN�1� 4Vd1 � � �1�1� 2fd1��;

��6 �
1
2�fN�1� 4Au1� � �1�1� 4fd1 � 2fu1��:

(B12)

The normalization of all DAs is determined by three di-
mensionful parameters fN , �1, �2 that are well known from
the QCD sum rule literature and correspond to nucleon
couplings to the existing three different three-quark local
094019
operators with the correct spin and isospin, see [84]. The
numerical values (at the scale � � 1 GeV) are [88,92]:

fN � �5:0	 0:5� � 10�3GeV2;

�1 � ��2:7	 0:9� � 10�2GeV2;

�2 � �5:4	 1:9� � 10�2GeV2;
(B13)

see also Appendix D. The remaining five parameters de-
termine the shape of the DAs (deviation from the asymp-
totic form) and their values are much more controversial.
Asymptotic DAs correspond to the choice

Vd1 �
1
3; Au1 � 0;

fd1 �
3
10; fu1 �

1
10; fd2 �

4
15:

(B14)

The leading-twist-3 parameters Vd1 and Au1 were calculated
using QCD sum rules in Refs. [88,93,94] with the result
[94]

Au1 � 0:38	 0:15; Vd1 � 0:23	 0:03; (B15)

while the remaining twist-4 shape parameters fd1 , fu1 , fd2
were estimated by the same method in [92]. In this work we
reconsider the corresponding sum rules (see Appendix D)
and obtain a new estimate

fd1 � 0:40	 0:05; fd2 � 0:22	 0:05;

fu1 � 0:07	 0:05:
(B16)

The set of nucleon DAs obtained using the parameters in
(B15) and (B16) is sometimes referred to as the Chernyak-
Zhitnitsky-like model of the DAs.

Alternatively, there exists a phenomenological model
for the leading-twist DA [91] which was obtained by
modelling the soft contribution by a convolution of light
cone wave functions. This model is much closer to the
asymptotic DA compared to the Chernyak-Zhitnitsky
(CZ)-model and corresponds to the choice [91]

Au1 � 1=14; Vd1 � 13=42: (B17)

Estimates of the higher-twist DAs in the same technique
are not available.

In the main text we suggest one more model that allows
one to obtain good agreement with the data on the nucleon
form factors within the LCSR approach. The correspond-
ing parameters are given in Eq. (42).
APPENDIX C: OPERATOR PRODUCT EXPANSION
OF THREE-QUARK CURRENTS

In this appendix we present the tree-level expansion of
the nucleon matrix element of the three-quark operator in
terms of nucleon DAs to the twist-5 accuracy. The general
Lorentz decomposition reads [92]
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4h0j"ijkui��a1x�u
j
��a2x�dk��a3x�jPi � S1mNC����5N���S2m2

NC���x6 �5N���P 1mN��5C���N��P 2m2
N��5C����x6 N��

�

�
V 1�

x2m2
N

4
VM

1

�
�P6 C�����5N���V 2mN�P6 C����x6 �5N��

�V 3mN���C�����
��5N���V 4m

2
N�x6 C�����5N��

�V 5m
2
N���C����i�

��x��5N���V 6m
3
N�x6 C����x6 �5N���

�
A1�

x2m2
N

4
AM

1

�

��P6 �5C���N��A2mN�P6 �5C����x6 N���A3mN����5C������N��

�A4m
2
N�x6 �5C���N��A5m

2
N����5C����i�

��x�N���A6m
3
N�x6 �5C����x6 N��

�

�
T 1�

x2m2
N

4
T M

1

�
�P�i���C�������5N���T 2mN�x�P�i���C�����5N��

�T 3mN����C�����
���5N���T 4mN�P

����C�����
�%x%�5N��

�T 5m2
N�x

�i���C�������5N���T 6m2
N�x

�P�i���C����x6 �5N��

�T 7m
2
N����C�����

��x6 �5N���T 8m
3
N�x

����C�����
�%x%�5N��: (C1)

where it is assumed that the ‘‘calligraphic’’ functions depend on x2 at most logarithmically. Leaving aside the terms in x2,
VM

1 , AM
1 , and T M

1 , the rest of the functions can be expressed, to the tree-level accuracy, in terms of the nucleon DAs at the
renormalization scale �2 � j1=x2j:

S1 � S1; 2PxS2 � S1 � S2; P 1 � P1; 2PxP 2 � P2 � P1; V 1 � V1; 2PxV 2 � V1 � V2 � V3;

2V 3 � V3; 4PxV 4 � �2V1 � V3 � V4 � 2V5; 4PxV 5 � V4 � V3;

4�Px�2V 6 � �V1 � V2 � V3 � V4 � V5 � V6; A1 � A1; 2PxA2 � �A1 � A2 � A3; 2A3 � A3;

4PxA4 � �2A1 � A3 � A4 � 2A5; 4PxA5 � A3 � A4; 4�Px�2A6 � A1 � A2 � A3 � A4 � A5 � A6;

T 1 � T1; 2PxT 2 � T1 � T2 � 2T3; 2T 3 � T7; 2PxT 4 � T1 � T2 � 2T7;

2PxT 5 � �T1 � T5 � 2T8; 4�Px�2T 6 � 2T2 � 2T3 � 2T4 � 2T5 � 2T7 � 2T8; 4PxT 7 � T7 � T8;

4�Px�2T 8 � �T1 � T2 � T5 � T6 � 2T7 � 2T8: (C2)

In the following we present the calculation of the O�x2� corrections to the light cone expansion of the three-quark
operator in Eq. (C1) in a simplified situation, where positions of two of the three quarks coincide. This approximation is
sufficient for the derivation of LCSRs to the tree-level accuracy. The strategy is based on the approach developed in [95–
97]. We present a slightly more expanded derivation than it was given in [36], where only VM

1 was obtained. Note that
considering the vector and axial-vector Lorentz projections is sufficient since the tensor ones can be determined with the
help of isospin relations [92].

Consider first the case where positions of the two u-quarks coincide. This situation occurs when the d-quark interacts
with the (electromagnetic) probe, hence we refer to it as the d-quark contribution:

x�h0j"ijk�uiC��u
j��0�dk��x�jPi � �x

�
��

V 1 �
x2m2

N

4
VM�d�

1

�
P���5N�� �V 2mNP��x6 �5N�� �V 3mN����5N��

�V 4m
2
Nx���5N�� �V 6m

3
Nx��x6 �5N��

�
;

x�h0j"ijk�uiC���5uj��0�dk��x�jPi � �x�
��

A1 �
x2m2

N

4
AM�d�

1

�
P���5N�� �A2mNP��x6 �5N��

�A3mN����5N�� �A4m2
Nx���5N�� �A6m

3
Nx��x6 �5N��

�
: (C3)
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We remind that V 1, A1 start at leading twist-3, and
hence VM�d�

1 , AM�d�
1 are of twist-5. Strictly speaking, since

we are not taking into account twist-6 contributions
induced by O�x2� corrections to V 2, A2 and V 3, A3,
in order to be consistent we have to discard the contri-
bution of V 6 and A6 altogether. This contribution to
the sum rules appears to be numerically negligible,
however.

For definiteness, consider the vector projection. The
meaning of the separation between V 1 and VM�d�

1 is
most easily understood upon the short-distance expansion
094019
x� ! 0. In this way, the nonlocal ‘‘light-ray’’ operator in
the left-hand side (l.h.s.) of Eq. (C3) is Taylor-expanded in
a series of local operators with three-quark fields and the
increasing number of (covariant) derivatives acting on the
d-quark. The separation of the leading-twist part of each
local operator corresponds to the symmetrization over all
Lorentz indices and the subtraction of traces. Without loss
of generality, we can consider the matrix element con-
tracted with an additional factor x�, see Eq. (C3), so that
the symmetrization is achieved. To subtract the traces, we
formally write
x�d�x�jlt �
X1
n�0

1

n!

�
x�x�1

. . . x�n
�
x2

4

�
2

n� 1

� X
�i;�j

�x� . . . g�i�j
. . . x�n

�

�
@�1 . . . @�nd�0�; (C4)

where ‘‘lt’’ stands for the leading-twist part. Observing that 1
n�1 �

R
1
0 dt tn the subtracted contributions O�x2� can be

reassembled in the form of a nonlocal string operator:

h0j"ijk�uiCx6 uj��0�dk��x�jPi � h0j�"
ijk�uiCx6 uj��0�dk��x��l�tjPi �

x2

4

Z 1

0
dt

@2

@x�@x�
h0j"ijk�uiCx6 uj��0�dk��tx�jPi: (C5)

Alternatively, the same result can be obtained by observing [95] that the leading-twist light-ray operator has to satisfy the
homogeneous Laplace equation

@2

@x�@x�
h0j�"ijk�uiCx6 uj��0�dk��x��ltjPi � 0: (C6)

Using QCD equations of motion the third line in Eq. (C5) can be simplified to

@2

@x�@x
�
"ijk�uiCx6 uj��0�dk��tx� � 2t"ijk�uiC��uj��0�D�dk��tx� � gluons � 2t@�"ijk�uiC��uj��0�dk��tx� � gluons;

(C7)

where @� is a derivative with respect to the overall translation [95]; for the matrix element we can make the substitution
@� ! �iP�. Inserting this result in Eq. (C5) we finally obtain

h0j"ijk�uiCx6 uj��0�dk��x�jPi � h0j�"
ijk�uiCx6 uj��0�dk��x��ltjPi �

x2

4
��i2P��

Z 1

0
dtth0j"ijk�uiC��uj��0�dk��tx�jPi

� gluons: (C8)

Notice that the right-hand side (r.h.s.) only involves (up to corrections with additional gluons) the already known
distribution amplitudes. This equation therefore allows us to determine VM�d�—which appears on the l.h.s. of
Eq. (C8)—up to gluonic corrections.

Consider the first term on the r.h.s. of Eq. (C8). We can write

h0j�"ijk�uiCx6 uj��0�dk��x��ltjPi � �
Z

Dx�e�iP
xx3�Px��ltV 1��5N�� �
Z

Dx�e�iP
xx3�x6 �5N���lt�Px�V 2mN

�
Z

Dx�e�iP
xx3�x6 �5N���ltV 3mN � . . . ; (C9)
where �e�iP
xx3�P 
 x��lt and �e�iP
xx3x6 �lt are the leading-
twist components for the free fields, defined as the solu-
tions of the corresponding homogeneous Laplace equation
[96]. Note that the factor Px in the second line in Eq. (C9)
is not included under the �. . .�lt bracket since �Px�V 2 �
1=2�V1 � V2 � V3� is a function of momentum fractions
only and does not contain any dependence on the position
vector x. To the required O�x2� accuracy, the leading-twist
exponents �e�iP
xx3 . . .�lt can be obtained from the expres-
sion given in [96]:
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�e�iP
xx3�lt � e�iP
xx3 �
x2m2

Nx
2
3

4

Z 1

0
dte�iP
xx3t;

by taking the derivative with respect to x3 and with respect
to P�. One gets

�e�iP
xx3�P 
 x��lt � �Px�
�
e�iP
xx3 �

x2m2
Nx

2
3

4

�
Z 1

0
dte�iP
xx3t

�
; (C10)

�e�iP
xx3x6 �lt � x6
�
e�iP
xx3 �

1

4
x2m2

Nx
2
3

Z 1

0
dt t2e�iP
xx3t

�

�
i
2
P6 x3x2

Z 1

0
dt te�iP
xx3t: (C11)

Note that we have corrected a misprint in [36] in the last
term of the second equation, where a factor 1=2 arises
instead of 1=4.

The corresponding contribution to VM�d�
1 is proportional

to the nucleon mass squared and involves the leading-twist

V. M. BRAUN, A. LENZ, AND M. WITTMANN
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distribution amplitude, being an exact analogue of the
Nachtmann power suppressed correction in deep inelastic
scattering. The second contribution on the r.h.s. in Eq. (C8)
is special for the exclusive kinematics since it involves a
derivative over the total translation that vanishes for for-
ward matrix elements. Its explicit form is easily found by
contracting the three-quark matrix element in Eq. (C3)
with P� instead of x� and inserting the resulting expression
in Eq. (C8). One gets

x2

4
��2iP��

Z 1

0
dt th0j"ijk�uiC��uj��0�dk��tx�jPi

�
x2m2

N

4
i
Z

Dx
Z 1

0
dt te�iP
xx3t�V1 � V5���5N�� � . . . ;

(C12)

where the ellipses stand for other Lorentz structures that do
not contribute to VM�d�

1 . Inserting everything into Eq. (C5)
we arrive at
�Px�
Z

dx3e�ix3P
xVM�d�
1 �x3� � �Px�

Z
Dx x2

3

Z 1

0
dt e�iP
xx3tV1 � i

Z
Dx x3

Z 1

0
dt te�itx3P
x�V1 � V2�

�
1

Px

Z
Dx e�ix3P
x��2V1 � V3 � V4 � 2V5�: (C13)

In order to solve this equation we expand both sides at short distances and obtain the moments of VM�d�
1 with respect to x3

expressed through moments of the distribution amplitudes defined as V�d��n�i �
R
Dx xn3Vi�xi�. One finds

Z
dx3x

n
3V

M�d�
1 �x3� �

1

n� 1

�
V�d��n�2�

1 �
1

n� 3
�V1 � V2�

�d��n�2� �
1

n� 3
�V1 � V5�

�d��n�1�

�
1

n� 2
��2V1 � V3 � V4 � 2V5�

�d��n�2�

�
; (C14)

up to contributions of multiparton distribution amplitudes with extra gluons that have been neglected. The corresponding
expression for VM�d�

1 �x3� in the momentum fraction space is easily obtained by inserting the conformal expansions for
V1; . . . ; V6 and inverting the moment equation, see below.

The analysis of the u-quark contribution is performed in a similar way. We consider the matrix element

x�h0j"ijk�ui�0�C��u
j�x��dk��0�jPi � �x

�
��

V 1 �
x2m2

N

4
VM�u�

1

�
P���5N�� �V 2mNP��x6 �5N�� �V 3mN����5N��

�V 4m
2
Nx���5N�� �V 6m

3
Nx��x6 �5N��

�
(C15)

and find repeating the same steps that lead to Eq. (C5):

h0j"ijk�ui�0�Cx6 uj�x��dk��0�jPi � h0j�"ijk�ui�0�Cx6 uj�x��dk��0��ltjPi �
x2

4

Z 1

0
dt

@2

@x�@x
� h0j"

ijk�ui�0�Cx6 uj�tx��dk��0�jPi

� h0j�"ijk�ui�0�Cx6 uj�x��dk��0��ltjPi � gluons; (C16)

the only difference being that the term corresponding to a total translation does not arise in this case. For the moments with
respect to x2 we get

Z
dx2xn2V

M�u�
1 �x2� �

1

n� 1

�
V�u��n�2�

1 �
1

n� 3
�V1 � V2�

�u��n�2� �
1

n� 2
��2V1 � V3 � V4 � 2V5�

�u��n�2�

�
: (C17)
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Inserting the conformal expansions for V1; . . . ; V6 and inverting the moment equations we find

V M�u�
1 �x2� �

Z 1�x2

0
dx1VM1 �x1; x2; 1� x1 � x2� �

x2
2

24
�fNCuf � �1Cu��; (C18)

V M�d�
1 �x3� �

Z 1�x3

0
dx1V

M
1 �x1; 1� x1 � x3; x3� �

x2
3

24
�fNC

d
f � �1C

d
�� (C19)

with

Cuf � �1� x2�
3�113� 495x2 � 552x2

2 � 10Au1�1� 3x2� � 2Vd1 �113� 951x2 � 828x2
2��;

Cu� � ��1� x2�
3�13� 20fd1 � 3x2 � 10fu1 �1� 3x2��;

Cdf � ��1� x3��1441� 505x3 � 3371x2
3 � 3405x3

3 � 1104x4
3 � 24Vd1 �207� 3x3 � 368x2

3 � 412x3
3 � 138x4

3��

� 12�73� 220Vd1 � ln�x3�;

Cd� � ��1� x3��11� 131x3 � 169x2
3 � 63x3

3 � 30fd1 �3� 11x3 � 17x2
3 � 7x3

3�� � 12�3� 10fd1 � ln�x3�: (C20)

This result agrees with [36].
Similarly we get for the axial-vector functions:

Z
dx3x

n
3A

M�d�
1 �x3� �

1

n� 1

�
A�d��n�2�

1 �
1

n� 3
�A1 � A2�

�d��n�2� �
1

n� 2
��2A1 � A3 � A4 � 2A5�

�d��n�2�

�
1

n� 3
�A1 � A5�

�d��n�1�

�
;

Z
dx2x

n
2A

M�u�
1 �x2� �

1

n� 1

�
A�u��n�2�

1 �
1

n� 3
�A1 � A2�

�u��n�2� �
1

n� 2
��2A1 � A3 � A4 � 2A5�

�u��n�2�

�
:

which is solved by

AM�u�
1 �x2� �

Z 1�x2

0
dx1A

M
1 �x1; x2; 1� x1 � x2� �

x2
2

24
�1� x2�

3�fND
u
f � �1D

u
��;

AM�d�
1 �x3� �

Z 1�x3

0
dx1A

M
1 �x1; 1� x1 � x3; x3� � 0;

(C21)

with

Du
f � 11� 45x2 � 2Au1�113� 951x2 � 828x2

2� � 10Vd1 �1� 30x2�;

Du
� � 29� 45x2 � 10fu1 �7� 9x2� � 20fd1 �5� 6x2�:

(C22)

Finally, using the isospin relation in Eq. (2.20) of [92] one obtains the TM1 functions in terms of VM1 and AM1 :

T M�u�
1 �x� � 1

2�V
M�d�
1 �x� � VM�u�1 �x� � AM�u�1 �x��; T M�d�

1 �x� � VM�u�1 �x� � AM�u�1 �x�: (C23)

Inserting the above expressions we get:

T M�u�
1 �x� �

x2

48
�fNEuf � �1Eu��; T M�d�

1 �x� �
x2�1� x�3

6
�fNE

d
f � �1E

d
�� (C24)

with

Euf � ���1� x��1339� 259x� 2021x2 � 1851x3 � 552x4 � 72Au1�1� x�
3�3� 23x� � 24Vd1 �216� 99x� 134x2

� 196x3 � 69x4��� � 12�73� 220Vd1 � ln�x�;

Eu� � ���1� x��53� 5x� 43x2 � 21x3 � 30�7� x� 5x2 � 3x3�fd1 � 60�1� x�3fu1 �� � 12�3� 10fd1 � ln�x�;

Edf � 31� 135x� 138x2 � �59� 483x� 414x2��Au1 � V
d
1 �;

Ed� � 4�1� 3x� � 10�2� 3x��fd1 � f
u
1 �:

(C25)
094019-21
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Note that the x2-corrections do not depend on �2. Our
results agree with the ones obtained in [46].
APPENDIX D: ASYMPTOTIC DISTRIBUTION
AMPLITUDES

For completeness we present the set of DAs that is
obtained by setting contributions of higher conformal
spin operators to zero, cf. (B14). The subtlety is that
conformal symmetry is broken by nucleon mass correc-
tions. As a consequence, ‘‘kinematic’’ higher-twist correc-
tions of higher spin have to be retained in order to satisfy
EOM. For the relevant parameters we get: for twist-3

�0
3 � fN; ��3 � 0; ��3 � 0; (D1)

for twist-4

�0
4 �

1
2�fN � �1�; ��4 � �

1
12fN; ��4 � �

5
4fN;

 0
4 �

1
2�fN � �1�;  �4 � �

1
12fN;  �4 �

5
4fN;

�0
4 �

1
6�2; ��4 � 0; ��4 � 0; (D2)

for twist-5

�0
5 �

1
2�fN � �1�;  0

5 �
1
2�fN � �1�

��5 � �
1
18�65fN � 3�1�; ��5 � �

1
3�5fN � �1�;

 �5 � �
1
18�65fN � 3�1�;  �5 �

1
3�5fN � �1�;

�0
5 �

1
6�2; ��5 � �

1
18�2; ��5 � �

1
3�2; (D3)

and for twist-6

�0
6 � fN; ��6 � �

1
30�5fN � 6�1�;

��6 �
1
10�5fN � 2�1�:

(D4)

The corresponding twist-3 DAs are:

V1�xi� � 120x1x2x3fN; A1�xi� � 0;

T1�xi� � 120x1x2x3fN;
(D5)

twist-4:

V2�xi� � 2x1x2�5�1� x3�fN � 6�1�;

A2�xi� � 30x1x2�x1 � x2�fN;

T2�xi� � 4x1x2�2;

V3�xi� � x3�5�1� 2x1x2 � 4x3 � 3�x2
1 � x

2
2 � x

2
3��fN

� 6�1� x3��1�;

A3�xi� � �2�x1 � x2�x3�5�2� 3x3�fN � 3�1�;

T3�xi� � x3�5�1� 2x1x2 � 2x3 � 3�x2
1 � x

2
2 � x

2
3��fN

� �1� x3��2�;

T7�xi� � x3�5�1� 2x1x2 � 2x3 � 3�x2
1 � x

2
2 � x

2
3��fN

� �1� x3��2�; (D6)
094019
twist-5:

V4�xi� ��
1
3�28� 65�x2

1� x
2
2�� 30x1x2� 13x3� 15x2

3�fN

��1��x1� x2�
2� x2

3��1;

A4�xi� �
1
3�x1� x2���37� 80x3�fN� 6�1�;

T4�xi� ��
1
6�2�28� 65�x2

1� x
2
2�� 30x1x2� 43x3

� 15x2
3�fN��1� x

2
1� 6x1x2� x2

2

� 2x3� 3x2
3��2�;

T8�xi� ��
1
6�2�28� 65�x2

1� x
2
2�� 30x1x2� 43x3

� 15x2
3�fN��1� x

2
1� 6x1x2� x2

2� 2x3

� 3x2
3��2�;

V5�xi� � x3��
2
3�28� 65x3�fN� 2�1� x3��1�;

A5�xi� � 2�x1� x2�x3�5fN��1�;

T5�xi� �
2
3x3�1� x3��2: (D7)
and twist-6:

V6�xi� �
1
3�5� 3x3�fN �

2
5�1� 3x3��1;

A6�xi� � �
1
5�x1 � x2��5fN � 2�1�;

T6�xi� �
1
3�8� 6x3�fN:

(D8)
The corresponding expressions for the x2-corrections read:

VM�d�
1 �x� �

x2

24
��1� x���215� 529x� 427x2 � 109x3�

� 4 ln�x��fN � 16�1� x�3�1�;

VM�u�
1 �x� �

x2

72
�1� x�3��565� 417x�fN � 24�1�;

AM�u�
1 �x� �

x2

72
�1� x�3��43� 105x�fN � 24�1�;

T M�d�
1 �x� �

x2

9
�1� x�3��76� 39x�fN � 6�1�;

T M�u�
1 �x� �

x2

48
���1� x��389� 1051x� 949x2 � 283x3�

� 4 ln�x��fN � 16�1� x�3�1�: (D9)
APPENDIX E: QCD SUM RULES

In this appendix we update the QCD sum rules for the
shape parameters of the higher-twist DAs, which are de-
fined as [36,92]
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h0j�u�0�C��u�0��z6 �5�
��iz ~Dd��0�jPi � �1f

d
1 �pz�Mz6 N�P�;

h0j�ua�0�C���u�0��z6 �5�
���iz ~Dd��0�jPi � �2f

d
2 �pz�Mz6 N�P�;

h0j�u�0�C���5izD
$

u�0��z6 ��d�0�jPi � �1fu1 �pz�Mz6 N�P�;

(E1)

where we have used the notation iz 
D
$

� iz 
 �D
!

�D
 

� and for brevity omitted color indices.
The QCD sum rule estimates for fd1 , fd2 , fu1 are derived from the consideration of the two-point correlation functions

i
Z

d4xeipxh0jTf"ijk�ui�x�C��uj�x���5���iz ~Dd�k�x� ��1�0�gj0i �
fd1 j�1j

2M2p 
 z�p�M�

M2 � p2 � . . . ;

i
Z

d4xeipxh0jTf"ijk�u�x�C���5izD
$

u�x��ij��dk�x� ��1�0�gj0i �
fu1 j�1j

2M2p 
 z�p�M�

M2 � p2 � . . . ;

i
Z

d4xeipxh0jTf"ijk�ui�x�C���u
j�x���5�

���iz ~Dd�k�x� ��2�0�gj0i �
fd2 j�2j

2M2p 
 z�6p�M�

M2 � p2 � . . .

(E2)

The dots refer to contributions of excited states and different Lorentz structures that we do not consider. We have calculated
the correlation functions in (E2) using a more consistent factorization approximation for the contribution of dimension-8
operators compared to [92], which takes into account the contribution of nonplanar diagrams. For example, we use


ijk
i
0j0k0 h0j�uiC��� ~D�

~D� � ~D�
~D��

klul�� �ui
0
��C �uk

0
�j0i �

m2
0h �uui

2

216
�19g��g�� � 2�g��g�� � g��g����;


ijk
i
0j0k0 h0j�uiC���� ~D�

~D� � ~D�
~D��

klul�� �ui
0
���C �uk

0
�j0i �

5m2
0h �uui

2

72
g���g��g�� � g��g���;

(E3)

where h �uui is the u-quark condensate andm2
0 � h �u�gGui=h �uui. Following the standard procedure and replacing j�1j

2 and
j�2j

2 by the corresponding sum rules derived from the diagonal correlation functions of the �1 and �2 currents,
respectively:

2�2��4m2
Nj�1j

2 � exp�m2
N=M

2�

�
M6E3�s0=M2� �

b
4
M2E1�s0=M2� �

a2

3

�
4�

4

3

m2
0

M2

��
;

2�2��4m2
N
j�2j

2

6
� exp�m2

N=M
2�

�
M6E3�s0=M

2� �
b
4
M2E1�s0=M

2�

�
;

(E4)
we obtain

fd1 �
3
10M

6E3�s0=M2� � b
24M

2E1�s0=M2� � a2

3 �4�
31
9

m2
0

M2�

M6E3�s0=M2� � b
4M

2E1�s0=M2� � a2

3 �4�
4
3

m2
0

M2�
;

fu1 �
1
10M

6E3�s0=M
2� � b

8M
2E1�s0=M

2� � a2

3

m2
0

M2

M6E3�s0=M2� � b
4M

2E1�s0=M2� � a2

3 �4�
4
3

m2
0

M2�
;

fd2 �
8
5M

6E3�s0=M
2�

6M6E3�s0=M2� � 3b
2 M

2E1�s0=M2�
: (E5)

where

En�s0=M
2� � 1� e��s0=M2�

Xn�1

k�0

1

k!

�
s0

M2

�
k
: (E6)
094019
In all sum rules M is the Borel parameter; we use the
interval 1 GeV2 � M2 � 2 GeV2, with the continuum
threshold

�����
s0
p
� 1:5 GeV and also values of the conden-

sates at the scale �2 � 1 GeV2

a � ��2��2h �qqi ’ 0:55 GeV3;

b � �2��2
�
�S
�
G2

	
’ 0:47 GeV4;

m2
0 �
h �qgGqi
h �qqi

’ 0:65 GeV2:

(E7)

With these inputs we find the numbers quoted in (B16).
These results have smaller errors and supersede the corre-
sponding estimates in Ref. [92].
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[35] M. Göckeler et al. (QCDSF Collaboration), Few-Body
Syst. 36, 111 (2005).

[36] V. M. Braun, A. Lenz, N. Mahnke, and E. Stein, Phys. Rev.
D 65, 074011 (2002).

[37] I. I. Balitsky, V. M. Braun, and A. V. Kolesnichenko, Nucl.
Phys. B312, 509 (1989).

[38] V. L. Chernyak and I. R. Zhitnitsky, Nucl. Phys. B345, 137
(1990).

[39] V. M. Braun, A. Khodjamirian, and M. Maul, Phys. Rev. D
61, 073004 (2000).

[40] J. Bijnens and A. Khodjamirian, Eur. Phys. J. C 26, 67
(2002).

[41] V. M. Braun, hep-ph/9801222.
[42] P. Colangelo and A. Khodjamirian, hep-ph/0010175.
[43] Z. G. Wang, S. L. Wan, and W. M. Yang, hep-ph/0601025.
[44] Z. G. Wang, S. L. Wan, and W. M. Yang, hep-ph/0601060.
[45] A. Lenz, M. Wittmann, and E. Stein, Phys. Lett. B 581,

199 (2004).
[46] M. q. Huang and D. W. Wang, Phys. Rev. D 69, 094003

(2004).
[47] V. M. Braun, A. Lenz, G. Peters, and A. V. Radyushkin,

Phys. Rev. D 73, 034020 (2006).
[48] S. Eidelman et al. (Particle Data Group Collaboration),

Phys. Lett. B 592, 1 (2004).
[49] R. C. Walker et al., Phys. Rev. D 49, 5671 (1994).
[50] L. Andivahis et al., Phys. Rev. D 50, 5491 (1994).
[51] J. Litt et al., Phys. Lett. B 31, 40 (1970).
[52] C. Berger, V. Burkert, G. Knop, B. Langenbeck, and

K. Rith, Phys. Lett. B 35, 87 (1971).
[53] T. Janssens, R. Hofstadter, E. B. Huges, and M. R. Yearian,

Phys. Rev. 142, 922 (1966).
[54] J. Arrington, Phys. Rev. C 68, 034325 (2003).
[55] M. E. Christy et al. (E94110 Collaboration), Phys. Rev. C

70, 015206 (2004).
[56] I. A. Qattan et al., Phys. Rev. Lett. 94, 142301 (2005).
[57] A. Lung et al., Phys. Rev. Lett. 70, 718 (1993).
[58] G. Kubon et al., Phys. Lett. B 524, 26 (2002).
[59] H. Anklin et al., Phys. Lett. B 428, 248 (1998).
[60] H. Zhou et al., Phys. Rev. Lett. 87, 081801 (2001).
[61] D. Rohe, Phys. Rev. Lett. 83, 4257 (1999).
[62] L. C. Maximon and J. A. Tjon, Phys. Rev. C 62, 054320

(2000).
[63] P. G. Blunden, W. Melnitchouk, and J. A. Tjon, Phys. Rev.

Lett. 91, 142304 (2003).
[64] J. Arrington, Phys. Rev. C 69, 032201 (2004).
[65] Y. C. Chen, A. Afanasev, S. J. Brodsky, C. E. Carlson, and

M. Vanderhaeghen, Phys. Rev. Lett. 93, 122301 (2004).
-24



NUCLEON FORM FACTORS IN QCD PHYSICAL REVIEW D 73, 094019 (2006)
[66] J. Arrington, Phys. Rev. C 71, 015202 (2005).
[67] E. Tomasi-Gustafsson and G. I. Gakh, Phys. Rev. C 72,

015209 (2005).
[68] A. V. Afanasev, S. J. Brodsky, C. E. Carlson, Y. C. Chen,

and M. Vanderhaeghen, Phys. Rev. D 72, 013008 (2005).
[69] S. Kondratyuk, P. G. Blunden, W. Melnitchouk, and J. A.

Tjon, Phys. Rev. Lett. 95, 172503 (2005).
[70] P. G. Blunden, W. Melnitchouk, and J. A. Tjon, Phys. Rev.

C 72, 034612 (2005).
[71] M. K. Jones et al. (Jefferson Lab Hall A Collaboration),

Phys. Rev. Lett. 84, 1398 (2000); V. Punjabi et al., Phys.
Rev. C 71, 055202 (2005); 71, 069902(E) (2005).

[72] O. Gayou et al., Phys. Rev. C 64, 038202 (2001).
[73] O. Gayou et al. (Jefferson Lab Hall A Collaboration),

Phys. Rev. Lett. 88, 092301 (2002).
[74] S. J. Barish et al., Phys. Rev. D 16, 3103 (1977).
[75] N. J. Baker et al., Phys. Rev. D 23, 2499 (1981).
[76] K. L. Miller et al., Phys. Rev. D 26, 537 (1982).
[77] T. Kitagaki et al., Phys. Rev. D 28, 436 (1983).
[78] H. Budd, A. Bodek, and J. Arrington, hep-ex/0308005.
[79] A. Liesenfeld et al. (A1 Collaboration), Phys. Lett. B 468,

20 (1999).
[80] V. Bernard, L. Elouadrhiri, and U. G. Meissner, J. Phys. G

28, R1 (2002).
[81] S. Choi et al., Phys. Rev. Lett. 71, 3927 (1993).
[82] L. A. Ahrens et al., Phys. Lett. B 202, 284 (1988).
094019
[83] J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields
(McGraw-Hill, New York, 1965).

[84] B. L. Ioffe, Z. Phys. C 18, 67 (1983).
[85] B. L. Ioffe, Nucl. Phys. B188, 317 (1981); B191, 591

(1981).
[86] H. G. Dosch, M. Jamin, and S. Narison, Phys. Lett. B 220,

251 (1989).
[87] Y. Chung, H. G. Dosch, M. Kremer, and D. Schall, Nucl.

Phys. B197, 55 (1982).
[88] V. L. Chernyak and I. R. Zhitnitsky, Nucl. Phys. B246, 52

(1984).
[89] A. R. Zhitnitsky, I. R. Zhitnitsky, and V. L. Chernyak, Yad.

Fiz. 41, 445 (1985) [Sov. J. Nucl. Phys. 41, 284 (1985)].
[90] T. Huang and Z. H. Li, Phys. Rev. D 57, 1993 (1998).
[91] J. Bolz and P. Kroll, Z. Phys. A 356, 327 (1996).
[92] V. Braun, R. J. Fries, N. Mahnke, and E. Stein, Nucl. Phys.

B589, 381 (2000); B607, 433(E) (2001).
[93] I. D. King and C. T. Sachrajda, Nucl. Phys. B279, 785

(1987).
[94] V. L. Chernyak, A. A. Ogloblin, and I. R. Zhitnitsky, Sov.

J. Nucl. Phys. 48, 536 (1988); Z. Phys. C 42, 583 (1989).
[95] I. I. Balitsky and V. M. Braun, Nucl. Phys. B311, 541

(1989).
[96] I. I. Balitsky and V. M. Braun, Nucl. Phys. B361, 93

(1991).
[97] P. Ball and V. M. Braun, Nucl. Phys. B543, 201 (1999).
-25


