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Baryon spectrum in large Nc chiral soliton and in quark models
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Strangeness contents of baryons are calculated within the rigid rotator model for arbitrary number of
colors Nc. The problem of extrapolation to realistic value Nc � 3 is noted, based on explicit calculations
and comparison of the rigid rotator and rigid oscillator variants of the model. Some features of exotic
baryon spectra (f �10g, {27}, and {35}-plets of baryons) obtained in the chiral soliton approach can be
understood in terms of simplified quark (4q �q) wave functions. The effective mass of strange antiquark in
different SU�3�multiplets of pentaquarks should depend on the particular multiplet, to link the predictions
of soliton and quark models. The estimate of the 6F and �3F diquarks mass difference can be made from
comparison with chiral soliton model results for masses of exotic baryons from different SU�3�multiplets.
The masses of baryons partners with different values of spin J are also estimated.
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I. INTRODUCTION

Description of hadrons structure in terms of their quark
constituents is generally accepted, but the alternative de-
scription within e.g. topological soliton (Skyrme) model
[1,2] and its modifications also is useful and has certain
advantages in comparison with traditional approaches. The
chiral (topological) soliton approach is based on general
principles and few ingredients incorporated in the effective
chiral Lagrangian, this is the reason for apparent simplifi-
cations in comparison, for example, with attempts to solve
relativistic many-body problems. To simplify the latter,
some additional objects like diquarks and triquarks have
been phenomenologically introduced and discussed espe-
cially intensively after recent observations of the so-called
pentaquarks [3,4].1 The concept of diquarks ‘‘as an organ-
izing principle for hadron spectroscopy’’ is considered in
details in [12], see also [13]. The concepts of diquarks,
triquarks, or other correlated quark clusters are certainly of
useful heuristic value, although their properties have not
been deduced rigorously from basic QCD Lagrangian. It
should be noted that diquarks present in different physical
states, baryons, or mesons, can have different properties
like the effective mass and size, even for the same quantum
numbers.2

In the present paper we perform explicit calculation of
the strangeness contents of exotic and nonexotic baryon
ctive present situation with experimental observa-
ble pentaquark states is discussed, e.g. in [5,6].
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states at an arbitrary number of colors Nc, and discuss
connection of the chiral soliton approach (CSA) and sim-
ple quark (pentaquark) model for exotic baryon states, in
the realistic Nc � 3 case. Although there was intensive
discussion of connections of the rigid rotator model
(RRM) and the bound state model (BSM) in the literature,
mainly in the large Nc limit [15–22], explicit analytical
calculations of observable quantities at arbitrary Nc were
lacking still, except several cases [8,21,22]. The rotation-
vibration approach (RVA) described in [22,23] and refer-
ences in these papers, includes both rotational (zero
modes) and vibrational degrees of freedom of solitons
and is a generalization of both RRM and BSM, which
appear therefore as particular variants of RVA when certain
degrees of freedom are frozen (see also discussion in
Sec. III).3 As our studies have shown, there is an essential
difference between results of RR calculation and BS model
(in its commonly accepted version) in the next-to-leading
term contributions of the 1=Nc expansion for the mass
splittings inside SU�3� multiplets of baryons. Since the
expansion parameter is large, there is a problem of ex-
trapolation from the large Nc limit to the real Nc � 3
world. This problem of extrapolation to realistic value of
Nc we note in the BSM, persists in RVA as well.

Some features of exotic baryon spectra obtained previ-
ously within the topological soliton model [7,26–29] can
be understood in the framework of pentaquark model,
independently of its particular variant (see, e.g. [30]).
The Gell-Mann–Okubo relations which are valid in any
model where the SU�3� symmetry breaking is introduced
in a definite way, mimic the mass splittings of simple quark
models, where they are mainly due to the mass difference
between strange and nonstrange quarks.

Comparison of the results of calculation within the
soliton model—if we believe that CSA provides the cor-
3The approach of [22] was criticized in [24], and response to
this criticism was given in [25].
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TABLE I. Strangeness contents of the octet, decuplet, and
antidecuplet of baryons at arbitrary N � Nc, for unmixed states.
Y0 � S� 1, states which appear only if N > 3 are marked by �.

[p, q] CS�N� CS�N � 3�

[1; �N � 1�=2]

Y0 � 1, I � 1=2 2�N � 4�=��N � 3��N � 7�� 7=30
Y0 � 0, I � 0 3=�N � 7� 9=30
Y0 � 0, I � 1 �3N � 13�=��N � 3��N � 7�� 11=30
Y0 � �1, I � 1=2 4=�N � 7� 12=30
�Y0 � �1, I � 3=2 �4N � 18�=��N � 3��N � 7�� 	 	 	

[3; �N � 3�=2]

Y0 � 1, I � 3=2 2�N � 4�=��N � 1��N � 9�� 7=24
Y0 � 0, I � 1 �3N � 7�=��N � 1��N � 9�� 8=24
�Y0 � 0, I � 2 �3N � 15�=��N � 1��N � 9�� 	 	 	

Y0 � �1, I � 1=2 �4N � 6�=��N � 1��N � 9�� 9=24
�Y0 � �1, I � 3=2 4�N � 3�=��N � 1��N � 9�� 	 	 	

�Y0 � �1, I � 5=2 �4N � 22�=��N � 1��N � 9�� 	 	 	

Y0 � �2, I � 0 5=�N � 9� 10=24
�Y0 � �2, I � 1 �5N � 9�=��N � 1��N � 9�� 	 	 	

�Y0 � �2, I � 2 �5N � 17�=��N � 1��N � 9�� 	 	 	

�Y0 � �2, I � 3 �5N � 29�=��N � 1��N � 9�� 	 	 	

[0; �N � 3�=2]
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rect description, of course—with the naive quark-diquark
model allows us to get information about properties of
constituents (quarks, antiquarks, diquarks), e.g. mass dif-
ferences of diquarks with different quantum numbers, in
qualitative agreement with other estimates. Quantitatively,
however, the mass difference between ‘‘bad’’ and ‘‘good’’
diquarks obtained in this way contains considerable un-
certainties. Another result of interest is relatively strong
dependence of the mass of strange antiquark on the SU�3�
baryon multiplet under discussion. It is shown as well that
the partners of baryon resonances with different JP pre-
dicted within quark models are present also in the CSA,
although they have usually higher energy. Some of these
questions have been addressed in talks [8], and here we add
more rigour to this consideration.

In the next section strangeness contents of nonexotic and
exotic states are calculated at an arbitrary number of colors
Nc, in Sec. III these results are compared with that of the
bound state model, its rigid oscillator (RO) variant, for a
small enough value of the flavor symmetry breaking mass.
In Sec. IV comparison with the simple pentaquark model is
performed, the partners of baryon states with different spin
are discussed in Sec. V, and the final section contains some
conclusions.

II. STRANGENESS CONTENTS OF BARYONS FOR
AN ARBITRARY NUMBER OF COLORS

We begin our consideration with scalar strangeness con-
tents (CS in what follows) of baryons, nonexotic and
exotic, which defines the mass splittings within SU�3�
multiplets of baryons in the chiral soliton approach, by
the following reasons. First, strangeness content of baryons
or baryon resonances is important and a physically trans-
parent characteristic of these states, not calculated yet
analytically for an arbitrary number of colors Nc.

4

Second, the behavior of this quantity as a function of Nc
allows to make some conclusions (mostly pessimistic)
about the possibility of extrapolation from large Nc to a
realistic world with Nc � 3. A comparison of different
variants of the model at arbitrary Nc and at Nc ! 3 also
allows to make conclusions about the reliability of the
whole CSA.

The spectrum of observed baryon states is obtained
within chiral (topological) soliton models by means of
quantization of the motion of starting classical field con-
figuration (usually it is SU�2� configuration, although it
may be some other configuration as well) in SU�3� collec-
tive coordinates space. In the rigid rotator approximation
the mass formula for the quantized states is [26,31–34]
4Numerical calculations for the ‘‘octet’’ and ‘‘decuplet’’ of
baryons have been performed recently, however (Herbert
Weigel, private communication, see also [22]).
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M�p;q;Y; I; J� �Mcl�

�
C2�SU3�� J�J� 1��

N2
c

12

�
1

2�K

�
J�J� 1�

2��
��M; (1)

The second order Casimir operatorC2�SU3� � �p
2 � q2 �

pq�=3� p� q for the (p, q)-multiplet, Y, I, J are the
hypercharge, isospin, and spin of baryon, �� and �K are
the moments of inertia, of the order of �5–6� GeV�1 and
�2–3� GeV�1. The mass splittings within multiplets of
baryons are defined by the following relation [31], see
also [26,32–34] where details of evaluation and expres-
sions for the moments of inertia can be found

�M �
�

�
�
F2
K

F2
�
�2
K ��

2
�

�
� �F2

K � F
2
��~�

�
CS; (2)

if the configuration mixing is not included.

� �
F2
�

2

Z
�1� cf�d3r (3)

is the so-called � term, one of the characteristics of the
classical configuration, and

~� �
1

4

Z
cf

�
f02 �

2s2
f

r2

�
d3r; (4)
Y0 � 2, I � 0 3=�N � 9� 6=24
Y0 � 1, I � 1=2 �4N � 9�=��N � 3��N � 9�� 7=24
Y0 � 0, I � 1 �5N � 9�=��N � 3��N � 9�� 8=24
Y0 � �1, I � 3=2 �6N � 9�=��N � 3��N � 9�� 9=24
�Y0 � �2, I � 2 �7N � 9�=��N � 3��N � 9�� 	 	 	
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f is the profile function of the Skyrmion, the values of
physical masses �K, �� and decay constants FK, F� are
taken from the experiment. CS is the so-called strangeness
content of the quantized baryon state. Within the RR model
[31] rotation of incident SU�2� configuration is described
with the help of matrix of collective coordinates A�t� 2
SU�3�, which is usually parametrized as A � A1�SU2�


exp�i��4�A2�SU2� exp�i��8=
���
3
p
�, where SU�2� rotation

matrices depend each of 3 variables, �4, �8 are Gell-
Mann matrices, see e.g. [35].

The wave functions of baryons in SU�3� space,
��p; q;Y; I; I3� are just SU�3� Wigner functions depend-
ing on 8 parameters incorporated in matrix A: the integers
(p, q) define the SU�3�multiplet under consideration, Y, I,
I3 are hypercharge, isospin, and its 3d projection of par-
ticular baryon state. For arbitrary (odd) number of colors
TABLE II. Strangeness contents for unmixed sta
plet (J � 5=2) of baryons, for arbitrary N and num
N > 3 are marked with �.

[2; �N � 1�=2] C

Y0 � 2, I � 1 �3N � 23�=�
Y0 � 1, I � 3=2 �4N2 � 65N=2� 3=2�
Y0 � 1, I � 1=2 �4N � 24�=�
Y0 � 0, I � 2 �5N2 � 39N � 26�=�
Y0 � 0, I � 1 �5N2 � 33N � 8�=��
Y0 � 0, I � 0 5=�
�Y0 � �1, I � 5=2 �6N2 � 91

2 N �
101
2 �=�

Y0 � �1, I � 3=2 �6N2 � 38N � 8�=��
Y0 � �1, I � 1=2 �6N � 7=2�=�
�Y0 � �2, I � 3 �7N2 � 52N � 75�=�
�Y0 � �2, I � 2 �7N2 � 43N � 24�=�
Y0 � �2, I � 1 �7N � 2�=��
[4; �N � 1�=2]

Y0 � 2, I � 2 �3N � 25�=�
Y0 � 1, I � 5=2 �4N2 � 85N=3� 79�=
Y0 � 1, I � 3=2 �4N � 24�=�
�Y0 � 0, I � 3 �5N2 � 104

3 N � 133�=
Y0 � 0, I � 2 �5N2 � 74

3 N � 67�=�
Y0 � 0, I � 1 �5N � 23�=�
�Y0 � �1, I � 7=2 �6N2 � 41N � 187�=
�Y0 � �1, I � 5=2 �6N2 � 88

3 N � 110�=
Y0 � �1, I � 3=2 �6N2 � 21N � 55�=�
Y0 � �1, I � 1=2 �6N � 22�=�
�Y0 � �2, I � 4 �7N2 � 142

3 N � 241�=
�Y0 � �2, I � 3 �7N2 � 34N � 153�=
�Y0 � �2, I � 2 �7N2 � 24N � 87�=�
Y0 � �2, I � 1 �7N2 � 52N=3� 43�=
Y0 � �2, I � 0 7=�
�Y0 � �3, I � 9=2 �8N2 � 161

3 N � 295�=
�Y0 � �3, I � 7=2 �8N2 � 116

3 N � 196�=
�Y0 � �3, I � 5=2 �8N2 � 27N � 119�=
�Y0 � �3, I � 3=2 �8N2 � 56N=3� 64�=
Y0 � �3, I � 1=2 �8N � 31=3�=
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the hypercharge is connected with strangeness by relation
Y � S� NB=3, see e.g. [2,8,15] (we omit the index c in
Nc in most of the formulas and in Tables I and II). It is more
convenient therefore to use for the B � 1 case the quantity
Y0 � S� 1, as we do in the tables and in Fig. 1. Within this
parametrization the only flavor changing parameter is �,
which defines the deviation in ‘‘strange direction,’’ and
strangeness content

CS �
1
2h�B���jsin2�j�B���i; (5)

see the appendix, where explicit examples of �-dependent
wave functions of some baryon states are given. The main
contribution to the baryon mass operator, depending on
flavor symmetry breaking (FSB) mass mK equals to [31]
tes of the {27}-plet (spin J � 3=2) and {35}-
erically for N � 3. States which exist only for

S�N� CS�N � 3�

�N � 5��N � 11�� 32=112
=��N � 1��N � 5��N � 11�� 33=112
�N � 5��N � 11�� 36=112
�N � 1��N � 5��N � 11�� 34=112
N � 1��N � 5��N � 11�� 38=112
N � 11� 5=14
�N � 1��N � 5��N � 11�� 	 	 	

N � 1��N � 5��N � 11�� 40=112
�N � 1��N � 11�� 43=112
�N � 1��N � 5��N � 11�� 	 	 	

�N � 1��N � 5��N � 11�� 	 	 	

N � 1��N � 11�� 46=112

�N � 3��N � 13�� 34=96
��N � 1��N � 3��N � 13�� 21=96
�N � 3��N � 13�� 36=96
��N � 1��N � 3��N � 13�� 	 	 	

�N � 1��N � 3��N � 13�� 26=96
�N � 3��N � 13�� 38=96
��N � 1��N � 3��N � 13�� 	 	 	

��N � 1��N � 3��N � 13�� 	 	 	

�N � 1��N � 3��N � 13�� 31=96
�N � 3��N � 13�� 40=96
��N � 1��N � 3��N � 13�� 	 	 	

��N � 1��N � 3��N � 13�� 	 	 	

�N � 1��N � 3��N � 13�� 	 	 	

��N � 1��N � 3��N � 13�� 36=96
N � 13� 42=96
��N � 1��N � 3��N � 13�� 	 	 	

��N � 1��N � 3��N � 13�� 	 	 	

��N � 1��N � 3��N � 13�� 	 	 	

��N � 1��N � 3��N � 13�� 	 	 	

��N � 1��N � 13�� 41=96
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FIG. 1. The I3 � Y0 diagrams (Y0 � S� 1) for multiplets of
pentaquark baryons, antidecuplet, {27} and {35}-plets. For N >
3 these diagrams should be extended within long lines, as shown
in the picture. Quark contents are given for manifestly exotic
states, when N � 3.

5The validity of Gell-Mann–Okubo relations for the octet and
decuplet of baryons at an arbitrary number of colors has been
noted long ago in the paper [37] where the 1=N expansion and
induced representation methods were developed for describing
baryon properties.
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�M � m2
K�
h1�D88���i

3
�

1

2
m2
K�hsin2�i; (6)

since D88 � Tr�Ay�8A�8�=2 � 1� 3�sin2��=2, m2
K �

F2
K�

2
K=F

2
� ��

2
�.

The second term in (2), proportional to ~� gives relatively
small contribution in comparison with the first term; it is
however not negligible for realistic values of masses and
parameters. When mK ! 0, then the � rotation becomes
zero mode. More details can be found e.g. in [8,26,34].

The quantity hD88i can be calculated using Clebsh-
Gordan coefficients for an arbitrary number of colors N
which have been presented previously for few cases in
[21,36] (however, the strangeness contents have not been
calculated). Another method of calculations which we
prefer here is to use the baryons wave functions in the
SU�3�-configuration space, as it was described, e.g. in
[32]. For large N generalization of the octet, the decuplet
of baryons, and for the �� baryon this method has been
used recently in [8] to calculate strangeness contents of
these baryons. For exotic baryon multiplets, ‘‘antidecu-
plet,’’ ‘‘{27},’’ and ‘‘{35}’’-plets (shown in Fig. 1) we
present here strangeness contents and wave functions for
the first time (see the appendix). In Tables I and II strange-
ness contents are given for an arbitrary number of colors,
and also numerically for N � 3.

It can be seen easily from Tables I and II that for the
fixed value of strangeness, CS decreases as 1=N with
increasing N—in agreement with the fact that a fixed
number of quarks are strange, whereas the total number
of constituent quarks is N, or N � 2 for ‘‘pentaquarks.’’
094018
The difference of strangeness contents of states from dif-
ferent SU�3�multiplets, but with the same value of strange-
ness, decreases as 1=N2 or faster. E.g., the difference of CS
for the nucleon with I � 1=2 and delta (I � 3=2) decreases
like 1=N3 [8].

Any chain of states within definite SU�3� multiplet,
satisfying the relation I � �Y=2� C, i.e. which belong
to such straight lines in (I � Y0)-plane, has equidistant
behavior due to Gell-Mann–Okubo relations.5 According
to these, the mass splitting and strangeness contents within
the SU�3� multiplets can be presented in the form

CS�p; q; Y
0; I� � a�p; q�Y0 � b�p; q��Y02=4� I�I � 1��

� c�p; q�; (7)

where a�p; q�, b�p; q�, being constants within any SU�3�
multiplet, are different for different multiplets (p, q).
Linear behavior of masses of any chain of states with I �
�Y0=2� C follows then immediately. Since Y0 � S� 1,
(7) can be easily rewritten in terms of strangeness S and
isospin I.

From Table I we easily obtain

a�”f8g”� � �
N � 2

�N � 3��N � 7�
;

b�”f8g”� � �
2

�N � 3��N � 7�
;

c�”f8g”� �
3

�N � 7�
;

(8)

and for decuplet:

a�”f10g”� � �
N � 2

�N � 1��N � 9�
;

b�”f10g”� � �
2

�N � 1��N � 9�
;

c�”f10g”� �
3

�N � 9�
:

(9)

For antidecuplet I � 1� Y0=2, relation (7) takes the form

CS � �a� 3b=2�Y0 � 2b� c;

and we obtain from Table I two relations:

a�”f10g”� �
3

2
b�”f10g”� � �

N
�N � 3��N � 9�

;

�2b�”f10g”� � c�”f10g”� �
5N � 9

�N � 3��N � 9�
:

(10)

For ‘‘{27}’’-plet we have from Table II:
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a�”f27g”� �
��N2 � 11N=4� 13=4�

�N � 1��N � 5��N � 11�
;

b�”f27g”� �
��3N � 17�

2�N � 1��N � 5��N � 11�
;

c�”f27g”� �
5

�N � 11�
;

(11)

and for ‘‘{35}’’-plet:

a�”f35g”� �
��N2 � N=2� 31=2�

�N � 1��N � 3��N � 13�
;

b�”f35g”� �
��5N=3� 11�

�N � 1��N � 3��N � 13�
;

c�”f35g”� �
5N2 � 44N=3� 1

�N � 1��N � 3��N � 13�
:

(12)

In all cases at large N, a�p; q� � c�p; q� � 1=N, and
b�p; q� � 1=N2. A feature of interest is that the step in
CS per unit strangeness for decuplet, �10 � �N �
1�=��N � 1��N � 9��, is greater than that for antidecuplet,
�10 � N=��N � 3��N � 9��, although they coincide for
N � 3, and we do not consider the case of N � 1.6

It can be seen also from Tables I and II that the parame-
ter for expansion CS � ��=N��1� 	=N � . . .� is
�7=N; 9=N; 11=N; 13=N; . . . , for the octet, decuplet,
{27}, and {35}-plets, so, it increases with increasing val-
ues of (p, q) defining the multiplet [8]. E.g., for multiplets
�p; q� � �0; �N � 3m�=2� the expansion parameter is
�3m� 6�=N. The authors of [22] came to similar conclu-
sions considering the decay matrix element for
��-baryon: ‘‘Any approach. . .that employs 1=N expan-
sion methods for exotic baryon matrix elements seems
questionable’’ (Subsection VI B of [22]). As we show
here, for nonexotic baryons such an expansion method is
questionable also, for the bound state model as well as for
the RVA.
III. COMPARISON OF RIGID ROTATOR AND
OSCILLATOR MODELS AT LARGE N

When flavor symmetry breaking mass mK is small
enough, it is possible to compare directly the results of
the rigid rotator and oscillator models at arbitrary N. In the
RR model any baryon state is ascribed, at first, to definite
SU�3�-multiplet (p, q) with some value of spin J which
depends on the multiplet, and as a next step the mass
6It should be mentioned that it is a convention to identify the
multiplet �p; q� � �3; �N � 3�=2� with the decuplet. In this case
the difference Ymax � Ymin � p� q � �N � 3�=2 coincides
with that of antidecuplet [0; �N � 3�=2]. It is usually assumed
for the generalization of any SU�3� multiplet that spin and
isospin of baryon state is fixed when the number of colors Nc
increases. Another logical possibility for generalization of the
decuplet, based on symmetry principle, is the multiplet [N, 0],
see e.g. discussion in [8].
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splitting within each multiplet can be calculated in the first
order in FSB massmK, precisely for an arbitrary number of
colors N (previous section). In the bound state model
[36,38,39] expansion in 1=N is made from the beginning,
the states are labeled by their strangeness (flavor in general
case), spin, and isospin. The J, I-dependent energy is
calculated as the hyperfine splitting correction of the order
�1=N, and each state can be ascribed to definite
SU�3�-multiplet, according to its quantum numbers S, I,
and J. When mK ! 0, there is no need to consider the full
bound state model, because it reduces in this limit to the
simplified rigid oscillator version [39,40].

A. Nonexotic baryon states

In this subsection we follow mainly to the discussion in
[41]. For the rigid rotator model we shall use the above
expressions (2)–(6), i.e.

�M � m2
K�CS; (13)

which corresponds to first order in flavor symmetry break-
ing mass squared m2

K. This approximation becomes more
precise as m2

K ! 0. In this limit the RR model and soft, or
slow rotator model provide the same results.7

From Table I we obtain for the components of the octet,
providing expansion in parameter 1=N:

�MN �
2�N � 4�

�N � 3��N � 7�
m2
K�

�

�
2

N
�

12

N2 �O�N
�3�

�
m2
K�; (14)

�M� �
3

�N � 7�
m2
K� �

�
3

N
�

21

N2 �O�N
�3�

�
m2
K�;

(15)

�M� �
3N � 13

�N � 3��N � 7�
m2
K�

�

�
3

N
�

17

N2 �O�N
�3�

�
m2
K�; (16)

�M� �
4

�N � 7�
m2
K� �

�
4

N
�

28

N2 �O�N
�3�

�
m2
K�:

(17)

For arbitrary nonexotic SU�3� multiplets it is a matter of
7The opposite to the rigid rotator is the assumption that during
the rotation it is sufficient time for changing the Skyrmion
profiles under the influence of FSB terms in the Lagrangian
(so-called soft, or slow rotator approximation, see [42] where
static properties of baryons have been calculated within this
approximation). Evidently, both rigid and soft rotator approx-
imations converge when mK ! 0, and estimates show also that
for B � 1 the RR model is more justified in the realistic case,
whereas for large baryon numbers the soft rotator model can be
better [8].
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also in [34].
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simple algebra to show, using the �-dependent wave func-
tions of baryons, that for not large values of S the strange-
ness content of baryon equals

CS ’
2� jSj
N

; (18)

so, minimal strangeness content exists and decreases like
1=N.

Let us compare this with the results of the RO approach.
The bound state soliton model is in fact the particular case
of the more general rotation-vibration approach (RVA)
described in detail in [22], see also references in this paper.
In the rigid oscillator model parametrization of the matrix
A�t� is used, somewhat different from that described
above: A�t� � ASU�2��t�S�t�, matrix S�t� � exp�iD� de-
scribes strangeness changing movement of soliton in
SU�3� space [36,38]:

D �
X7

a�4

da�a; (19)

so, deviation into ‘‘strange’’ direction is defined by
two-component spinor D � �d4 � id5; d6 � id7�

T=
���
2
p

.
Comparison with the RR parametrization above allows to
conclude that DyD ’ �2=2. The Hamiltonian of the RO
model is of the oscillator type and can be quantized appro-
priately [36,39]. The average deviation jDj into strange
direction for arbitrary negative S can be estimated easily as

jDjS �
2jSj � 1

�16m2
K��K � N2�1=4

; (20)

for S < 0. At fixed jSj it decreases with increasing N and
FSB mass mK. However, (20) does not hold for positive S.
The quantity �K, similar to �, is defined by incident SU�2�
chiral field configuration [36,39], and can be called the
moment of inertia of Skyrmion relative to the motion into
strange direction. It is assumed again that during the mo-
tion in the oscillator potential the classical configuration
does not change its form, that is the reason why the model
is called the rigid oscillator one.

The order N0 contributions to the nonexotic baryon
masses are

�M0�RO� � !� �!� �!�jSj; (21)

where

!� �
N

8�K
��� 1�; (22)

� �
�������������������������������
1� �mK=M0�

2
q

; M0 �
N

4
�����������
��K

p : (23)

In lowest order in mK we obtain easily:

!� ’ m
2
K

�

N
; !� ’

N
4�K

�m2
K

�

N
: (24)
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The first two terms in (21) come from the zero-point
energy. To order m2

K this gives

�M0�RO� ’
N

4�K
�
m2
K�

N
�2� jSj�: (25)

The term N=�4�K� is well known to appear in the RR
approach [7,8,26], and we also see that the term linear in
m2
K agrees with the RR approach, in the order N0 � 1.
The O�1=N� contributions were studied in [36,39], and

the result was expressed in terms of the hyperfine splitting
(HFS) constants

c � 1�
��

2��K
��� 1� � 1�

4���m2
K

N2 �O�m4
K�;

(26)

�c � 1�
��

�2�K
��� 1� � 1�

8���m2
K

N2 �O�m4
K�:

(27)

The O�1=N� term as stated in [39] and obtained also in
[33,34], is

�EHFS �
J�J� 1�

2��
�

1

2��
f�c� 1��J�J� 1� � I�I � 1��

� � �c� c�IS�IS � 1��g (28)

with IS � jSj=2-isospin carried by kaon field.8 At mK � 0
(flavor symmetric case) c � �c � 1, and the hyperfine split-
ting correction reduces to the well-known quantum rota-
tional correction J�J� 1�=2��. The relations take place in
the linear in m2

K approximation:

�c ’ 2c� 1; (29)

which ensures validity of the Gell-Mann–Okubo relations,
and

�c ’ c2; (30)

which is used sometimes in literature. However, relation
(30) does not hold for antiflavor (positive strangeness), see
the next subsection. In the expression (28), the term linear
in m2

K is found to be

�M1=N�RO� � 2
�m2

K

N2 �I�I � 1� � J�J� 1� � IS�IS � 1��;

(31)

and for J � 1=2 we can compare this with the RR results
for the octet, (14)–(17). Collecting the terms �m2

K� from
(25) and (35) we obtain
-6
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�MN�RO� ’
2

N
m2
K�;

�M��RO� ’
�

3

N
�

3

N2

�
m2
K�;

�M��RO� ’
�

3

N
�

1

N2

�
m2
K�;

�M��RO� ’
�

4

N
�

4

N2

�
m2
K�:

(32)

Obviously, there is no agreement between (14)–(17) and
(32) for all 4 components of the octet.

Now, let us consider the decuplet of baryons, i.e. the
(3; �N � 3�=2) multiplet of SU�3�, J � 3=2. The terms
linear in m2

K as it follows from Table I, are

�M� �
2�N � 4�

�N � 1��N � 9�
m2
K�

�

�
2

N
�

12

N2 �O�N
�3�

�
m2
K�; (33)

�M�� �
3N � 7

�N � 1��N � 9�
m2
K�

�

�
3

N
�

23

N2 �O�N
�3�

�
m2
K�; (34)

�M�� �
2�2N � 3�

�N � 1��N � 9�
m2
K�

�

�
4

N
�

34

N2 �O�N
�3�

�
m2
K�: (35)

�M	 �
5

�N � 9�
m2
K� �

�
5

N
�

45

N2 �O�N
�3�

�
m2
K�:

(36)

They satisfy the usual equal splitting rule for decuplet, with
the splitting

N � 1

�N � 1��N � 9�
m2
K� �

�
1

N
�

11

N2 �O�N
�3�

�
m2
K�:

(37)

Within the RO variant we should use (31) with J � 3=2
and I � J� IS, and obtain in this way for the components
of the decuplet quite different results.

A possible way to remove disagreement between the RR
model and RO variant of the bound state model is the
following [41]. The RO calculation involves normal-
ordering ambiguities in quartic terms, which can correct
the overall shift of masses and the term linear in strange-
ness that already appeared in the leading order in 1=N. Let
us assume that the normal-ordering corrections change the
O�1=N� mass formula by an extra additive term [41]

�M�norm:ord:� � �6
�m2

K

N2 �2� jSj�; (38)
094018
which is proportional to the order 1 contribution, but is
down by a power of N.

Then, the O�1=N� term in the mass formula becomes
[41]

�M�RO; norm:ord:� �
�m2

K

N2

�
�12� 2I�I � 1�

� 2J�J� 1� �
S2

2
� 7jSj

�
; (39)

and the O�m2
K�=N2� terms of the RO approach agree with

the RR calculations for all the octet and decuplet masses.
These results show that there should be a specific

normal-ordering prescription that brings the two ap-
proaches in complete agreement [41]. As it is well known
[16,22], in the large N limit both RR and RO approaches
coincide. But the next-to-leading order corrections in the
1=N-expansion are large, including the normal-ordering
correction, so the problem of extrapolation to the real
world with N � 3 cannot be solved by means of 1=N
expansion. It should be noted also that besides the 1=N
corrections we discussed here there can be also corrections
of other types, e.g. corrections of dynamical nature to static
characteristics of Skyrmions. By this reason, even if the
proper way to remove the difference between RR and RO
models is found, it may not mean that the whole problem of
extrapolation to real N � 3 world is resolved.

B. Positive strangeness states

To calculate the HFS correction in this case, the sub-
stitution �! �� should be made in the above expres-
sions for the HFS constants c and �c, and we have in this
case:

c �S � 1�
��

2��K
��� 1�

� 1�
��

�K
�

8�K�m2
K

N2 �O�m4
K� (40)

and

�c �S � 1�
��

�2�K
��� 1�

� 1�
2��

�K
�

24�K�m2
K

N2 �O�m4
K�: (41)

In the difference from the negative strangeness case, for
positive strangeness (antiflavor in general case) the con-
stants c � 1 atmK � 0, and approximate equality �c ’ c2 is
strongly violated now. For the energy of states with anti-
flavor we have from (28)
-7
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�EHFS�FSB �
J�J� 1�

2��
�

1

2�K
��J�J� 1� � I�I � 1�

� 3IS�IS � 1�� �
m2
K�

N2 f3N � 2��J�J� 1�

� I�I � 1� � 7IS�IS � 1��g: (42)

The case of exotic S � �1 states is especially interesting.
In this case IS � 1=2, J � I � 1=2, and within the RO
model we obtain, using the expressions for c �S and �c �S:

M�0;J�1=2 �
2N � 3

4�K
�

3

8��
�m2

K�
�

3

N
�

9

N2

�
�Mcl;

(43)

M�1;J�3=2 �
2N � 1

4�K
�

15

8��
�m2

K�
�

3

N
�

7

N2

�
�Mcl;

(44)

M�2;J�5=2 �
2N � 1

4�K
�

35

8��
�m2

K�
�

3

N
�

5

N2

�
�Mcl:

(45)

The terms of zero’s order inmK coincide exactly with those
given above by RR mass formula (1) applied to exotic
multiplets f10g; J � 1=2, {27}, J � 3=2, and {35}, J �
5=2. As it was expected, there is additional contribution
N=�4�K� to the energy of exotic states compared with
nonexotic states, in agreement with the RR model result.9

Let us compare this with the mass splitting correction
�m2

K, obtained within the RR model, see Tables I and II:

�M�0
’ m2

K�
�

3

N
�

27

N2

�
; (46)

�M�1
’ m2

K�
�

3

N
�

25

N2

�
; (47)

�M�2
’ m2

K�
�

3

N
�

23

N2

�
: (48)

There is considerable difference between RR and RO
models in FSB terms, proportional to m2

K. This difference
can be eliminated if the contribution given by (39)

�M�norm:ord:; S � 1� � �18m2
K

�

N2 (49)

is added to the RO result, similar to the case of the octet and
9It was shown explicitly in [34] (formula (52) in the appendix)
that within the RR model the energy difference between exotic
and nonexotic baryon states (25) due to the difference of corre-
sponding Casimir operators equals �E � �NB� 3�=�4�K� for
arbitrary odd B. Note that if the expression for �EHFS (28) is
used with the term �c2 � c�IS�IS � 1� instead of � �c� c�IS�IS �
1�, as sometimes in the literature, then the results of the RR
model cannot be reproduced correctly within BSM.
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decuplet of baryons considered in [41] and in the previous
subsection. Evidently, the difference between RR and RO
models should be kept in mind, when comparison of
predictions of both variants is made. However, in the
literature discussing relevance of the pentaquarks predic-
tions within CSA this difference was not taken into
account.

Other states with values of strangeness different from
S � 1 which could be ascribed to exotic multiplets can be
considered similarly, but it is technically a more compli-
cated problem.

C. Comparison of the total mass splittings

Also, it is more difficult to calculate the total mass
splittings, especially for exotic SU�3� multiplets in the
RO model. An important restriction for the whole mass
splitting of any SU�3� multiplet follows from expression
(2), since s2

�  1:

�M 
1

2

�
F2
K

F2
�
�2
K ��

2
�

�
�: (50)

This restriction is useful for the comparison of different
quantization schemes.

Within the RR model it is convenient to use the Gell-
Mann–Okubo formulas (7), substituting in this formula
Ymax � �p� 2q�=3, I�Ymax� � p=2, and Ymin �
��q� 2p�=3, I�Ymin� � q=2 (recall that Y � N=3� S
for an arbitrary number of colors).

For decuplet �p; q� � �3; �N � 3�=2� from (9) we obtain

�tot
RR�10� � m2

K�
N2 � 4N � 15

2�N � 1��N � 9�
’
m2
K�

2

�
1�

6

N
�

36

N2

�
:

(51)

Within the RO model, for any multiplet (p, q) the total
mass splitting in the leading in 1=N approximation is given
by

�totM�p; q� � �Y!� ’ m2
K

�

N
�p� q�: (52)

It turned out that in this approximation for N � 3 the total
mass splitting within the decuplet is 8 times greater than
within the rigid rotator approximation (51), for the octet
the difference is 4 times, as noted already in [8].

The hyperfine splitting correction can be calculated with
the help of formula (39), where for the decuplet we should
take J � 3=2, I � 3=2 for S � 0, and I � �N � 3�=4 for
S � ��N � 3�=2. Then we obtain

�tot
RO�f10g� �

m2
K�

2

�
1�

6

N
� . . .

�
(53)

in agreement with the first two terms in the 1=N expansion
of the above formula (51). Note, that it would be no
agreement without the addition of special normal-ordering
contribution (38) [41]. However, there is no agreement in
-8
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the next order terms in the 1=N expansion. Of course, one
should not expect such agreement because the RO model
we are using here does not take into account such contri-
butions. A similar agreement between RR and RO results
takes place for the total mass splitting of the octet �p; q� �
�1; �N � 1�=2�.

Let us consider as the next example the antidecuplet
�p; q� � �0; �N � 3�=2�multiplet which is a generalization
of (0, 3) antidecuplet for an arbitrary N. In this case there is
equidistant position of the components with different hy-
percharge, in view of Gell-Mann–Okubo relations, and
Ymax � �N � 3�=3, Ymin � ��N � 3�=6, �Y � p� q �
�N � 3�=2, and the mass splitting of this multiplet is

�tot
RRM�”10”� � m2

K�
N�Y

�N � 3��N � 9�
� m2

K�
N

2�N � 9�
:

(54)

Within the BSM and its RO variant we have, without
hyperfine splitting correction,

�tot
ROM�”10”� ’ �Y!� ’

N�N � 3�

16�K
��� 1�

’
N � 3

2N
m2
K�: (55)

We cannot, however, calculate the HFS correction in this
case, because expression (42) is not sufficient for this
purpose. To calculate the hyperfine correction for states
with strangeness S < 1 we should, in terms of the quark
model, make a summation of spins of nonstrange quarks,
strange antiquark, and several strange quarks, in correspon-
dence with strangeness S. This is a more complicated
problem to be solved starting from incident Lagrangian.

To conclude this subsection, we obtained agreement
between the RR and modified RO models in the total
mass splitting of nonexotic baryon multiplets in two lead-
ing orders of 1=N expansion, and for exotic multiplets—
only in first leading order. The next order contributions in
the RO model are not calculated yet. Anyway, since the
expansion parameter is large, like 6=N, the knowledge of
several terms of such expansion may be not so useful for
extrapolation to the real N � 3 world.
IV. QUARK WAVE FUNCTIONS OF
PENTAQUARKS

The connection between chiral soliton models and the
quark models of exotic states has been discussed inten-
sively, and different opinions have been revealed, from that
both models are dual [10,43], or complementary to each
other, to that they are essentially different, and predict
different states; in particular, in [44] the states were pre-
dicted which are absent in the simplest quantization
scheme of the chiral soliton models—the partners of states
with different spin, but same flavor quantum numbers,
including isospin. Here we show that some features of
094018
exotic baryons spectra obtained within the chiral soliton
approach can be illustrated in terms of the quark model, as
it was shown at first [45] for the case of the antidecuplet.
Any model with SU�3� flavor symmetry and its violation in
a special way mimics the quark model in view of Gell-
Mann–Okubo type relations (Sec. II). There are, however,
some distinctions, mainly in the quantitative estimates of
mass differences of different diquarks and partners of
exotic baryon states.

Under the simple quark model of baryons we mean the
model where mass splittings within SU�3� multiplets are
defined mainly by the difference between strange and non-
strange quark masses. It is a common feature of phenome-
nological models discussed recently in connection with the
observation of pentaquarks [3,4]. Here we shall reserve a
possibility that strange quark mass can be different in
different SU�3� multiplets, as well as strange antiquark
mass is different from the mass of strange quark. There
is nothing special in this assumption; even the effective
masses of electrons are slightly different in different atoms
due to different binding energies. Strong interactions of
strange quarks and antiquarks with (u, d) quarks are differ-
ent, which can lead to considerable difference of effective
masses.

Under the simplistic, or oversimplified quark model we
mean the model where strange quark and antiquark masses
are equal, as well as they are equal in different SU�3�
multiplets. The striking property of exotic spectra within
CSA is that the mass splitting within the antidecuplet in the
RR model, in the first order of perturbation theory for N �
3 equals exactly that of the decuplet, as it follows from
values of CS presented in Table I, therefore the simplistic
quark model contradicts the results of CSA for N � 3.

As it follows from the formulas of the preceding section,
the RO variant of the bound state model in the leading in
the 1=N approximation corresponds to the simple quark
model, with the strange quark mass

ms ’ m2
K

�

N
; (56)

which is of the order N0 � 1 (as it follows from the above
results, the relation is rather ms ’ m2

K�=�N � 9�, consid-
erably smaller numerically for N � 3). The antiflavor
excitation energy !� is greater than !�, so, one could
decide that the effective mass of the strange antiquark is
greater than the mass of the strange quark. Within the RR
variant of the CSA the difference !� �!� is reproduced
by the difference of rotational energies of different SU�3�
multiplets, due to the difference of Casimir operators of
exotic and nonexotic multiplets, and can be ascribed to the
contribution of the effective mass of the additional quark-
antiquark pair, mq �q � 1=�K (see, e.g. the appendix of
[8,34]). Within the bound state model and its RO variant
calculations of spectra of exotic multiplets (not only posi-
-9
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tive strangeness components) are absent still, as mentioned
above.

Relation (56) is in agreement with the known relation
msjh �qqij ’ F2

K�
2
K=8 [46], with the proper relation between

quark condensate h �qqi and F2
�=�. Sometimes in the litera-

ture the relation is used to obtain � or other quantities for
arbitrary N from the value at N � 3: ��N� � ��N � 3�

�N=3�. We want to note here that this is really an arbitrary
and not justified prescription, since any relation of the type
��N� � ��N � 3���N � a�=�3� a�� with any real (posi-
tive) constant a gives the correct value for N � 3, but
different at large N.
094018
A. Quark contents of exotic baryons in pentaquark
approximation

We call q the lightest quarks, u, d, and s denotes as
usually the strange quark, (c, b—the charmed or beauty
quark). We consider here the case of strangeness, the
charmed or beautiful states can be obtained by simple
substitution s! c, etc.

Quark contents of antidecuplet. First we recall that the
minimal quark content of the components of f �10}-plet is,
for N � 3 [45]:
��: j �10; 2; 0; 0i � juudd �si;

N�: j �10; 1; 1=2;�1=2i � judd�Q �Q�N�0i; j �10; 1; 1=2; 1=2i � juud�Q �Q�N��i;

��: j �10; 0; 1;�1i � jsdd�Q �Q����i; . . . ; j �10; 0; 1; 1i � jsuu�Q �Q����i;

��3=2: j �10;�1; 3=2;�3=2i � jssdd �ui; . . . ; j �10;�1; 3=2; 3=2i � jssuu �di:

(57)
10In the paper [4] the mixing between the pentaquark octet and
antidecuplet was studied, but their mixing with lowest baryon
octet was neglected. Strong interactions do not conserve the
number of additional quark-antiquark pairs, therefore, this mix-
ing takes place inevitably and will push the states considered
towards higher energies. The nonexotic octet and decuplet of
baryons should be included into consideration for self-
consistency of any model. The paper [20] contains a similar
remark.
Here we use the notation jN�p; q�; Y; I; I3i for the compo-
nents of the multiplet N�p; q� � �p� 1��q� 1��p� q�
2�=2 with hypercharge Y, isospin I, and its third projection
I3. The minimal quark content (i.e. the number of u, d, s
quarks or antiquarks) of manifestly exotic states �� and
��3=2 is unique within pentaquark approximation, the con-
dition for this is I � �5� S�=2 for S  0, since the number
of nonstrange quarks and antiquarks equals 5� S and each
of them has isospin 1=2. This uniqueness of the quark
contents allows to obtain the mass splitting within simple
quark model and to compare with results of the chiral
soliton (rigid rotator version) model described above.

In the model with �3F diquarks [4,45] the flavor part of
the wave function of �� is made of two isoscalar diquarks:

��� �
1
2�u1d2 � u2d1��u3d4 � u4d3� �s (58)

which corresponds exactly to isospin I � 0. Other compo-
nents of the antidecuplet can be obtained by action of
U-spin, or V-spin and isospin operators (Ud � s, U �s �
� �d, etc., see e.g. [45]).

The quark contents and the wave function of cryptoex-
otic states N� and �� depend on the particular model:
�Q �Q�B � �Bs�s� 	Bu �u� 
Bd �d with coefficients �, 	,

 depending not only on the particular baryon under
consideration but also on the variant of the model and on
the mixing between different SU�3� multiplets. Within the
diquark model [4,45] one obtains

�N�� �
1���
3
p ��us�12�ud�34 �s� �ud�12�us�34 �s

� �ud�12�ud�34
�d�; (59)

with �us�12 � �u1s2 � u2s1�=
���
2
p

, and similarly for other
cryptoexotic components of the antidecuplet, see Table III.
The wave function of the � -quartet does not contain
(s�s) pair as a consequence of isotopic invariance: we can
obtain components ���3=2, ��03=2; ���3=2 from ����3=2 by the
acting operator I�, and the (s�s) pair does not appear.

The upper component of the antidecuplet �� (see
Fig. 1) contains one antiquark with the mass m�s, the lower
component �3=2 contains two strange quarks with the mass
2ms, therefore, the whole splitting due to the mass of the
strange quark is 1ms, within the simplistic model [45], and
within pentaquark approximation, of course. This should
be compared with the total splitting 3ms for the decuplet,
where minimal content varies from (qqq) for �-isobar to
(sss) for 	-hyperon. The particular weight of (s�s) pair in
intermediate components (with strangeness 0 and �1)
depends on the assumption concerning the structure of
their wave function. It can be different in different models,
e.g. diquark-diquark or diquark-triquark models and even
for different variants of the diquark model. In the model [4]
the equidistant behavior was obtained for the antidecuplet
[45]. But such behavior of antidecuplet spectrum does not
follow in general from the above consideration.10

Quark contents of {27}-plet. The {27}-plet has the
upper S � �1, I � 1 component with content qqqq �s of
mixed symmetry and manifestly exotic components with
S � �1, I � 2, S � �2, I � 3=2, and S � �3, I � 1, the
-10



TABLE III. Masses of components of f �10g, and components with maximal isospin for {27},
J � 3=2 and {35}, J � 5=2-plets of exotic baryons (in MeV, the nucleon mass is input, N � 3).
The first line after notations of the components shows the contribution of the strange quarks/
antiquark masses within the simple model, ms �s is the mass of the s�s pair taken usually to the sum
of masses of s and �s quarks. The next line is the result of calculation without configuration
mixing, the second line of numbers—configuration mixing included according to [26].
Calculations correspond to case A of paper [26]: �K � 2:84 GeV�1, �� � 5:61 GeV�1, � �
1:45 GeV, which allowed to obtain the mass of �� hyperon close to the observed value
1.54 GeV.

j �10; 2; 0i j �10; 1; 1=2i j �10; 0; 1i j �10;�1; 3=2i

m�s 2ms�s=3 ms �ms �s=3 2ms

1503 1594 1684 1775
1539 1661 1764 1786
j27; 2; 1i j27; 1; 3=2i j27; 0; 2i j27;�1; 3=2i j27;�2; 1i
m�s ms �s=2 ms 2ms 3ms

1672 1692 1711 1828 1944
1688 1826 1718 1850 1987
j35; 2; 2i j35; 1; 5=2i j35; 0; 2i j35;�1; 3=2i j35;�2; 1i j35;�3; 1=2i
m�s 0 ms 2ms 3ms 4ms

2091 1796 1910 2023 2136 2250
2061 1792 1918 2046 2175 2306
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components with S � 0, I � 3=2, or I � 1=2 are cryptoexotic:

�1: j27; 2; 1;�1i � jdddu �si; . . . ; j27; 2; 1; 1i � juuud �si;

��: j27; 1; 3=2;�3=2i � jddd�Q �Q����i; . . . ; j27; 1; 3=2; 3=2i � juuu�Q �Q�����i;

�2: j27; 0; 2;�2i � jsddd �ui; . . . ; j27; 0; 2; 2i � jsuuu �di;

��3=2: j27;�1; 3=2;�3=2i � jssdd �ui; . . . ; j27;�1; 3=2; 3=2i � jssuu �di;

	1: j27;�2; 1;�1i � jsssd �ui; . . . ; j27;�2; 1; 1i � jsssu �di;

(60)
11For example, the S � �1 component of the antidecuplet
made of two isovector diquarks is ��� � �u1u2d3d4 �
d1d2u3u4 �

1
2 �u1d2 � u2d1��u3d4 � d3u4�� �s. In the diquark-

triquark model [3] the diquark within the triquark is color-
symmetric �6c� and antitriplet in flavor, so, this model should
be modified to provide {27} and {35}-plets of pentaquarks
so, the energy gap is 2ms for 4 units of strangeness,ms=2 in
average. Evidently, the upper S � �1, I � 1 component of
the {27}-plet, as well as S � �1 component of the {35}-
plet cannot be obtained in the flavor antisymmetric diquark
model [4]. The flavor symmetric diquarks of the type 6F
(isovectors in the S � 0 case) must be invoked for this
purpose.

Indeed, if the diquark is �3F, then we have according to
the well-known group-theoretical relation:

�3 � �3 � �3 � 10 � 8 � 8 � 1; (61)

and there appears only an antidecuplet from the known
pentaquark states (Fig. 1), and two octets of baryons. If one
diquark is �3, and the other is 6F, we obtain

6 � �3 � �3 � �15 � 3� � �3 � 27 � 10 � 8 � 8 � 1: (62)

If both diquarks are 6F, then

6 � 6 � �3 � �15 � 15 � �6� � �3

� 35 � 10 � 27 � 10 � 8 � 10 � 8: (63)
094018
So, in the latter case all known pentaquark states can be
obtained.11

Let us denote (q1q2) the flavor symmetric diquark, 6F in
flavor, with spin J � 1 (�3C in color). Then realization of
the wave function of {27}-plet of pentaquarks via diquarks
is:
j27; 2; 1; 1i � �u1u2��u3d4��s; (64)
other components can be obtained with the help of U-spin
and isospin I� operators:
-11
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j27; 1; 3=2; 3=2i � �u1u2���u3s4� �s� �u3d4� �d�=
���
2
p
;

j27; 0; 2; 2i � ��u1u2��u3s4� �d;

j27;�1; 3=2; 3=2i � ��u1s2��u3s4� �d;

j27;�2; 1; 1i � �s1s2��u3s4� �d:

(65)

It follows that the weight of the s�s pair within S � 0
component is 1=2, therefore, the contribution of the strange
quark mass equalsms in this case, similar to j27; 2; 1i state.
The S � �1, I � 2 components have content sqqq �q, from
sddd �u to suuu �d, and it does not contain the s�s-pair.
Therefore, its mass contains 1ms, similar to S � �1, I �
1 component see Table III). Remarkably, that chiral soliton
calculation provides very close results for masses of S �
�1 and S � �1, I � 2 components of {27}-plet, (Table 2
and Fig. 4 of [26]): the difference of masses equals
0.03 GeV, see Table III which is the modification of
Table 5 in [8].

The effect of configuration mixing is especially impor-
tant for cryptoexotic components of the antidecuplet (Y �
1 and 0) which mix with similar components of the lowest
baryon octet. As it is known from quantum mechanics, in
this case mixing makes the splitting between the octet and
antidecuplet greater and pushes the upper state to higher
energy. The mixing of the manifestly exotic state �3=2 2

f10g with the corresponding component of {27}-plet
pushes it down, as a result the total mass splitting within
�10 becomes smaller due to mixing.

For the cryptoexotic component of {27}-plet the mixing
effect is especially large: �20% admixture of �-isobar

VLADIMIR B. KOPELIOVICH AND ANDREI M. SHUNDERU
12The notation � for the S � �4, I � 1=2 component of {35}-
plet is not generally accepted, still.
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from decuplet pushes this component by an additional
130 MeV above nucleon and makes it even higher in
energy than the nearest strange �2 state.

Quark contents of 35-plet. The wave function of the
{35}-plet, the largest multiplet of pentaquarks, is symmet-
ric in flavor indices of 4 quarks. The I � 2 upper compo-
nents of this multiplet has quark content qqqq �s, from
dddd �s to uuuu �s:

���2 : j35; 2; 2;�2i � jdddd �si; . . . ; j35; 2; 2; 2i

� juuuu �si: (66)

The intermediate components can be obtained easily by
applying the isospin operators I� or I�. Evidently, it has
the largest possible isospin for the S � �1 pentaquark.
The strange antiquark contribution into the mass equalsm�s,
obviously (and m�s � ms in simplistic model). The S � 0
components of {35}-plet with isospin I � 5=2 has mini-
mal content qqqq �q (evidently, I � 5=2 is the maximal
possible value of isospin of any pentaquark):

�5=2: j35; 1; 5=2;�5=2i � jdddd �ui; . . . ; j35; 1; 5=2; 5=2i

� juuuu �di;

and do not contain strange quarks at all. By this reason, the
I � 5=2, S � 0 component is the lightest component of the
{35}-plet, and has smaller strangeness content than nu-
cleon and �, again in agreement with calculation within
CSA [26]. The components with S � �1, S � �2, etc.
should contain strange quarks in the wave function:
�2: j35; 0; 2;�2i � jsddd �ui; . . . ; j35; 0; 2; 2i � jsuuu �di;

���3=2: j35;�1; 3=2;�3=2i � jssdd �ui; . . . ; j35;�1; 3=2; 3=2i � jssuu �di;

	�1: j35;�2; 1;�1i � jsssd �ui; . . . ; j35;�2; 1; 1i � jsssu �di;

�?: j35;�3; 1=2;�1=2i � jssss �ui; j35;�3; 1=2; 1=2i � jssss �di;

(67)
and there is no place for the s�s pair.12 The 4-quark part of
the wave function of the {35}-plet is symmetric in flavors
and can be easily made of two flavor symmetric 6F di-
quarks, e.g. fdddsg � �dd��ds� � �ds��dd�, fddssg �
�dd��ss� � �ss��dd� � �ds��ds�, etc.

The lowest S � �4, I � 1=2 isodoublet has 4ms con-
tribution in the mass. As a result, we have the mass gap 4ms
between S � 0, I � 5=2 state and S � �4, I � 1=2 state:
1ms for the unit of strangeness. But the gap between S �
�1 and S � �4 components is only 3ms for 5 units of
strangeness, 3ms=5 for one unit in average. The result of
chiral soliton model calculation [26] is in rough agreement
with the mass splitting given by the above wave function
with ms ’ 130–140 MeV. All exotic components of {35}-
plet mix with components of higher irreducible represen-
tations ({64}-plet, etc.) and slightly move down in energy
after mixing. Positions of states obtained within CSA are
shown in Fig. 2 with
. Predictions of the simplistic quark
model with ms � m�s � 130 MeV are shown with circles.
For {27}-plet the location of state with S � �1 is identi-
fied with that of CSA, the same for the S � 0 component of
the {35}-plet.

Summing up, within the simplistic quark model we have
the following hierarchy of the energy gaps per unit strange-
ness (in average) between highest and lowest components
of the SU�3�multiplets:ms=3;ms=2; 3ms=5 for f10g, {27},
and {35}-plets, but the individual splittings, in general, do
not follow such simple law and are model dependent.
Obviously, this is in contradiction with CSA approach
-12



FIG. 2. Schematic picture of the mass splittings within chiral
soliton model (Nc � 3). The upper left figure corresponds to the
nonexotic octet and decuplet, the upper right one—to exotic
antidecuplet, the lower—to {27}-plet with spin J � 3=2 and to
{35}-plet (J � 5=2) of exotic baryons. Experimental data are
shown by direct crosses �, position of states obtained within
CSA with configuration mixing is marked by 
. The circles
show position of states within the simplistic quark model with
ms � m�s ’ 130 MeV; full circles show manifestly exotic states
with unique quark contents and empty circles—cryptoexotic
states. For the antidecuplet the fit is made for the state with
S � 1, see also discussion in the text.
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results, and we should allow the masses of strange quarks
to be different within different SU�3� multiplets. Then the
following relations take place, according to the results
presented in Table III (configuration mixing included):

�2ms �m�s�10 ’ 250 MeV; �ms �m�s�27 ’ 30 MeV;

�ms�27 ’ 135 MeV; �ms�35 ’ 130 MeV;

�m�s�35 ’ 270 MeV: (68)

Only one relation takes place for the antidecuplet, and if
we assume that the mass of strange quark within the
antidecuplet is close to that within higher multiplets, i.e.
about 130–135 MeV, then the strange antiquark within 10
should be very light, �10–20 MeV only. The strange
antiquark is heavier within {27}-plet, about 100 MeV,
and much heavier within {35}-plet. Recall that now the
observed mass splitting within antidecuplet is about
320 MeV, if the observed ��� state [47] belongs to the
antidecuplet, and not to the higher multiplet. To fit the
simplistic quark model, the splitting of the antidecuplet
should be smaller, about 130–150 MeV, but this will be in
094018
disagreement with CSA. Some decrease of the strange (or
kaonic) inertia �K in comparison with the value used to
obtain the numbers in Table III [8,26] would increase all
masses of exotic states, but would not make much influ-
ence on the mass splittings inside of SU�3� multiplets.
Experimental studies of exotic spectra could help in solv-
ing this problem, the present situation with searches of
baryons from higher SU�3� multiplets has been discussed
recently in [48].

B. Diquarks mass difference estimate

Comparison with the results of chiral soliton approach
allows to estimate the difference of the diquarks masses as
well.

In the rigid or soft rotator approximation there is con-
tribution to the mass difference of the different SU�3�
multiplets due to different rotation energy (second order
Casimir operators) of these multiplets. For {27}- and f10}-
plets this difference is

Mrot
27;J�3=2 �M

rot
10
�

3

2��
�

1

2�K
: (69)

This difference can be naturally ascribed to the difference
of effective masses of 6F and �3F diquarks (see (61) and
(62) above). This quantity is about 100 MeV, more pre-
cisely, 91 MeV if we take the same values of moments of
inertia, as in Table III. The difference of rotational energies
of {35}-plet which contains two 6F diquarks (see (63)) and
{27}-plet is

Mrot
35;J�5=2 �M

rot
27;J�3=2 �

5

2��
�

1

2�K
: (70)

Numerically this is considerably greater than in the former
case, about 270 MeV. The real picture may be considerably
more complicated; besides effective masses of diquarks the
interaction energy between different diquarks can be sub-
stantially different. This means that there is no simple
additivity of the diquark masses within topological soliton
approach. Roughly, we can conclude however that the mass
difference between 6F and �3F diquarks is between 100 and
270 MeV, the latter value is close to the estimate given, e.g.
in [12].

Consideration of charmed or beautiful states can be
made in close analogy with that for strangeness. One could
consider SU�4��u; d; c; s� or even SU�5��u; d; c; s; b� sym-
metry, but since this symmetry is badly violated, it has not
much significance for practical use. Instead, the (u, d, c)
and (u, d, b) SU�3� symmetry groups are often considered.
The {35}-plet is again remarkable: within SU�4� it should
belong to the most symmetric {120}-plet which can be
described by spinor Tiklmr , �i; k . . . r � u; d; s; c�, corre-
sponding Young tableau is (4, 0, 1); within SU�5�

�u; d; s; c; b� it belongs to 315-plet with Young tableau (4,
0, 0, 1). The S � 0, or c � 0, or b � 0 components of
{35}-plet which do not contain s�s or c �c, or b �b in the wave
-13
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function is a common component of the {35}-plets in each
of the SU�3� groups, which is a remarkable property of this
I � 5=2, S � c � b � 0 state consisting of light u, d
quarks only.
V. PARTNERS OF EXOTIC STATES WITH
DIFFERENT VALUES OF SPIN

Within quark models there are partners of states with
same flavor quantum numbers (strangeness and isospin),
but with different values of spin [44]. Existence of partners
of exotic baryons has been demonstrated and discussed
also in [49] in large Nc QCD. At the same time, within
CSA the value of spin equals to the value of ‘‘right’’
isospin, as a result of the hedgehog nature of the basic
classical configuration. A natural question is: where are
such partners within CSA, if they exist at all? The answer is
that they are present as well, although belong to different
SU�3� multiplets. Here we give one simple example: the
JP � 3=2� partner of the antidecuplet with spin J � 1=2
found its place within 35-plet �p; q� � �1; 4� (septuquark
or heptaquark), as shown in Fig. 3. The mass of this state is
considerably greater due to a large difference of the
Casimir operators C2�SU3�:

�Mrot
�35� �10

� M�35; J � 3=2� �M�10� �
3

2�K
�

3

2��

(71)

which is about 750–800 MeV, greater than several tens of
MeV obtained in [44]. The spectrum of these states for
some reasonable values of model parameters is given in
Table 6 of [8], and we shall not reproduce it here.

There are also partners of nonexotic baryon states. For
example, the JP � 5=2� partners of the decuplet (JP �
FIG. 3. Partners of the components of the exotic antidecuplet
located within f35}-plet.
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3=2�) are contained within {35}-plet (4, 1), the difference
of rotational energies is

�Mrot
35�10 � M�35; J � 5=2� �M�10; J � 3=2�

�
1

2�K
�

5

2��
(72)

which is about 600–700 MeV. The analog with JP � 3=2�

of the baryon octet (JP � 1=2�) is contained within {27}-
plet and has energy by 0.7–0.85 GeV greater than masses
of lowest octet. Moreover, for any baryon multiplet one can
find partners with a greater value of spin within some
SU�3� multiplet with other (greater, as a rule) values of
(p, q). So, all partners noted are present in the CSA as well,
but have considerably greater energy. It was assumed in [4]
that the J � 3=2 partners of exotic baryon states have
considerably greater energy than the J � 1=2 ground
states, and estimates made here can be considered as
justification of this assumption within chiral soliton model.

Another kind of partners are states with the same value
of spin (and parity), but another value of isospin. Such
partners are absent within multiplets of nonexotic baryons
(octet and decuplet) and for the antidecuplet, but exist for
complicated multiplets, {27} and {35}-plets. The mass
difference between such partners is due to FSB contribu-
tions in (1), since rotational energy is the same, and is
usually within few tens of MeV.
VI. CONCLUSIONS

Calculations of the strangeness contents of exotic bary-
ons, performed in the present paper at arbitrary N for the
first time, have shown that the expansion parameter for this
quantity is large and increases for exotic states in compari-
son with nonexotic [8,41]. There is common agreement
that the rigid rotator model and the bound state approach
provide the same results in the limit Nc ! 1, but there is
crucial difference in the following in 1=Nc-expansion
terms for different variants of the model—rigid rotator
variant and bound state model. There is a way to reach
coincidence in the next-to-leading in 1=Nc-expansion
terms by means of appropriate resolution of some ambi-
guities in the BSM [41], but it is valid for large enough Nc,
only. This makes questionable the possibility of extrapo-
lation from the largeNc to real Nc � 3 world, and provides
grounds for scepticism that conclusions made in the limit
Nc ! 1—e.g. concerning existence or nonexistence of
exotic baryon resonances—are valid in the realistic case
Nc � 3 [8]. This problem has been noted recently also for
the quantities different from spectra of baryons, e.g. for
widths of exotic resonances [22,50]. The existence of
pentaquark states by itself seems to be without any doubt
within CSA [8,22], although the prediction of their par-
ticular properties like mass and width contains consider-
able uncertainties, and some kind of phenomenological
-14
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extrapolation should be and has been made for this pur-
pose, as e.g. in [26,28,29].

We have considered also some general properties of the
pentaquark wave functions, mainly their quark contents for
the realistic Nc � 3 case. The peculiarity of manifestly
exotic states is that their quark contents are model inde-
pendent (within the pentaquark approximation), whereas
the contents as well as wave functions of cryptoexotic
states depend on the particular variant of the model.

The mass splittings within multiplets of pentaquarks
(negative strangeness) expected within the simple quark
model are reproduced in the chiral soliton model (its rigid
rotator variant), due to Gell-Mann–Okubo relations. In
particular, the lightest component of {35}-plet, the �5=2,
which does not contain strange quarks or antiquarks within
pentaquark approximation, is the lightest one in chiral
soliton model as well. For positive strangeness components
of pentaquarks multiplets the link between CSM and QM
requires strong dependence of effective strange antiquark
mass on the SU�3� multiplet to which the pentaquark
belongs. Configuration mixing pushes the spectra towards
the simplistic model—nice property which reasons are not
clear yet.

The bound state model (its RO variant), in the leading in
1=Nc order, corresponds to the simplistic variant of the
quark model with the unique value of the strange quark
(antiquark) mass,ms ’ m2

K�=N. The next-to-leading order
corrections for spectrum of exotic baryons with S < 1 and
correspondence with the simple quark model still remain to
be investigated.

The partners of baryons multiplets with different J,
discussed in the literature [44,49], for example, the JP �
3=2� partner of the 1=2� antidecuplet [44], exist within
chiral soliton models as well [8]. They are the parts of
higher multiplets and have considerably greater energy
than the states with the lowest value of spin.

In view of considerable theoretical uncertainties con-
nected, in particular, with the problem of extrapolation to
realistic value of Nc, experimental searches for pentaquark
states could be decisive. Even if the existence of narrow
pentaquarks is not confirmed, they can exist as broader
resonances of higher mass, and their studies will be useful
for checking and development of theoretical ideas.13
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APPENDIX: WAVE FUNCTIONS OF BARYONS IN
THE SU�3� CONFIGURATION SPACE FOR AN

ARBITRARY NUMBER OF COLORS

In the rigid rotator quantization scheme the wave func-
tions of baryon states are some combinations of the SU�3�
Wigner D-functions. Such functions are quite well known
for the case of Nc � 3 and for octet and decuplet of
baryons [32,35]. Here we present these functions for an
arbitrary number of colors and for exotic baryon multip-
lets, since they are still absent in the literature. As in
[32,35], we have:

��Y; I; I3;YR; J; J3� �
X
ML

DI�
I3;ML
��;	; 
�fY;I;YR;JML;MR

���


DJ�
MR;�J3

��0; 	0; 
0� exp�iYR��;

(A1)

whereDI
M1;M2

are the well-known SU�2�Wigner functions,
right hypercharge YR � N=3 and Y0R � 1 for the case of
baryons we consider here, right isospin IR � J, spin of the
baryon state, due to the hedgehog structure of the classical
B � 1 configuration, MR � ML � �YR � Y�=2 due to the
properties of �4 rotations. There are obvious restrictions
�I  ML  I, and �J  MR  J, and this leaves in the
sum (A1) few allowed terms. When the isospin of the state
equals I � 0, only one term is present in (A1). Nontrivial �
dependence is contained in the function fY;I;YR;JML;MR

��� only,
which we present here. For the sake of brevity we label it
further as fML

, since other labels can be obtained easily,

and we use notation Qikl... �
������������������������������������������������������
�N � i��N � k��N � l� . . .

p
for arbitrary integers i; k; l . . . , some of them can be
negative.

Antidecuplet: �p; q� � �0; �Nc � 3�=2�

��: f0 � f2;0;1;1=2
0;�1=2 �

Q3;5;7

4
s�c

�N�1�=2
� ; (A2)

Q3;5;7 �
�������������������������������������������������
�N � 3��N � 5��N � 7�

p
;

N�: f�1=2 � f1;1=2;1;1=2
�1=2;�1=2 �

Q5;7

8
�2� �N � 3�s2

��c
�N�1�=2
� ;

f1=2 �
Q5;7

4
c�N�1�=2
� ; (A3)
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���: f�1 �
Q1;5;7

8
���
6
p s��4� �N � 3�s2

��c
�N�3�=2
� ;

f0 �
Q1;5;7

4
���
3
p s�c

�N�1�=2
� ;

(A4)

�3=2: f�3=2 �
Q�1;1;5;7

32
���
3
p s2

��6� �N � 3�s2
��c
�N�5�=2
� ;

f�1=2 �
Q�1;1;5;7

16
s2
�c
�N�3�=2
� :

(A5)

For each baryon state functions f��� are normalized
according to [35]

Z �X
m

f2
m

�
s2
�ds2

� � 1: (A6)

The orthogonality conditions of wave functions of states
with the same spin, strangeness, and isospin, but from
different SU�3� multiplets, take the form, in view of or-
thogonality of different SU�2� D-functions:

Z �X
m

fmgm

�
s2
�ds2

� � 0; (A7)

which can be easily verified using wave functions given
here.

27-plet: �p; q� � �2; �Nc � 1�=2�

�1: f�1 �
Q1;3;9

4
���
2
p s�c

�N�1�=2
� ;

f0 �
Q1;3;9

4
���
3
p s�c

�N�1�=2
� ;

f1 �
Q1;3;9

4
���
6
p s�c

�N�3�=2
� ;

(A8)

��: f�3=2 �

���
3
p
Q3;9

48
�6� 3�N � 1�s2

��c
�N�3�=2
� ;

f�1=2 �

���
3
p
Q3;9

48
�6� 2�N � 1�s2

��c
�N�1�=2
� ;

f1=2 �

���
3
p
Q3;9

48
�6� �N � 1�s2

��c
�N�1�=2
� ;

f3=2 �

���
3
p
Q3;9

8
c�N�3�=2
� ;

(A9)

�2: f�2 �
Q�1;3;9

16
������
15
p s��12� 3�N � 1�s2

��c
�N�5�=2
� ;

f�1 �
Q�1;3;9

32
���
5
p s��12� 2�N � 1�s2

��c
�N�3�=2
� ;

f0 �
Q�1;3;9

16
������
30
p s��12� �N � 1�s2

��c
�N�1�=2
� ;

f1 �
3Q�1;3;9

8
������
15
p s�c

�N�1�=2
� ;

(A10)
094018
��3=2: f�3=2 �
Q�1;3;7;9

64
���
5
p s2

��8� 2�N � 1�s2
��c
�N�5�=2
� ;

f�1=2 �
Q�1;3;7;9

32
������
15
p s2

��8� �N � 1�s2
��c
�N�3�=2
� ;

f1=2 �
Q�1;3;7;9

8
���
5
p s2

�c
�N�1�=2
� ;

(A11)
	1: f�1 �
Q�1;3;5;7;9

64
������
15
p s3

��4� �N � 1�s2
��c
�N�5�=2
� ;

f0 �
Q�1;3;5;7;9

16
������
10
p s3

�c
�N�3�=2
� ;

(A12)

35-plet: �p; q� � �4; �Nc � 1�=2�

�2: f�2 �
Q�1;1;11

4
���
3
p s�c

�N�3�=2
� ;

f�1 �
Q�1;1;11

2
������
15
p s�c

�N�1�=2
� ; f0 �

Q�1;1;11

4
���
5
p s�c

�N�1�=2
� ;

f1 �
Q�1;1;11

2
������
30
p s�c

�N�3�=2
� ; f2 �

Q�1;1;11

4
������
15
p s�c

�N�5�=2
� ;

(A13)
�5=2: f�5=2 �

���
5
p
Q1;11

120
�10� 5�N � 1�s2

��c
�N�5�=2
� ;

f�3=2 �

���
5
p
Q1;11

120
�10� 4�N � 1�s2

��c
�N�3�=2
� ;

f�1=2 �

���
5
p
Q1;11

120
�10� 3�N � 1�s2

��c
�N�1�=2
� ;

f1=2 �

���
5
p
Q1;11

120
�10� 2�N � 1�s2

��c
�N�1�=2
� ;

(A14)
f3=2 �

���
5
p
Q1;11

120
�10� �N � 1�s2

��c
�N�3�=2
� ;

f5=2 �

���
5
p
Q1;11

12
c�N�5�=2
� ;

��2: f�2 �
Q1;9;11

48
������
10
p s��8� 4�N � 1�s2

��c
�N�5�=2
� ;

f�1 �
Q1;9;11

48
���
5
p s��8� 3�N � 1�s2

��c
�N�3�=2
� ;

f0 �
Q1;9;11

16
������
30
p s��8� 2�N � 1�s2

��c
�N�1�=2
� ;

f1 �
Q1;9;11

24
������
10
p s��8� �N � 1�s2

��c
�N�1�=2
� ;

(A15)
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f2 �
Q1;9;11

6
���
2
p s�c

�N�3�=2
� ;

���3=2: f�3=2 �
Q1;7;9;11

96
������
15
p s2

��6� 3�N � 1�s2
��c
�N�5�=2
� ;

f�1=2 �
Q1;7;9;11

96
���
5
p s2

��6� 2�N � 1�s2
��c
�N�3�=2
� ;

f1=2 �
Q1;7;9;11

48
������
10
p s2

��6� �N � 1�s2
��c
�N�1�=2
� ;

f3=2 �
Q1;7;9;11

8
���
6
p s2

�c
�N�1�=2
� ; (A16)

BARYON SPECTRUM IN LARGE Nc CHIRAL SOLITON . . .
094018
	�1: f�1 �
Q1;5;7;9;11

192
������
15
p s3

��4� 2�N � 1�s2
��c
�N�5�=2
� ;

f0 �
Q1;5;7;9;11

96
������
15
p s3

��4� �N � 1�s2
��c
�N�3�=2
� ;

f1 �
Q1;5;7;9;11

24
���
6
p s3

�c
�N�1�=2
� ;

(A17)

�1=2: f�1=2 �
Q1;3;5;7;9;11

192
������
30
p s4

��2� �N � 1�s2
��c
�N�5�=2
� ;

f1=2 �
Q1;3;5;7;9;11

96
���
6
p s4

�c
�N�3�=2
� : (A18)

Wave functions of other states presented in Tables I and
II and also states with another possible value of spin have
been obtained as well, but we shall not give them here for
the sake of brevity.
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