
PHYSICAL REVIEW D 73, 094016 (2006)
Characterizing the Larkin-Ovchinnikov-Fulde-Ferrel phase induced
by the chromomagnetic instability

Kenji Fukushima
RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA

(Received 4 April 2006; published 19 May 2006)
1550-7998=20
We discuss possible destinations from the chromomagnetic instability in color superconductors with
Fermi surface mismatch ��. In the two-flavor superconducting (2SC) phase we calculate the effective
potential for color vector potentials A� which are interpreted as the net momenta q of pairing in the
Larkin-Ovchinnikov-Fulde-Ferrel (LOFF) phase. When 1=

���
2
p

< ��=�< 1 where � is the gap energy,
the effective potential suggests that the instability leads to a LOFF-like state which is characterized by
color-rotated phase oscillations with small q. In the vicinity of ��=� � 1=

���
2
p

the magnitude of q
continuously increases from zero as the effective potential has negative larger curvature at vanishing A�
that is the Meissner mass squared. In the gapless 2SC (g2SC) phase, in contrast, the effective potential has
a minimum at gA� � ���� even when the negative Meissner mass squared is infinitesimally small.
Our results imply that the chromomagnetic instability found in the gapless phase drives the system toward
the LOFF state with q� ��.

DOI: 10.1103/PhysRevD.73.094016 PACS numbers: 12.38.�t, 12.38.Aw
Quark matter has a rich phase structure in the high
baryon or quark density region. In a decade we have
witnessed tremendous developments in theory, particularly
in superconductivity of quark matter [1]. Color supercon-
ductivity is inevitable from the Cooper instability in cold
and dense quark matter. In the asymptotic density where
the perturbative technique is applicable, the color-flavor
locked (CFL) phase [2] where all quarks are gapped is
concluded from the first-principle calculations of Quantum
Chromodynamics (QCD).

The lower density region we explore, the more compli-
cated phase possibilities we have to encounter. The main
reason why the situation is perplexing at intermediate
density is that a ‘‘stress’’ between quarks which would
form a Cooper pair is substantial when the quark chemical
potential, �q, is comparable to the strange quark mass,Ms.
Such an energy cost by the stress, or the Fermi energy
mismatch ��, is necessary to bind two quarks into a pair
with zero net momentum, q � 0. The stress can be reduced
by making a pair between quarks sitting on different Fermi
surfaces, which results in q � 0. If the energy gain by
easing the stress is greater than the kinetic energy loss
coming from nonzero net momentum, the color supercon-
ducting phase with q � 0 would be realized. Since such a
state breaks rotational symmetry, this crystalline color
superconducting phase [3], that is, a QCD analogue of
the Larkin-Ovchinnikov-Fulde-Ferrel (LOFF) phase [4],
takes a crystal structure [5].

There is another different possibility to consider while
keeping q � 0; once �� exceeds the gap energy, �, the
Cooper pair tends to decay into two quarks. In other words
the corresponding quarks have the energy dispersion rela-
tion which is gapless. Such a phase is called the gapless
superconducting phase [6–8], that is, a QCD analogue of
the Sarma phase [9]. It would need a careful comparison of
energies to see which is favored in reality [10,11].
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Interestingly enough, recently, these two different candi-
dates, the crystalline and gapless superconducting phases,
have turned out to be closely related through instability.

The gapless superconducting phase is known to be un-
stable in fact and has to give way to some other stable
states. In QCD the negative (color) Meissner mass squared
exhibits what is commonly referred to as the chromomag-
netic instability [12–15]. This is the central issue we
address. The chromomagnetic instability is to be inter-
preted as instability toward the single plane-wave LOFF
state [16], as we will closely discuss later. Also it has been
revealed that the two-flavor and three-flavor LOFF phases
are chromomagnetic stable [17,18] (see also Ref. [19]).
However, it does not necessarily mean that the instability
problem has already been resolved. The question we raise
is as follows; can we simply identify the instability-
induced state with the stable LOFF phase? It is certain
that the instability tends to favor a LOFF-like state, but
such a LOFF-like state might exist separated from the
LOFF phase (if it exists) as sketched in Fig. 1(a), and
then the proposed stable LOFF phase is not the destination
from the instability but one alternative free from the
instability like a mixed phase. Of course, it might be
possible that the instability is directly connected to the
LOFF phase as sketched in Fig. 1(b).

To address this question we have to define the qualitative
difference between the LOFF and LOFF-like phases. We
shall distinguish them by their characteristic wave num-
bers. That is, if the net momentum q is given as of order
��, then we regard the system as going to the conventional
LOFF state that has jqj ’ 1:2��. If q is small enough to be
well separated from q� �� inherent to the LOFF phase,
we consider that the system is then in the LOFF-like state.
For the purpose of clarifying which situation of Figs. 1(a)
and 1(b) is more relevant, we will calculate the free energy
as a function of q, or the color vector potentialA� (� being
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TABLE I. Chromomagnetic instability for each gluon in the
two-flavor and three-flavor cases at zero temperature. Here
��4�7

c � ��g
c=

���
2
p

and ��4�5
c ’ ��6�7

c has been numerically
estimated as �2:3��g

c in Ref. [15].

two-flavor three-flavor

A1, A2 massless unstable �� > ��g
c

A~3 massless stable

A4, A5

A6; A 7

�
unstable �� > ��4�7

c
unstable ��> ��4�5

c
unstable ��> ��6�7

c

A~8 unstable �� > ��g
c unstable �� > ��g

c

A~� massless massless

LOFF

Instability

(a)

Instability

(b)

LOFF
Mixed Phase

Mixed Phase

LOFF−like?

FIG. 1. Schematic energy landscape: (a) The state falls from
the unstable gapless phase down toward a LOFF-like phase
which is separated from the LOFF phase (if it exists). There
are alternatives such as the LOFF phase, mixed phase, and so on,
which should be energetically compared to the LOFF-like phase.
(b) The instability directly leads to the LOFF phase.
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the adjoint color index) which is related to q through the
covariant derivative.

As a preparation for our discussions we shall briefly look
over the color superconducting phases of our interest, the
Meissner mass in respective phases, and associated chro-
momagnetic instability. The predominant pairing is

�� � ��ab��ijh � ai�5 
C
bji (1)

with  C � C � T and a, b and i, j being the color and flavor
indices, respectively. Under this color-flavor locked ansatz,
�1 � 0, �2 � 0, and �3 � 0 defines the CFL phase, while
the two-flavor superconducting (2SC) phase has �3 � 0
and �1 � �2 � 0, that means only ru-gd and rd-gu
quarks make a pair. The gapless 2SC and CFL phases
(abbreviated as the g2SC and gCFL phases) occur when
�� � �e=2> ��g

c � �3 and �� � M2
s=2�q > ��g

c �

�1, respectively, where �e is the electron chemical poten-
tial. In the single plane-wave LOFF ansatz the gap parame-
ters are augmented as

�� ���!LOFF
exp��2iq� � x���: (2)

The Meissner mass is the screening mass for transverse
gauge fields. The individual mass is a quantity dependent
on the gauge choice; we can arbitrarily shuffle eight gluon
fields A1; . . . ;A8 by a gauge rotation. It should be noted,
however, that the choice of the diquark condensate (1)
specifies a gauge direction and then the Meissner mass is
uniquely determined. The finite Meissner mass arises as-
sociated with spontaneous symmetry breaking and the
Higgs-Anderson mechanism in superconductors [20].

In the 2SC phase A1, A2, and A3 remain massless and
the rest A4; . . . ;A8 earn a finite Meissner mass. The elec-
tromagnetic field A� has mixing with A8 which ends up
with two eigen-fields A~8 and A~�. The system has symme-
try amongA4; . . . ;A7 and thus the resulting Meissner mass
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is common for them, while A~8 has a different Meissner
mass. Because the modified (i.e. color-mixed) electromag-
netic U(1) symmetry is unbroken, A~� stays massless. It is
known in the CFL phase at Ms � 0, on the other hand, that
all eight gluons A1; . . . ;A8 have a common and nonvan-
ishing Meissner mass. In the presence of mixing with A�

the massive eigen-field A~8 pulls away from the others and
A~� is massless.

In the two-flavor case at finite �� away from the ideal
2SC phase, there are still only two independent Meissner
masses [12]; one is for A4; . . . ;A7 and the other is for A~8.
The Meissner mass squared forA4; . . . ;A7 becomes nega-
tive (i.e. the Meissner mass is imaginary) for �� >
��4�7

c � ��g
c=

���
2
p

, that means an instability occurs not
only in the g2SC phase (�� > ��g

c) but in the 2SC phase
(��4�7

c < �� < ��g
c) also. The Meissner mass squared

for A~8 is negatively divergent at the gapless onset, �� �
��g

c, and remains on negative in the entire g2SC side.
The three-flavor case with finite Ms has a more compli-

cated pattern and there are five independent Meissner
masses [15]. With nonzero Ms one should take account
of mixing among A3, A8, and A� properly, from which
two massive eigen-fields,A~3 andA~8, and one masslessA~�

result. The Meissner mass is degenerated for A1 and A2

due to symmetry, and so is for A4 and A5, and for A6 and
A7. No instability takes place until the system reaches the
gCFL phase. At �� � ��g

c negatively divergent Meissner
masses squared appear for A1-A2 and for A~8. As for
A4-A5 and A6-A7, when �� gets larger than critical
values ��4�5

c and ��6�7
c respectively, they eventually

have negative Meissner masses squared, which is presum-
ably related to the instability in the two-flavor calculation.
We shall summarize the instability patterns in Table I.

Now let us consider what the negative Meissner mass
squared signifies. It is a textbook knowledge that in the
�4-theory, for the simplest example, a nonzero expectation
value h�i � 0 grows when the screening mass squared for
� is negative. In the language of the effective potential the
negative mass squared means that a state lies in a maxi-
mum of the potential and a true ground state should exist
somewhere down away from h�i � 0. Therefore it is quite
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natural to anticipate that the chromomagnetic instability is
cured by nonzero color vector potentials hA�i. Actually the
Meissner mass squared is the coefficient of the quadratic
terms in the kinetic energy expanded in A�,

m2
M�� �

1

3

@2�kin

@Ai�@Ai�

��������A�0
; (3)

where the kinetic energy term takes a form of

�kin��; A� � 	�
�0
0 ��@
i���0 	 igA
i��0 ��



�0 �

� ��@i�

0 � igAi

0 ��
0 �

	 higher-order terms inA (4)

due to symmetry. In the following discussions we shall
ignore mixing with A� for simplicity. Here we should
remark that the stiffness parameter 	 depends on the
‘‘flavor’’ indices �0 and 
0 as well as the ‘‘color’’ indices
� and 
. This assignment is understood from that � of ��

contains the information on both color and flavor as fixed
in (1). The covariant derivative acting on a color-triplet
rotates �0 into �, while the flavor is intact as �0.

In the two-flavor case only 	�
33 is relevant and we can
forget about flavor, as parametrized in Refs. [21,22]. Then
the chromomagnetic instability with two independent
Meissner masses in this case can be expressed by a
combination of two parameters 	�1� and 	�2� where 	�
33 �

	�1���
 	 	
�2����

 which makes �kin a color-singlet.

The single plane-wave LOFF state characterized by (2)
with only �3 nonvanishing is sensitive to 	33

33 �

	�1� 	 	�2�j�3j
2 and thus such a gap parameter ansatz

cannot separate two distinct instabilities for A8 with
m2
M88 / 	

33
33 and for A4; . . . ;A7 with m2

M4�7 / 	
�1� if they

coexist.
It is intriguing to look into the three-flavor case next.

The stiffness parameter can be decomposed as

	�
�0
0 � 	�offj�
���0 j��
��0
0 	 	

�

diag���0�

0 : (5)

This decomposition is justified by the color and flavor
structure in the quark one-loop calculations [15]. Then
the first term involving 	�off is relevant to the Meissner
mass squared for the color off-diagonal gluons;

m2
M1�2 / 	

3
off�j�1j

2 	 j�2j
2�;

m2
M4�5 / 	

2
off�j�3j

2 	 j�1j
2�;

m2
M6�7 / 	

1
off�j�2j

2 	 j�3j
2�:

(6)

The Meissner mass squared for the diagonal gluons, on the
other hand, comes from the second term involving 	�
diag,
that is, m2

M33, m2
M38, and m2

M88 are written as a linear
combination of six components of the symmetric 3� 3
matrix 	�
diag. We note that, when the ansatz (2) is substi-
tuted into (4), the instability toward finite q� does not
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reflect the information of 	�off , that is, @2�kin=@q�@q
 /
	�
diag.

From (4) we can immediately understand how the chro-
momagnetic instability is generally transformed to the
instability toward the single plane-wave LOFF phase,
which has been shown for A8 in explicit calculations in
two-flavor quark matter in Ref. [16]. The point is that the
gauge fields in the quark sector appear only in the covariant
derivative, so that they can be absorbed as a phase factor of
the gap parameters.

Now we assume that we have an instability only for A8.
The rotational symmetry is broken and we choose the
n-direction in three-dimensional spatial space in which
A8 acquires an expectation value. Then the covariant de-
rivative is equivalently rewritten as

�@i���0 � �inigAn8�t
8���0 ���0

� exp�igt8A8 � x���0@
ifexp��igt8A8 � x��0�00��00 g;

(7)

where t�’s are the color group generators in the fundamen-
tal representation. The color rotation results in

exp��igt8A8 � x� �� �

exp�� ig
2
��
3
p A8 � x��1

exp�� ig
2
��
3
p A8 � x��2

exp�	 ig��
3
p A8 � x��3

0
BB@

1
CCA; (8)

which is nothing but the diquark condensate peculiar to the
three-flavor single plane-wave LOFF state. [We assumed
that A� is a constant, but the generalization to inhomoge-
neous A��x� [23] is easy; the exponential part is then the
Wilson line.] From the above rewriting, it is apparent that
the non-LOFF (ordinary) superconducting phase with a
color vector potential A8 is equivalent to the LOFF phase
whose spatial oscillation is characterized by A8 with no
vector potential. Of course, this general argument works in
the two-flavor case as well; �1 � �2 � 0 and a phase
factor emerges for �3 alone, so one could interpret such
an overall phase as associated with the baryon number
[24], though such an interpretation has only a limited
meaning.

One has to be careful when this argument is applied for
the off-diagonal gluons, A1, A2, A4, A5, A6, and A7. For
instance, if the instability occurs in A4, then the phase
factor is no longer in the form of the single plane-wave. In
the same way as in the previous case we have

exp��igt4A4 � x� � �

�

�i sin�g2A4 � x��3 	 cos�g2A4 � x��1

�2

cos�g2A4 � x��3 � i sin�g2A4 � x��1

0
BB@

1
CCA (9)

This represents not a single but rather multiple plane-wave
LOFF state, or color-rotated single plane-wave LOFF. In
the two-flavor case we keep �3 alone and then, interest-
-3
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FIG. 2 (color online). Free energy difference from the energy
without vector potentials in two-flavor quark matter as a function
of A4. The critical �� for A4 is ��4�7

c � ��g
c=

���
2
p

and the
g2SC phase occurs at �� � ��g

c.

KENJI FUKUSHIMA PHYSICAL REVIEW D 73, 094016 (2006)
ingly, (9) indicates that we definitely need to have not only
the third component cos�g2A4 � x��3 but also the first com-
ponent �i sin�g2A4 � x��3 which is not considered at all in
the conventional two-flavor treatment. Our analysis agrees
with the conclusion of Ref. [19] that the single plane-wave
LOFF state would still have instability for the off-diagonal
gluons.

From the discussions so far we can establish the quali-
tative (apart from a color rotation) correspondence be-
tween the vector potentials and the net momenta of the
single plane-wave ansatz as

gA8

2
���
3
p  !2q;

gA4

2
 !2q; (10)

Now we shall estimate the magnitude of characteristic q as
a result of the instability using the above relations.

For that purpose we need to know the higher-order terms
in A� in the expansion (4). As we will explain shortly,
however, such an expansion is no longer valid in the
gapless phase. Thus we must evaluate the A�-dependent
part of the free energy without expansion. For simplicity
we will limit our discussions only to the two-flavor calcu-
lations from now on.

We write down the 48� 48 (two-flavors, three-colors,
two-spins, particle-antiparticle, and two-Nambu-Gorkov-
doublers) quasiquark propagator with either A4 (that we
arbitrarily chose amongA4; . . .A7) orA8 and calculate the
quasiquark energy ��p� which depends on the momentum
angle to the vector potential, i.e., p �A�. The free energy is
available as integration of the sum over all 48 j��p�j’s with
respect to p. We regulate the momentum integration by the
ultraviolet cutoff � � 1 GeV and subtract the free energy
at � � �� � 0 to get rid of the cutoff artifact. The gap
parameter is fixed at � � 100 MeV. It should be noted that
the analytical formulae utilized in the two-flavor LOFF
calculations [17,19] do not work forA4 which is color off-
diagonal.

We present the numerical results in Figs. 2 and 3. The
potential curvature atA� � 0 corresponds to the Meissner
screening mass squared. In Fig. 2 the Meissner mass is real
finite for ��< ��4�7

c , while the origin A4 � 0 becomes
unstable when �� > ��4�7

c , as is manifest from the results
at �� � 0:9��4�7

c (dotted curve) and �� � 1:1��4�7
c

(solid curve). This instability occurs continuously and we
can see from the �� � 1:2��4�7

c results (dashed curve)
that the expected A4 grows as �� approaches ��g

c. It is
known [12] that the negative Meissner mass for A4 be-
comes small again when �� is larger than ��g

c. Certainly
our calculations for �� � 2:0��4�7

c � 1:4��g
c (dot-

dashed curve) result in smaller potential curvature and
thus smaller Meissner mass than those for �� �
1:2��4�7

c . Nevertheless, the expected A4 is larger and
we find a potential minimum at gjA4j=4 ’ 1:39� �
0:98��. In this way the results for ��> ��g

c make a
sharp contrast to the nature of the instability for ���
094016
��4�7
c < ��g

c. In the gapless region where ��> ��g
c, the

expected gjA4j=4 (and thus q) is of order �� however
small the potential curvature (Meissner mass squared) is.

The same observation is apparent also in Fig. 3. The
Meissner mass squared for A8 is negative divergent at
�� � ��g

c, meaning that the potential has a cusp at A8 �
0 then, which is confirmed in our results as seen at �� �
1:01��g

c (short-dashed curve). When �� pulls away from
the onset value, the negative Meissner mass squared be-
comes smaller, and at the same time, A8 acquires a larger
expectation value of order �� again.

We would emphasize that these findings are unexpected
results; if the Ginzburg-Landau expansion of (4) works
with a positive definite quartic term inA�, an infinitesimal
negative 	 (potential curvature) simply leads to an infini-
tesimal A�. Therefore, our results imply that not only the
quadratic term but also quartic and even higher-order terms
are significantly affected by gapless quarks when ��>
��g

c. The reason why the Ginzburg-Landau expansion
breaks down can be understood in a diagrammatic way.

Figure 4 shows an example of the diagrammatic expan-
sion of the free energy in terms of A�. The dimensionless
expansion parameter is obviously ghA�i=��p� where ��p�
is the quark energy stemming from the propagator.
Therefore such an expansion is no longer legitimate once
gapless quarks whose ��p� can become vanishingly small
enter the loop. In other words, in the gapless phase, the
Meissner mass squared is far from informative on the true
ground state; the smallness of the Meissner mass squared
does not mean the weakness of the instability.
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FIG. 3 (color online). Free energy difference from the energy
without vector potentials in two-flavor quark matter as a function
of A8 in the unit of �.
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It should be noted that our potential analysis neither
preserves neutrality nor solves the equations of motion.
As long as A� is small, the coupling between A� and the
other parameters such as the chemical potentials and the
gap parameters is small due to approximate rotational
symmetry. We can thus expect that the free energy we
estimated would not be modified significantly by neutrality
and the condensation energy in the region where A� is
small. This is not the case, however, onceA� � �� devel-
ops. Hence, strictly speaking, we cannot say anything
about the exact location of the potential minimum, but
we can at least insist that there is no stable LOFF-like state
with small q directly resulting from the chromomagnetic
instability in the gapless phase even when the negative
Meissner mass squared is tiny.

Our results in the two-flavor case are not direct evidence
but suggestive; we can anticipate that the situation in
Fig. 1(a) is realized for the off-diagonal gluons at ��4�7

c <
�� ��g

c, while the situation in Fig. 1(b) is likely to be
the case for �� * ��g

c. In the three-flavor case we con-
A

A A

A

A A

FIG. 4. Diagrammatic expansion of the free energy in terms of
ghA�i=��p� where the quark energy ��p� comes from the quark
propagator.

094016
jecture that the instability picture is close to Fig. 1(b) since
the chromomagnetic instability then occurs only in the
gapless region of ��. These are our central conclusions
derived from the numerical results.

Finally let us comment on the possibility of coexistence
of both A4 and A8 in the two-flavor case. We shall call
such a state the gluonic phase [25]. One should be careful
about the terminology not to fall in a mere interpretation;
we would use the nomenclature, the gluonic phase, differ-
ently from the original usage in Ref. [25], but to mean a
state in which all A� in the covariant derivative cannot be
simultaneously removed by any gauge rotation of ��. Thus
one can uniquely define the gluonic phase in a way distinct
from the LOFF and LOFF-like states.

If A4 and A8 are not parallel, A1
4 and A2

8 for instance,
then we cannot find an appropriate gauge rotation �! V�
to eliminate them simultaneously. Namely, the gauge rota-
tion matrix V satisfying Vy@1V � igA1

4t
4 and Vy@2V �

igA2
8t

8 does not exist if V is assumed not to have any
singularity.

The gluonic phase has one more significant difference
from the LOFF state besides the covariant derivative; it has
nonvanishing chromomagnetic field. For our example A1

4
and A2

8 produce a nonzero field strength tensor,

Ba3 � Fa12 � �

���
3
p

2
�a5gA1

4A
2
8; (11)

which means that the system has a uniform chromomag-
netic field in it. However, such a state would never be
realized, otherwise the field energy diverges. To put it in
another way, the vector potentials A1

4 and A2
8 do not solve

the Yang-Mills equations of motion, D�F
��a � 0 [26].

Therefore, we do not think that the gluonic phase results
from the chromomagnetic instability.

In fact, one can reduce the field energy by making A4

and A8 be parallel to each other. Then the Yang-Mills
action simply vanishes. This argument can be easily ex-
tended to more generic A� in the three-flavor case. We
would thus reach a conclusion that all nonvanishing A� as
a result of the chromomagnetic instability are aligned to
the same direction energetically. Then such A� can be
eliminated by a gauge rotation of ��. That is, the likely
destination is a state characterized by the gap parameters
exp��igt�A� � x� �� where the summation over � is
taken. This is what is called the colored crystalline phase
in Ref. [15,22] and, as we have seen in (9), characterized
by a LOFF ansatz beyond the single plane-wave one.
Although the difference from the single plane-wave ansatz
exp��2iq� � x��� is just a color rotation, it changes the
physics because � of �� has the information of flavor as
we have already discussed in 	�
�0
0 .

In summary, based on our numerical results for the free
energy as a function of the color vector potentials, we have
reached a speculation that the chromomagnetic instability
in the gapless color superconducting region leads to the
-5
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LOFF phase, meaning that the LOFF phase is not an
alternative but a destination of the instability. In contrast,
the instability found in the 2SC (not g2SC) phase drives the
system toward a LOFF-like state which is qualitatively
distinct from the LOFF phase.
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