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A general equation for the probability distribution of parallel transporters on the gauge group manifold
is derived using the cumulant expansion theorem. This equation is shown to have a general form known as
the Kramers-Moyall cumulant expansion in the theory of random walks, the coefficients of the expansion
being directly related to nonperturbative cumulants of the shifted curvature tensor. In the limit of a
gaussian-dominated QCD vacuum the obtained equation reduces to the well-known heat kernel equation
on the group manifold.
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I. INTRODUCTION

One of the most popular test objects used to detect quark
confinement is a Wilson loop calculated in some represen-
tation of the gauge group. Measurements of the Wilson
loops allow one to investigate the interaction potential
between static quarks in different representations of the
gauge group. For instance, Wilson area law corresponds to
QCD string with constant tension [1]. Most numerical
simulations indicate that Wilson loops indeed obey the
Wilson area law at intermediate distances �0:2 . . . 1 fm
[2,3]. However, at large distances QCD string may be torn
apart by a quark-antiquark pair born from the vacuum, or
the charge of quarks may be screened by dynamical
charges, and as a result Wilson area law is violated.
Another distinct feature of QCD vacuum is the Casimir
scaling phenomenon, which was observed in lattice simu-
lation [2,3]. Violation of Casimir scaling is also related to
screening of static sources. Screening effects in SU�2�
Yang-Mills theory were detected in numerical simulations
[4,5]. A proper theoretical description of screening in QCD
vacuum is still absent, although many beautiful phenome-
nological models were proposed (for a review see, for
example, [6,7]).

An interesting phenomenological description of screen-
ing effects, which is based on the mathematical analogy
between loop dynamics and the motion of a random walker
on the gauge group manifold, was proposed recently in [8–
11]. The theory of random walks on Lie groups is an
interesting mathematical subject [12,13], and one can ex-
pect that physical applications of the results obtained
therein may provide important insights into the physics
of confinement. For example, an important results concern-
ing the connection between Chern-Simons theory,
B-model branes on noncommutative two-sphere and ran-
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dom walks in the fundamental Weyl chamber of Lie alge-
bras were obtained in [11]. In [8] it was observed that
Casimir scaling corresponds to a free diffusion on the
group manifold, which is described by the heat kernel
equation. This could be expected, since it is known from
lattice gauge theory that infrared behavior of Yang-Mills
theories in higher dimensions can be described by two-
dimensional Yang-Mills theory (dimensional reduction
scenario, [14]), and the partition function of two-
dimensional Yang-Mills theory obeys the heat kernel equa-
tion [15]. In order to describe screening effects one should
somehow modify the simplest heat kernel equation. A
straightforward modification is to add a drift term to the
equation, which was interpreted as the Fokker-Planck
equation on the group manifold in [8,9]. Such a modifica-
tion led to many nontrivial physical consequences, such as
the emergence of confining k-strings [9]. ZN symmetry of
the group center was found to play a crucial role in tran-
sition from Casimir scaling to screening regime [8,9],
which has a nice interpretation in terms of central vortices.
A nontrivial but solvable modification of QCD2 matrix
model which describes screening effects was discovered
in [9]. In our work [10] we have pointed out another
possibility to generalize the heat kernel equation, namely,
to include the terms with higher-order derivatives with
respect to group coordinates. An advantage of such a
generalization is that there is no need to introduce some
external force in the Fokker-Planck equation ‘‘by hands’’,
as it is done in the works [8,9]. Thus geometric properties
of the group manifold (homogeneity and absolute parallel-
ism) are preserved and the symmetry of the equation under
group transformations is explicit.

The aim of this paper is to provide a theoretical ground
for the phenomenological analysis of [8–10] and to derive
the most general differential equation for the probability
distribution of parallel transporters on the group manifold
from the first principles. The classical loop equation [16] is
first rewritten as a flow equation on the group manifold.
-1 © 2006 The American Physical Society
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Then we apply the cumulant expansion theorem to this
flow equation and find that the probability distribution
obeys the equation which can be obtained from the heat
kernel equation by adding higher-order differential opera-
tors. This equation generalizes the Fokker-Planck equation
used in [8,9] and is known as the Kramers-Moyall cumu-
lant expansion in the theory of random walks [17]. The
coefficients in the obtained equation can be expressed in
terms of nonperturbative cumulants of the shifted curvature
tensor, which are the basic objects in the method of field
correlators [6,18,19]. In the limit of a gaussian-dominated
QCD vacuum, where only the second-order cumulant sur-
vives, this equation reduces to the heat kernel equation, in
accordance with the results of [8–10]. We suppose that the
proposed generalization of the heat kernel equation may be
helpful in finding effective action for QCD string which
takes into account screening effects. Kramers-Moyall cu-
mulant expansion also emerges naturally as a continuum
approximation of discrete random walks, which can be
interpreted as a continuum limit of a lattice gauge theory.

The paper is organized as follows: in this section we
introduce the loop variables and the classical loop equa-
tions [16]. Since we extensively use geometric construc-
tions on the group manifold throughout the paper, in the
next section we make a brief review of geometric proper-
ties of compact simple groups and introduce the group
laplacian. In Sec. III the probability distribution of parallel
transporters on the group manifold is introduced and its
classical limit is considered. Finally, in Sec. IV we apply
the cumulant expansion theorem to obtain the main result
of this paper, namely, the differential equation for the
probability distribution of parallel transporters on the
group manifold.

We consider gauge fields Â��x� in some representation
of the Lie algebra of the gauge group G, which is supposed
to be compact and simple. To any smooth closed path �
one can attribute parallel transport operator which can be
written as a path-ordered exponent:

�̂��� � P exp
�
i
Z
�
dx�Â�

�
(1)

Parallel transport operator is the element of some repre-
sentation of the group G, therefore in classical theory to
each loop � corresponds some element g0��� of the gauge
group G. In order to calculate the path-ordered exponent in
(1), one should choose some initial point x0 on the loop �.
Parallel transport operator transforms under gauge trans-
formations in the following way:

�̂��� ! T̂�f�x0���̂���T̂�f�1�x0��g0���

! f�x0�g0���f�1�x0� (2)

Thus gauge orbits for loop variables are group classes, i.e.
the points which belong to the same group class should be
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identified, and points in the physical phase space are
actually the group classes.

We consider a one-parameter family of loops ����,
assuming that at fixed � the loop ���� is parametrized
with some variable �, i.e. ����: �! x���; ��, x��0� �
x��2��. Group element which corresponds to the loop ����
in classical theory will be denoted as g0��� � g0������. In
order to impose boundary conditions in subsequent equa-
tions we suppose that � � 0 corresponds to a loop of zero
area, for which g0���0�� � 1. We will also assume that the
worldsheet swept by the loops ���� is simply connected.
This assumption allows us to introduce the shifted curva-
ture tensor ~F�� on this worldsheet, as is done in the proof
of the non-Abelian Stokes theorem [20,21]:

~F���x� � Û�x0; x; ��F̂���x�Û�x; x0; �� (3)

where F̂�� � @��Â�� � i�Â�; Â�� is the curvature tensor of
Yang-Mills field, Û�x; y; �� � P exp�i

R
x
y;� dx

�Â�� is the
non-Abelian phase factor along the path �, x0 is the
reference point on the surface and � is some path which
connects the reference point x0 and the point x. Shifted
curvature tensor is the curvature tensor parallel transported
from the point x to the reference point x0 along the path �.

We start with the Polyakov-Migdal variational equation
for loop variables in classical Yang-Mills field ([16], chap-
ter 7):

��̂���
�x����

�̂y��� � i ~F���x����
dx�

d�
(4)

For our continuous set of loops the Eq. (4) reduces to a
linear differential equation:

d�̂���
d�

�̂y����
Z
����

d�@�x���;��
��̂������
�x���;��

�̂y������

� i
Z
����

d�@�x
���;��@�x

���;�� ~F���x��;���

(5)

where �̂��� � �̂������ and @� �
@
@� , @� �

@
@� . Boundary

condition for this equation is �̂�0� � Î, because we have
assumed that g0�0� � 1.
II. GEOMETRY OF THE GROUP MANIFOLD

In order to proceed with the analysis of the Eq. (5) it is
necessary to introduce some geometric constructions on
the group manifold. In this section we make a brief review
of geometric properties of simple compact groups. In order
to relate our notations to those of another authors [8,9] we
also introduce here the group laplacian.

Group generators in the fundamental representation T̂a,
T̂ya � T̂a are chosen to satisfy the normalization
Tr T̂aT̂b � �ab and obey the commutation relations
�T̂a; T̂b� � iCcabT̂c. Suppose that group elements are pa-
-2



KRAMERS-MOYALL CUMULANT EXPANSION FOR THE . . . PHYSICAL REVIEW D 73, 094015 (2006)
rametrized by some coordinates g	 (for the sake of brevity
we will use the same letters to denote the elements of the
group and their coordinates). In this paper we will work in
several different spaces: the space-time where our Yang-
Mills fields live, the group manifold and the Lie algebra
(tangent space to the group manifold at the group identity).
From now on we will use Latin indices a; b; c; . . . to denote
the elements of the Lie algebra, the first Greek indices
	;
; . . . for tensors on the group manifold, and the indices
from the middle of the Greek alphabet �; �; . . . for tensor
fields in space-time. We define the vector fields L	a �g� and
R	a which are induced by the left and right action of the
group generators respectively [22,23]:

�1	 i�aT̂a�Û�g	� � Û�g	 	 L	a �g��a�

Û�g	��1	 i�aT̂a� � Û�g	 	 R	a �g��a�
(6)

where Û�g	� are the matrices of the fundamental repre-
sentation and �a are arbitrary infinitely small parameters.
Let us also introduce the derivatives ra and ~ra (not to be
confused with Yang-Mills covariant derivatives in space-
time) along these vector fields:

ra � L	a �g�
@
@g	

; ~ra � R	a �g�
@
@g	

(7)

These derivatives obey the following commutation rela-
tions:

�ra;rb� � Ccabrc; �~ra; ~rb� � �C
c
ab

~rc

�~ra;rb� � 0
(8)

Thus the derivatives ra or ~ra acting on the functions on
the group manifold build an infinite-dimensional reducible
representation of the Lie algebra of the group G.
Corresponding representation of the group G is the regular
representation, which contains all finite-dimensional irre-
ducible unitary representations. Quadratic Casimir opera-
tor of this representation is [24]:

� � rara � ~ra ~ra (9)

Eigenvalues of �� are the eigenvalues of the quadratic
Casimir operators in irreducible unitary representations.
The minus sign arises here because the derivatives ra
are antihermitean, unlike the hermitean generators T̂a.

While the derivatives ra and ~ra generate left and right
group multiplications, respectively, their difference gener-
ates shifts within group classes:

raÛ�g� � iT̂aÛ�g�; ~raÛ�g� � iÛ�g�T̂a

�ra �
~ra�Û�g� � i�T̂a; Û�g��

(10)

In this paper we will work in a Hilbert space of functions
on group classes. Such functions obey the constraint
��g� � ��fgf�1� for any group element f. An infinitesi-
mal version of this constraint is:
094015
�ra �
~ra���g� � 0 (11)

Thus the Hilbert space of functions on group classes is the
subspace of the full Hilbert space of functions on the group
manifold, spanned on the solutions of the linear Eq. (11).

An invariant metric on the group manifold is fixed up to
a constant by requiring infinitesimal distances to be invari-
ant under group multiplication [22]. This means that the
vectors La	 are Killing vectors, which immediately gives
for the group metric (Killing form) h	
:

h	
�g� � L	a �g�L


a �g�; h	
h
� � �	� (12)

An invariant measure on the group manifold (the Haar

measure) is d��g� �
���������������������
deth	
�g�

q Q
�dg

�.

Group structure of the manifold allows also to define the
parallel transport and the connection on it. Parallel trans-
port is defined as follows: consider two infinitely close
points with coordinates g	 and g	 	 dg	. Suppose that
under left group multiplication these points transform into
~g	 and ~g	 	 d~g	. Then d~g	 is said to be the vector dg	

parallel transported from the point g to the point ~g [22].
The corresponding connection is ��	
 � L�a @

@g	 L
a, where
indices are lowered and raised with the group metrics h	
.
One uses this connection to define a covariant derivative
r	 on the group manifold. Group manifold is a space of
absolute parallelism, i.e. the space with zero curvature but
nonzero torsion: �r	;r
� � S�	
r�. We use the covariant
derivatives r	 to redefine � and to extend its action on
arbitrary tensor fields on the group manifold:

� � h	
r	r
 (13)

For scalar functions the definitions (9) and (13) are equiva-
lent, as in this case � is the Beltrami-Laplace operator for
the group metrics h	
:

� � �deth	
�
�1=2 @

@g	

�
�deth	
�

1=2h	

@

@g


�
(14)

Definitions (13) and (14) are different in the case of arbi-
trary geometry, but in the particular case of manifolds with
group structure they coincide.
III. PROBABILITY DISTRIBUTION OF PARALLEL
TRANSPORTERS ON THE GROUP MANIFOLD

AND ITS CLASSICAL LIMIT

In quantum theory one can not establish any determinis-
tic correspondence between loops in space-time and points
on the group manifold. Instead one can consider the proba-
bility distribution p�g; �� which will determine the proba-
bility dP�g; �� � p�g; ��d��g� for the group element g���
associated with the loop ���� to be within an infinitesimal
volume d��g� on the group manifold. As the physical
phase space contains only group classes, the points which
belong to the same group class should be identified, which
-3
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means that the physical probability distribution is actually
defined on group classes. Thus we require the function
p�g; �� to be the function on group classes, i.e. to obey
the constraint (11). As will be shown further, the constraint
(11) is consistent with the final equation for p�g; ��. A full
orthonormal basis in the Hilbert space of functions on
group classes is built by the characters of irreducible
unitary representations �k�g�, where the index k labels
irreducible unitary representations of the group G, includ-
ing the trivial one. An identity operator on this space is the
delta-function on group classes:

��f; g� �
X
k

�k�f� ��k�g� (15)

By definition, for any function on group classes ��g� one
has:

Z
G
d��g���g���f; g� � ��f� (16)

As usual in quantum theory, we introduce the probability
distribution p�g; �� as the expectation value of the delta-
function on the physical phase space [8–10]:

p�g; �� � h��g; g0����i (17)

where by h. . .i we denote the vacuum expectation value.
As h1i � 1, the probability distribution (17) is automati-
cally normalized to unity:

R
G d��g�p�g; �� �

h
R
G d��g���g; g0����i � 1.
As ��g; g0���� in (17) is the delta-function on group

classes (15), the function p�g; �� is a gauge-invariant quan-
tity. A simple calculation shows that indeed the probability
distribution p�g; �� can be expressed in terms of Wilson
loops [10]:

p�g; �� � h��g; g0����i �
�X

k

�k�g� ��k�g0����
�

�
X
k

�k�g�h ��k�g0����i �
X
k

�k�g�dk �Wk������

(18)

where Wk��� is the Wilson loop in the k-th representation
of the gauge group and dk is the dimensionality of the k-th
representation.

We would like to find a differential equation satisfied by
p�g; ��. To this end we consider the classical limit of
p�g; ��, which is given by the delta-function at the classical
solution: p0�g; �� � ��g; g0����. Differentiating p0�g; ��
over � gives:

@���g; g0���� �
@
@g	0

��g; g0����
dg	0 ���
d�

� �
@
@g	

��g; g0����
dg	0 ���
d�

(19)

where we have taken into account that ��g; f� � ��f; g�
and hence @

@g	 ��g; f� � �
@
@f	 ��g; f�. The vector field
094015
dg	0 ���
d� can be found from (5):

dg	0 ���
d�

� L	a �g0����
Z
����

d�@�x
�@�x

� ~Fa���x��; ���

(20)

It is convenient to introduce the linear differential operator
L��� which acts on functions on the group manifold as the

derivative along the vector field �
dg	0 ���
d� :

L ��� � �
Z
����

d�@�x�@�x� ~Fa���x��; ���ra (21)

Now the Eq. (19) can be rewritten as:

@�p0�g; �� � �
dg	0 �g�
d�

@
@g	

p0�g; �� � L���p0�g; ��

(22)

which is nothing but the flow equation along the vector

field
dg	0 ���
d� . Initial condition for this equation is p0�g; 0� �

��g; 1�, as g0�0� � 1.
IV. CUMULANT EXPANSION

The probability distribution p�g; �� is the vacuum ex-
pectation value of the function p0�g; �� � ��g; g0���� as
the functional of the gauge field Â��x�, which enters the
equation for p0�g; �� through the differential operator
L���. Our aim is to obtain an equation for p�g; ��, which
can be done without direct calculation of p�g; �� by using
the cumulant expansion theorem (also known as the Van-
Kampen expansion) [25,26]. Cumulant expansion was
originally devised to solve linear differential equations
with random coefficients. Together with the non-Abelian
Stokes theorem it was successfully applied in nonpertur-
bative QCD to find vacuum expectation values of Wilson
loops [6,18,19]. An approach based on the cumulant ex-
pansion was further developed into the method of field
correlators [6,18,19]. A particular case of the cumulant
expansion is known in the theory of random walks as the
Kramers-Moyall expansion [17].

Applying the cumulant expansion theorem to the
Eq. (22) yields the following equation for p�g; �� �
hp0�g; ��i:

@�p�g; �� �
X1
k�0

R
. . .

R
d�1 . . . d�k

� > �1 > �2 > . . .> �k


hhL���L��1� . . .L��k�iip�g; �� (23)

where double parentheses hh. . .ii denote the ordered cumu-
lants [25,26], which extend the concept of cumulants of
scalar functions onto noncommuting operators (note that
the operators L��� for different values of � do not com-
mute). Ordered cumulants hh. . .ii are defined implicitly by
the following recurrence relation [25,26]:
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hL���L��1� . . .L��n�i �
Xn
r�0

X
fi1...irg[fj1...jn�rg�f1...ng


 hhL���L��i1� . . .L��ir�ii


 hL��j1
� . . .L��jn�r�i (24)

where summation is performed over all decompositions of
the set f1 . . . ng into two ordered subsets fi1 . . . irg and
fj1 . . . jn�rg, each of which may be empty. To start the
recursion we define hhL���ii � hL���i. Ordered cumulants
of the lowest orders are [25]:

hhL��1�L��2�ii � hL��1�L��2�i � hL��1�ihL��2�i


 hhL��1�L��2�L��3�ii

� hL��1�L��2�L��3�i

� hL��1�L��2�ihL��3�i

� hL��1�ihL��2�L��3�i

� hL��1�L��3�ihL��2�i

	 hL��1�ihL��2�ihL��3�i

	 hL��1�ihL��3�ihL��2�i (25)

Explicit substitution of L��� in (23) gives the desired
equation for p�g; ��:

@�p�g; �� �
X1
k�0

��1�k	1
Z
����

d�@�x
�@�x

�
Z

. . .



Z
dS�1�1 . . . dS�k�khh ~Fa���x��; ���


 ~Fa1
�1�1�x��1; �1�� . . . ~Fak�k�k�x��k; �k��ii


 rara1
. . .rakp�g; �� (26)

where dS�� � 1=2d�d�@�x
��@�x

�� is the volume form on
the worldsheet swept by the loops ���� and integration is
performed over the whole worldsheet with the restriction
� > �1 > �2 > . . .> �k. Note that in the above equation
we have used the cumulants of the shifted curvature tensor
in the basis of the generators T̂a. These cumulants are
defined by the following relation:

hh ~Fa1
�1�1�x��1; �1��T̂a1

. . . ~Fak�k�k�x��k; �k��T̂akii

� hh ~Fa1
�1�1�x��1; �1�� . . . ~Fak�k�k�x��k; �k��iiT̂a1

. . . T̂ak
(27)

where hh ~F�1�1
. . . ~F�k�kii are the nonperturbative cumu-

lants of the shifted curvature tensor [6,18,19]. Such cumu-
lants are defined by the relation similar to (24), where
�-ordering is replaced by some surface ordering [20,21],
which we will assume to be the ordering with respect to �
and � variables. It should be noted that the shifted curva-
ture tensor always transforms as a curvature tensor in the
reference point x0, thus the cumulants (27) transform co-
variantly under gauge transformations. A detailed review
094015
of the properties of such cumulants can be found in [6,18].
For instance, the lowest-order cumulants are:

hh ~Fa�1�1
~Fb�2�2

ii� h ~Fa�1�1
~Fb�2�2

i�h ~Fa�1�1
ih ~Fb�2�2

i


hh ~Fa�1�1
~Fb�2�2

~Fc�3�3
ii

� h ~Fa�1�1
~Fb�2�2

~Fc�3�3
i�h ~Fa�1�1

~Fb�2�2
ih ~Fc�3�3

i

�h ~Fa�1�1
ih ~Fb�2�2

~Fc�3�3
i

�h ~Fa�1�1
ih ~Fb�3�3

~Fc�2�2
i

	h ~Fa�1�1
ih ~Fb�2�2

ih ~Fc�3�3
i

	h ~Fa�1�1
ih ~Fb�3�3

ih ~Fc�2�2
i (28)

The Eq. (26) can be rewritten in a compact form as:

@�p�g; �� �
X1
k�0

aa1...ak���rara1
. . .rakp�g; �� (29)

where the coefficients aa1...ak��� are some functions of �
which can be expressed in terms of the cumulants of the
shifted curvature tensor:

aa1...ak��� � ��1�k	1
Z
����

d�@�x�@�x�




R
. . .

R
� > �1 > �2 > . . .> �k

dS�1�1 . . . dS�k�k


 hh ~Fa���x��; ��� ~F
a1
�1�1�x��1; �1�� . . .


 ~Fak�k�k�x��k; �k��ii (30)

The Eq. (26) in the form (29) has a general form of the
Kramers-Moyall cumulant expansion known in the theory
of random walks [17].

Gauge invariance imposes rather strict constraints on the
tensor structure of the coefficients aa1...ak���. Only color
singlets can have nonzero vacuum expectation value,
which means that each monomial of the form
aa1...ak���rara1

. . .rak should be a Casimir operator. As
the derivatives ra build a representation of the Lie algebra
of the gauge group, this means that each such monomial
should commute with ra:

�rb; aa1...ak���rara1
. . .rak� � 0 (31)

Examples of such monomials are �2 �
�ab�cdrarbrcrd, Cadj� � Ccabrarbrc and so on. It is
now straightforward to show that if the relation (31) holds
for all differential operators on the r.h.s. of (29), the solu-
tion of the Eq. (29) will be the function on group classes.
Indeed, for � � 0 p�g; �� � ��g; 1� is the function on
group classes. From the commutation relations (8) it fol-
lows that the derivatives ~ra commute with arbitrary func-
tions of the derivatives ra, and hence
�rb �

~rb; 
aa1...ak���rara1

. . .rak� � 0 whenever (31)
holds. This implies that if �rb � ~rb�p�g; 0� � 0, �rb �
~rb�p�g; �� � 0 for all �. Thus gauge invariance of the
cumulants (27) guarantees that the solution of the
-5
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Eq. (29) always belongs to the Hilbert space of functions
on group classes.

Gauge invariance requires that the ‘‘drift term’’ a

should vanish and that ab��� � C����ab, where C��� is
some function of � which is proportional to the second-
order cumulant of the shifted curvature tensor. In the
approximation of a gaussian-dominated QCD vacuum
one assumes that the only nonzero cumulant is the
second-order cumulant [6,18,19]. In this case the
Eq. (29) reduces to the well-known heat kernel equation,
in agreement with the results of [8–10]:

@�p�g; �� � C����p�g; �� (32)

Such limit of the Eq. (26) automatically leads to Casimir
scaling (which is not surprising, since the gaussian domi-
nance conjecture was devised to explain Casimir scaling),
while possible deviations from the Wilson area law can be
incorporated in the function C���.

General form of the Eq. (26) suggests that decay rates of
Wilson loops in different representations of the gauge
group should be proportional to some combination of
Casimir operators, in full accordance with the analysis
based on the method of field correlators [6,18,19]. Note
that such conclusion is in general not true, for instance, if
the ‘‘drift term’’ a is not equal to zero, as was proposed in
the works [8,9].
V. CONCLUSIONS

In this paper we have derived the differential equation
for the probability distribution of parallel transporters on
the gauge group. It turned out that it is necessary to add the
terms with higher-order derivatives to the simplest heat
kernel equation [8–10] in order to reproduce correctly
deviations from Casimir scaling and to describe the screen-
ing effects correctly. Gauge invariance requires that all the
differential operators in the r.h.s. of the Eq. (26) should be
Casimir operators. In this case the tension of QCD string is
in general proportional to some combination of Casimir
operators, as the method of field correlators predicts
[6,18,19]. In contrast to the phenomenological approach
of [8–10] the Eq. (26) contains no arbitrary potential
functions and is thus explicitly invariant under group trans-
formations. Moreover, the coefficients aa1...ak��� are di-
rectly related to nonperturbative cumulants of the shifted
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curvature tensor and hence the Eq. (26) contains no phe-
nomenological parameters at all and is exact as long as the
cumulant expansion converges.

The final Eq. (26) is the Kramers-Moyall cumulant
expansion, which generalizes the Fokker-Planck equation
onto arbitrary random walks [8,9,17]. Such expansion
arises naturally when one considers an arbitrary discrete
random walk and then takes the continuum limit [17]. In
lattice theories the set of loops is a discrete set, and the
initial Eq. (5) turns into an equation with discrete variable
�, which corresponds to a discrete random walk on the
group manifold, according to the interpretation of [8,9].
One can note an interesting similarity between the contin-
uum limit of discrete random walks on Lie groups and the
continuum limit of lattice gauge theories. In particular, in
both cases continuum limit means that physical observ-
ables do not depend on time step or lattice spacing.

As long as the screening effects are small, the higher-
order differential operators in (29) can be treated as a small
perturbation of the free diffusion described by the Eq. (32).
As it is known that the Eq. (32) is solved by pure two-
dimensional Yang-Mills theory living on the surface
spanned on the loop ���� [10], it can be particularly
interesting to find a small perturbation of two-dimensional
Yang-Mills theory which allows to solve the general
Eq. (26) at least up to several orders in the perturbation
strength. In the case of nonzero ‘‘drift term’’ a such
modification was found in [9]. Indeed, the dimensional
reduction scenario relates the observables of four-
dimensional and two-dimensional theories [14], which
automatically leads to Casimir scaling. Thus possible mod-
ifications of two-dimensional theory can be used to extend
the applicability of the dimensional reduction scenario.
Such modifications may be also helpful in finding effective
actions for QCD strings which take screening into account.

Possible generalization of (26) onto sets of loops which
sweep multiply connected worldsheets can be also inter-
esting. One can also implement the methods described in
the Sec. II to describe diffusion of higher-order differential
forms. Finally, if it was possible to obtain an equation
similar to (26), for example, basing on the Schwinger-
Dyson equations for quantum Yang-Mills fields, this will
provide some information on nonperturbative cumulants of
the curvature tensor.
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