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Absence of the London limit for the first-order phase transition to a color superconductor
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We study the effects of gauge-field fluctuations on the free energy density of a homogeneous color
superconductor in the color-flavor-locked (CFL) phase. Gluonic fluctuations induce a strong first-order
phase transition, in contrast to electronic superconductors where this transition is weakly first order. The
critical temperature for this transition is larger than the one corresponding to the diquark pairing
instability. The physical reason is that the gluonic Meissner masses suppress long-wavelength fluctuations
as compared to the normal conducting phase where gluons are massless, which stabilizes the super-
conducting phase. In weak coupling, we analytically compute the temperatures associated with the limits
of metastability of the normal and superconducting phases, as well as the latent heat associated with the
first-order phase transition. We then extrapolate our results to intermediate densities and numerically
evaluate the temperature of the fluctuation-induced first-order phase transition, as well as the discontinuity
of the diquark condensate at the critical point. We find that the London limit of magnetic interactions is
absent in color superconductivity.
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I. INTRODUCTION

It was suggested a long time ago that quark matter might
exist within the central regions of superdense stars [1].
Since Quantum Chromodynamics (QCD) is an asymptoti-
cally free theory [2], it was argued that the extremely
compressed matter found in neutron stars consists of
quarks rather than of hadrons and that realistic calculations
in the framework of QCD become possible [3]. At high
baryon densities and sufficiently low temperatures, how-
ever, a phase transition between normal and color-
superconducting quark matter is expected [4–7]. There-
fore, color superconductivity (CSC) may be relevant to
explain several important aspects of the highly compressed
matter present in compact stars, e.g., the cooling rates [8],
and the rotational properties of stars [9]. Nevertheless,
trustworthy perturbative calculations can only be per-
formed for ultrahigh chemical potentials, �� �QCD.
The weak-coupling expansion of the temperature for the
diquark pairing instability reads [10,11]
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where g is QCD running coupling constant at the chemical
potential �, and � is the Euler-Mascheroni constant. The
energy gap at T � 0 in the CFL phase is [6]
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It follows from the Ginzburg-Landau (GL) theory of CSC
in weak coupling that the phase transition is of second
order at Tc and the GL parameter is [12]
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with �s � g2=�4��. When g! 0 then �! 0 and, there-
fore, the CFL color superconductor is of extreme type I.

It is well known in the context of electronic supercon-
ductors that gauge-field fluctuations change the second-
order phase transition into a first-order transition [13].
However, the strength of this first-order transition is sensi-
tive to the relationship among the three length scales that
are involved: the coherence length near the transition, �,
the magnetic penetration depth near the transition, �, and
the coherence length at T � 0, �0 �

1
Tc

. A superconductor
with �� �0 is said to be in the London limit. In this case,
the coupling between the gauge field and the order parame-
ter is approximately local. The opposite case, �� �0,
corresponds to the Pippard limit and the coupling becomes
highly nonlocal [14]. For a type I electronic superconduc-
tor the Pippard limit is always realized at T � 0. As the
temperature is raised towards the transition to normal
quark matter, the penetration depth increases and so does
the ratio �=�0. A crossover from the Pippard limit to the
London limit would be expected if the transition is of
second order. How does the first-order phase transition
induced by gauge-field fluctuations change this scenario?
Are both limits still realized? In the case of known elec-
tronic superconductors of type I, the first-order phase
transition is sufficiently weak to warrant a crossover be-
-1 © 2006 The American Physical Society
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tween Pippard and London limits, which has been indeed
observed experimentally for strong type I materials like
aluminum [15]. However, the situation is completely dif-
ferent for a color superconductor. It was shown in a pre-
vious work [16] that �� �0 is maintained at the phase
transition for asymptotically high baryon density. As will
be shown below, this feature remains valid when the results
of Ref. [16] are extrapolated to moderately high densities.

The current work, which is an extension and continu-
ation of the previous project [16], is organized as follows.
In the next section, we shall review the generalized GL free
energy density derived previously. The relevant thermody-
namic quantities of the first-order color-superconducting
transition will be calculated in weak coupling in Sec. III
and the extrapolation of the results to moderate coupling
will be presented in Sec. IV. Concluding remarks will then
be given in Sec. V. Moreover, technical details on the
derivation of the generalized GL free energy density, which
were skipped in Ref. [16], will be sketched in the appendix.
In contrast to Ref. [16], the zero-temperature coherence
length will be defined as �0 � 1=�2�Tc�. Our units are @ �
c � kB � 1 and 4-vectors are denoted by capital letters,
K 	 K� � �!; ~k�. In our formulas,Tr indicates the sum-
mation over all indices including momentum, ~k, and en-
ergy, !, while tr denotes the summation over all indices
except momentum and energy.
II. THE GENERALIZED GINZBURG-LANDAU
FREE ENERGY DENSITY

The CJT effective potential [6] reads

�
 �D; �S� �
T

2�
fTr ln �D�1 � Tr�D�1 �D� 1� � Tr ln �S�1

� Tr�S�1 �S � 1� � 2�2

�D; �S�g; (4)

where � denotes the 3-volume of the system, �D and �S are
the full gluon and quark propagators, D�1 and S�1 are the
corresponding inverse tree-level propagators, and �2 is the
sum of all two-particle irreducible vacuum diagrams. We
work in the two-loop approximation, i.e., �2 contains only
the diagrams shown in Fig. 1. The first diagram, containing
quark propagators, leads to a term of order g2�4 in
�, while the other two diagrams, containing only gluon
FIG. 1. The two-loop approximation to �2. Straight lines de-
note quark propagators, wavy lines denote gluon propagators.
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propagators, lead to terms proportional to powers of T.
Therefore, at small temperatures T � Tc �� exp��1=g�,
one can drop the last two diagrams and restrict the consid-
eration to the first. In explicit form,

�2

�D; �S� � �1

2 Trf �D�
 �S�g; (5)

where

�
 �S� 	 1
2 Tr��̂ �S �̂ �S� (6)

is a functional of the full quark propagator �S and the bare
quark-gluon vertex �̂. Note that the trace in Eq. (5) is over
4-momenta, as well as Lorentz and adjoint color indices,
while in Eq. (6) it is over 4-momenta, as well as Nambu-
Gor’kov, Dirac, flavor, and fundamental color indices. The
minus sign in Eq. (5) takes account of the fermion loop and
the factor 1=2 is due to the fact that this is a second-order
correction to the CJT effective potential. The factor 1=2 in
Eq. (6) accounts for the doubling of the fermionic degrees
of freedom in Nambu-Gor’kov space.

The free energy density is given by the CJT effective
potential at its stationary points, determined by

	�

	 �D

�������� �D�D; �S�S
� 0;

	�

	 �S

�������� �D�D; �S�S
� 0: (7)

The first condition gives a Dyson-Schwinger equation for
the gluon propagator,

D�1 � D�1 ��
S�: (8)

Inserting this condition into Eq. (4), one observes that the
second term cancels the last term, i.e., at the stationary
point

�
D;S� �
T

2�

Tr lnD�1 � Tr lnS�1 � Tr�S�1S � 1��:

(9)

This expression corresponds to the free energy density at a
given temperature. In terms of the gluon and quark propa-
gators in the normal phase, Dn�K� and Sn�K�, the propa-
gators in the superconducting phase are written as

S�K� � Sn�K� � 	S�K;��; (10a)

D�1�K� �D�1
n �K� � 	��K;��; (10b)

where 	� 	 ���n, i.e., D�1
n already contains the

hard-dense-loop (HDL) resummed gluon self-energy �n.
The gluon self-energy in the superconducting phase, �,
depends on the superconducting gap parameter, �, and so
	� also depends on �. Similarly, the quark propagator in
the normal phase Sn contains quark self-energy correc-
tions, and 	S depends on �. Note that � is the value of the
gap parameter that one obtains from a solution of the
second Dyson-Schwinger equation (7). In the following,
however, we shall consider � to be a free parameter. In
order to obtain the physical value of the gap, we then have
to find the minimum of �
D;S� as a function of �.
-2
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Inserting Eqs. (10) into Eq. (9), we obtain

� � �n � �cond � �fluc � �0fluc; (11)

where
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T

2�

Tr lnD�1

n � Tr lnS�1
n � Tr�S�1Sn � 1��;

(12a)
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T
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n 	S��; (12b)
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The generalized GL free energy density is the difference in
the CJT effective potential between the superconducting
phase and the normal phase, �� �n. It includes both the
ordinary GL terms and the fluctuation terms. Note that we
have added a term Tr�Dn	�� in �cond and simultaneously
subtracted it in �fluc, �0fluc. This term corresponds to the so-
called exchange (free) energy density [17] and must be
present in order to obtain the correct expression for �cond

[18,19]. Therefore, we have to subtract it in the fluctuation
part of the free energy density. Only with this subtraction,
�fluc � �0fluc represents the well-known plasmon ring re-
summation [17]. We note in passing that it is quite gratify-
ing to see that the CJT formalism naturally contains all
these different many-body contributions to the free energy
density.

In Ref. [20], the exchange energy density was not sub-
tracted from the plasmon ring contribution. This leads to an
overall change of sign of the fluctuation energy density. As
shown below [see Eq. (19)], the contribution of the fluc-
tuation energy density is� ln�1� u� � u, which is always
negative, while in Ref. [20] it is � ln�1� u� which is
positive (for u > 0). Therefore, the authors of Ref. [20]
concluded that gauge-field fluctuations raise the free en-
ergy density of the color-superconducting phase, and
thus decrease the transition temperature to the normal
phase. In our case, however, the gauge-field fluctuations
decrease the free energy density, i.e., stabilize the color-
superconducting phase and therefore lead to a larger tran-
sition temperature.

This is physically plausible if one remembers that
gauge-field fluctuations are also present in the normal
phase, namely, in the first term in Eq. (12a). Since trans-
verse gluons are massless in the normal phase, �n�0� � 0,
long-wavelength fluctuations are enhanced over those in
the color-superconducting phase where gluons are mas-
094009
sive, 	� � 0. Thus, the fluctuation energy density in the
normal phase is larger than in the superconducting phase.

As shown in the appendix, the weak-coupling approxi-
mation gives rise to [18,19]

�cond �
6�2

�2 t�
2�T� �

21��3�

4�4

�
�
Tc

�
2
�4�T�; (13)

where Tc is determined up to the accuracy of Eq. (1) and
t 	 �T � Tc�=Tc is the reduced temperature. The gap pa-
rameter of the fermionic quasiparticle excitations is � (8-
fold) and 2� (1-fold) [21]. One can check that the qua-
dratic and quartic coefficients of �cond for CSC are, re-
spectively, 12�� 8� 12 � 22� and 24�� 8� 14 � 24�
times larger than those for an electronic superconductor.
The relevant fluctuation term is

�fluc � 8T
Z d3 ~k

�2��3

�
ln
�

1�
m2�T; k�

k2

�
�
m2�T; k�

k2

�
; (14)

while �0fluc is of higher order (see the appendix). The
momentum-dependent Meissner mass reads

m2�T; k� �
1

�2 f�k�0�; (15)

with the chromomagnetic penetration depth given by

1
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�
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; (16)

and
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Z 1
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1� x2

�s� 1
2�
4�s�

1
2�

2 � y2x2�
: (17)

Carrying out the integration in Eq. (14) and combining the
result with Eq. (13), we find
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where the function F is defined by

F�z� �
Z 1

0
dxx2

�
ln
�

1�
z

x2 f�x�
�
�
z

x2 f�x�
�
: (19)

Anticipating the result t�O�g�, cf. Eq. (31), in the deri-
vation of Eq. (18) we replaced TT3

c 	 T4
c �1� t� by T4

c in
front of the last term. Keeping the full expression only
leads to order O�g� corrections to the results presented in
Sec. III. Similarly, the higher-order terms of �0fluc lead to
order O�g� corrections to the second term in Eq. (18),
cf. the appendix. One can convince oneself that the impact
on the results in Sec. III is also only of order O�g�.

The London limit corresponds to small arguments in
Eqs. (17) and (19). We have
-3
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f�y� � 1�
31

140

��5�
��3�

y2 �O�y4�; (20)

and

F�z� ’ �
�
3
z3=2: (21)

In the Pippard limit the arguments of f�y� and F�z� become
large and we end up with

f�y� �
3�3

28��3�y

�
1� 16

ln2y� �

�3y
�O�y�3�

�
(22)

and

F�z� ’ �
�3

28��3�
z
�

ln
�

3�3

28��3�
z
�
� const

�
: (23)

Here we have retained the first corrections for both limits
of the function f�y� in order to assess the deviation from
each limit at the CSC phase transition.

Before concluding this section, let us clarify once more
several differences between our formulation and that of
Ref. [20]. First, since in their treatment the term
�m2�T; k�=k2 in Eq. (14), which arises from the subtrac-
tion of the exchange energy density, is missing, their
formal power-series expansion for the fluctuation energy
density in terms of � starts already at quadratic order. This
then gives rise to a renormalized critical temperature T0c.
However, since we include the term in question, there is no
such renormalization of Tc. Moreover, the authors of
Ref. [20] find that the difference between Tc and T0c is of
order O�g2�. Since the two-loop approximation employed
in the derivation of Eq. (18) is not sufficiently accurate
to provide all corrections of this order, such O�g2� correc-
tions cannot be reliably computed. Furthermore, the au-
thors of Ref. [20] approximated the momentum-dependent
Meissner mass by a constant and simply cut off the mo-
mentum integration in Eq. (14). In that case, one is effec-
tively in the London limit of Eqs. (17) and (19), where the
fluctuation energy density is of the form of Eq. (21). The
shift in the transition temperature compared to that of
Eq. (1) is then only of order O�g2� [20], and not of order
O�g�, as found here and in Ref. [16].
III. THE FIRST-ORDER CSC TRANSITION IN
WEAK COUPLING

A generic first-order phase transition can be described
by three characteristic temperatures: the transition tem-
perature Tc , the maximum temperature of the (metastable)
superheated superphase Tsh, and the minimum temperature
of the (metastable) supercooled normal phase Tsc, respec-
tively. These temperatures are related in the following way,

Tsc < Tc < Tsh; (24)

and they can be obtained from the generalized GL free
energy density (18). The lower margin of a supercooled
094009
normal phase corresponds to

@2�

@�2

����������0
� 0; (25)

and, using Eq. (18), we have

Tsc � Tc; (26)

which relates Tsc with the onset temperature for diquark
pairing. On the other hand, the transition occurs at

@�

@�
� 0; � � 0; (27)

for a value of � 	 �c � 0. This implies that

tc �
7��3�

4�2

�2
c

T2
c
�

7��3�

18�3 g
2F0

�
�2

0

�2
c

�
� 0; (28a)

tc �
7��3�

8�2

�2
c

T2
c
�

7��3�

18�3 g
2 �

2
c

�2
0

F
�
�2

0

�2
c

�
� 0: (28b)

Eliminating tc in the equations above we have

F

�
�2

0

�2
c

�
�

216�7

7��3�g4

�
Tc
�

�
2
; (29)

where F �z� � �F0�z�=z� F�z�=z2. Solving Eq. (29) for
�2
c , with the aid of Eq. (23), we obtain

�2
c �

�2

63��3�
g2T2

c : (30)

The transition temperature is obtained substituting Eq. (30)
into either one of Eqs. (28), which produces

Tc �
�
1�

�2

12
���
2
p g

�
Tc: (31)

These were the results reported in Ref. [16]. The penetra-
tion depth at the transition is

1

�2
c
�

g4

216�2 �
2; (32)

which yields the ratio

�2
0

�2
c
�

g4�2

864�4T2
c
� 1: (33)

Thus, the Pippard limit is valid for the entire CSC phase at
sufficiently large chemical potentials.

We shall proceed to determine Tsh. The free energy
density � as a function of � has a local maximum between
� � 0 and the minimum �c at T � Tc in the supercon-
ducting phase. As T increases, the local minimum remains
unchanged until it coalesces with the local maximum,
where

@�

@�
� 0;

@2�

@�2 � 0; (34)

for a value of � 	 �sh � 0. It then follows that
-4
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tsh �
7��3�

4�2

�2
sh

T2
c
�

7��3�

18�3 g
2F0

�
�2

0

�2
sh

�
� 0; (35a)

F00
�
�2

0

�2
sh

�
� �

432�7

7��3�g4

�
Tc
�

�
2
:

(35b)

Moreover, Eq. (35b) together with Eq. (23) yields

�2
sh �

�2

126��3�
g2T2

c �
1

2
�2
c : (36)

Subtracting Eq. (28b) from Eq. (35a) and using Eq. (23),
we find that

tsh � tc �
g2

72
�1� ln2�; (37)

and as a result

Tsh �

�
1�

g2

72
�1� ln2�

�
Tc : (38)

Note that Tc is one order of g closer to Tsh than to Tsc. The
ratio

�2
0

�2
sh

�
g4�2

1728�4T2
c

(39)

implies that even the metastable CSC state is in the Pippard
limit in weak coupling. Although the diagrammatics be-
hind the generalized GL free energy density (18) determine
Tc only up to subleading order, the leading-order differ-
ences among the three characteristic temperatures do not
change if higher-order corrections to Tc are included.

Another observable associated with the first-order phase
transition is the latent heat L � Tc�S, where �S is the
change in entropy density at the transition. We have

�S � �
�
@�

@T

�
���c

�
2g2

21��3�
�2Tc; (40)

and as a result

L �
2g2

21��3�
�2T2

c 	
6�2

�2 �2
c : (41)

Now we calculate the strength of the first-order phase
transition as was defined in Ref. [13],

tHLM �
L

�cv
; (42)

where �cv is the jump in specific heat at the second-order
phase transition, ignoring the fluctuations. If we ignore the
third term in Eq. (18) we recover the ordinary GL theory
from which we find �cv � 24�2Tc=
7��3��. Thus, we
have

tHLM

Tc
�
g2

36
: (43)
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Note that Eq. (43) implies that the strength of the first-order
phase transition weakens (logarithmically) with increasing
chemical potential, which is in agreement with the fact that
the second-order phase transition is recovered at asymp-
totically large densities. Note that for electronic super-
conductors, tHLM=Tc � 10�6 [13] which, for realistic
values of g� 1 is much smaller than the right-hand side
of Eq. (43).
IV. NUMERICAL RESULTS

Strictly speaking, the weak-coupling results in the pre-
vious section are only valid at ultrahigh baryon densities
such that �� �QCD. For quark matter that may exist
inside a compact star � is expected to be slightly higher
than �QCD, and then the weak-coupling expansion be-
comes problematic. Nevertheless, we shall assume that
the generalized GL free energy density remains numeri-
cally reliable down to realistic quark densities. Even if this
is not the case, the qualitative statement for the absence of
the London limit in CSC may still survive, due to the
reason given at the end of this section.

We solved Eqs. (29) and (35b) numerically in order to
find �c and �sh as functions of the chemical potential. The
transition temperature Tc is obtained using �c in either
one of Eqs. (28) and the temperature Tsh is obtained from
the first equation in Eq. (35a). We use the 3-loop formula
for �s � g2=4� [22],

�s��� �
4�


0 ln��2=�2
QCD�

�
1�

2
1


2
0

ln
ln��2=�2
QCD��

ln��2=�2
QCD�

�
4
2

1


4
0
ln��

2=�2
QCD��

2

��
ln
�

ln
�
�2

�2
QCD

��
� 1=2

�
2

�

2
0

8
2
1

�
5

4

��
; (44)

where 
0 � 9, 
1 � 51� 19=�3Nf� � 32, 
2 � 2857�

5033Nf=9� 325N2
f=27, for three colors and three flavors

Nf � 3. Moreover, we have taken �QCD � 364 MeV in
our calculations, in order to obtain the correct value of �s
at the scale of the Z-boson mass.

Figure 2 shows the three temperatures Tsc, Tc , and Tsh as
functions of the chemical potential, along with the weak-
coupling formula (31). Note that Tc is still closer to Tsh

than to Tsc down to few hundreds of MeV. A comparison
between the numerically evaluated critical temperature Tc
and Tc is shown in Fig. 3(a) and the discontinuity of the gap
at Tc , relative to its value at T � 0, (2), is shown in
Fig. 3(b) [23]. Both plots indicate that

lim
�!1

Tc
Tc
� 1; lim

�!1

�c

��0�
� 0; (45)

as expected from asymptotic freedom, lim�!1g��� � 0.
-5
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However, on account of Eq. (44), the convergence is log-
arithmically slow.

Now we will address the question of whether or not the
London limit is realized near Tc for color superconductors
in the range of chemical potentials explored here. From
Fig. 4 we see that the ratio �0=�c � 1, meaning that only
the Pippard limit of magnetic interactions is present in
color superconductivity. Even for the minimum value of
the ratio �0=�c , which is around � � 700 MeV, the
Pippard expansion of m2�k; T� in Eq. (22) works better
than the London expansion, displayed in Eq. (20). This is
also the case for the metastable CSC state up to Tsh, as is
shown in Fig. 5.

It is instructive to express the right-hand side of Eq. (29)
in terms of the GL parameter (3) and compare it with the
corresponding equation for a metallic superconductor,
whose generalized GL free energy density was given in
094009
Ref. [16]. We have

F

�
�2

0

�2
c

�
�

3�2�2

16�s
; (46)

for color superconductors and

F

�
�2

0

�2
c

�
�

�2�2

16�evF
; (47)

for electronic superconductivity. A large value on the right-
hand side of Eq. (46) or Eq. (47) points to the London limit
at the first-order phase transition. Since �e � �s and vF �
�e, the right-hand side of Eq. (47) is much larger than that
of Eq. (46) under the same GL parameter. In other words,
the London limit is more likely to be realized in metallic
superconductors.
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V. CONCLUDING REMARKS

In this paper we have systematically calculated the
effects of gauge-field fluctuations on the free energy den-
sity of a homogeneous CFL color superconductor in the
two-loop approximation. We evaluated both analytically
and numerically the temperature of the fluctuation-induced
first-order phase transition, the latent heat, as well as the
maximum temperature of a superheated superphase. It was
also shown that the London limit for color-magnetic inter-
actions in CFL color superconductors is absent. As the
main reason we identified the weakness of electromagnetic
interactions in comparison to strong interactions, �e �
�s. Thus, one can say that once the gauge-field fluctuations
are taken into account, the local-coupling approximation
between the order parameter and the gauge fields is not
valid in the CFL phase.

By using an inhomogeneous GL theory, Iida and Baym
[24] investigated the formation of vortices and supercur-
rents induced by external magnetic fields and rotation in
pairing states near the critical temperature. Since they used
a mean-field approximation, all gauge fields were regarded
as averaged quantities and fluctuations around their mean
values were not considered. In order to see how the in-
clusion of fluctuations would change their results one has
to derive an effective action that depends only on the order
parameter and the gauge fields. This action would display
nonlocal interactions between the gauge fields and the
diquark condensate. Such an effective action could be
obtained using the formalism developed in Ref. [25].

It was shown in Ref. [13], by a one-loop
renormalization-group calculation using the � expansion,
that no stable infrared fixed point can exist for a theory
involving local interactions between Abelian gauge fields
and order parameters, unless the number of order parame-
ter components, N, is artificially extended to N >Nc �
365, which is far beyond the case of relevance for elec-
tronic superconductivity. This is then interpreted as signal-
ing the presence of a first-order transition. Therefore, for
electronic superconductors, gauge-field fluctuations are al-
ways expected to change the order of the phase transition
to first order, irrespective of further details about the tran-
sition. For color superconductors the effective action con-
taining only the order parameter and the gauge fields as
well as the specific form of their interactions is not known,
and the general result derived in Ref. [13] may not be
applicable. However, the results we obtained for the CFL
phase seem to suggest that fluctuation-induced first-order
phase transitions are indeed present in color superconduc-
tivity. Furthermore, due to the absence of the London limit,
we expect that, once gauge-field fluctuations and first-order
phase transitions are taken into account, local diquark-
gluon interactions are never realized in color superconduc-
tors, regardless which phase is considered. This would
constitute a striking new physical effect that would only
come about in color superconductivity. In fact, the cross-
094009
over from nonlocal to local interactions near the critical
temperature in superconducting metals of strong type I has
been recently observed [15]. What we found in this paper
rules out the possibility of observing such a crossover in
color superconductors.

Recently, a GL free energy density that takes into ac-
count the effects of nonzero quark masses and charge
neutrality has been derived within the mean-field approxi-
mation [26]. A study on the validity of local diquark-gluon
interactions in this case and the effects of gauge-field
fluctuations on the phase diagram obtained in Ref. [26] is
in progress and will be reported elsewhere [27]. Finally, let
us note that in this paper we only considered the transition
between the normal and the CFL phase. Of course, at
intermediate densities there is also the possibility of a
transition to the two-flavor superconducting (2SC) phase,
or a transition between the 2SC and the CFL phase, as
studied in Ref. [28].
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APPENDIX

In this appendix, we sketch some important steps for the
derivation of the generalized GL free energy density in the
presence of gauge-field fluctuations, which is shown in
Eq. (18), in terms of Feynman diagrams. We have


S�1�P��c1c2
f1f2
� �i��P� ���4�3�	c1c2	f1f2

; (A1a)


	S�1�P��c1c2
f1f2
� i�P��5�2�	

c1
f1
	c2
f2
� 	c1

f2
	c2
f1
�; (A1b)

Dll0
n �K�ij �

	ll
0

k2 � �
4 m

2
D
j!j
k

�
	ij �

kikj
k2

�
; (A1c)

Dll0
n �K�j4 � 0; (A1d)

Dll0
n �K�44 �

	ll
0

k2 �m2
D

; (A1e)

where P � ��; ~p�,K � �!; ~k�,m2
D � 3g2�2=�2�2�, � rep-

resents Pauli matrices with respect to Nambu-Gorkov in-
dices, ci and l, l0 stand for the fundamental and adjoint
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color indices, respectively, fi are fundamental flavor in-
dices, and �, � correspond to discrete Matsubara frequen-
cies. The symbol ‘‘�’’ in the gluon propagator means that
we used the approximation for the total HDL gluon propa-
gator that is relevant for the CSC energy scale.
094009
Diagrammatically, Dn is denoted by a wavy line, Sn is
represented by a thick line, and the CSC correction to the
inverse quark propagator (A1b) is associated with a two-
point vertex bearing a cross. The corresponding diagram-
matic expansions for 	S and 	� are
In weak coupling we expand Sn as

Expanding �cond up to the fourth power of �P� we find
where the weak-coupling approximation has been em-
ployed in order to retain the diagrams with at most one
HDL gluon line. The diagram bearing two crosses yields
the expression

P
PP0��P�K�PjP

0���P0�, where the kernel
K�PjP0� is isomorphic to the kernel in the Dyson-
Schwinger equation for the diquark scattering amplitude
in the normal phase. Moreover, taking ��P� to be propor-
tional to the pairing mode [the eigenmode of K�PjP0� with
the minimum eigenvalue at a given T [19]], i.e.,

�P� � � sin
�

g

3
���
2
p
�

ln
�

1

�̂

��
; (A2)

where � is the energy gap, �̂ � �3=2�5=2g5�=�256�4��,
we have that
is proportional to T � Tc, with Tc determined up to sub-
leading order in g [see Eq. (1)]. For the diagrams with four
crosses the same mechanism yields

at T � Tc, which reduces the number of quartic terms in
�cond. Moreover, it will be shown at the end of this appen-
dix that the following two diagrams

are of higher order in weak coupling and can be dropped.
For �cond we end up with
which produces the terms in Eq. (13). Now we consider the fluctuation terms �fluc � �0fluc. Expanding the logarithms in
Eqs. (12c) and (12d), the diagrammatic representation of the first three terms is
-8
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where �fluc includes only the contribution from the static
gluons and �0fluc contains remaining contributions. Because
of the Meissner effect, the shaded bubble does not vanish
when the spatial momentum of the gluon line goes to zero
at zero Matsubara energy. A resummation of all ring dia-
grams in Eq. A4 is necessary for �fluc and the result is the
right-hand side of Eq. (14). Regarding �0fluc, where the
Matsubara energy of the gluon line is nonzero, dynamical
screening prevents an infrared divergence for the integral
over gluon momentum. In weak coupling �0fluc is domi-
nated by the first diagram in Eq. A4, which is again of
higher order. Therefore, the contribution of �0fluc can be
safely neglected.

Now we present the argument supporting our assertion
that the two diagrams in Eq. A3 and the first diagram in
�0fluc can be neglected in weak coupling. Let us denote the
contribution of the first diagram in Eq. A3 by c1�4. It
consists of five free quark propagators with four-
momentum (�, ~p) and a self-energy insertion ��P� �
g2� ln��=j�j� � g�. The main contribution to the
~p-integration comes from a shell of thickness�j�j around
the Fermi surface and then we have

c1 ��2T
X
�

1

j�j4
���� � g

�2

T2
c
; (A5)

which is of O�g� in comparison to the quartic term in
Eq. (13). The contribution of the second diagram in
Eq. A3, denoted by c2�4, can be estimated similarly. As
094009
is the case with the gap equation, the dominating contri-
bution comes from the magnetic gluons with nonzero
Matsubara energy. The integration for the quark propaga-
tors over the magnitude of their momenta ~p, ~p0, on each
side of the gluon line can be approximately decoupled from
the integration for the gluon propagator over the angle
between ~p and ~p0, where the latter produces the forward
logarithm. We then find

c2 � g
2T2�4

X
���0

1

�2�02
1

�2 ln
�

�
�� �0

�
� g

�2

T2
c
; (A6)

which is again of higher order. Now we consider the first
diagram in �0fluc and denote its contribution as c3�4. Since
the typical momentum for the gluon line is k�
m2=3
D j!j

1=3 � ! and !� Tc, each bubble can be approxi-
mated by the static magnetic self-energy of gluons at the
Pippard limit, i.e.

c3 � g
4T
X
!�0

Z d3 ~k

�2��3
1

�k2 � �
4 m

2
D
j!j
k �

2

�
�2

T2
c

Tc
k

�
2

�
g4�4

T2
cm

2
D

X
!�0

1

j!j
: (A7)

The sum over ! has a cutoff when !�mD and then we
end up with

P
!�0j!j

�1 � ln��=Tc� � 1=g. Con-
sequently, we have c3 � g�2=T2

c , which is also negligible.
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Schäfer, hep-ph/0304281; H. C. Ren, hep-ph/0404074,
and references therein.

[6] D. H. Rischke, Prog. Part. Nucl. Phys.. 52, 197 (2004).
[7] I. A. Shovkovy, Found. Phys. 35, 1309 (2005); M. Huang,

Int. J. Mod. Phys. E 14, 675 (2005); T. Schäfer, hep-ph/
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[8] T. Schäfer and K. Schwenzer, Phys. Rev. D 70, 114037
(2004); H. Grigorian, D. Blaschke, and D. Voskresensky,
Phys. Rev. C 71, 045801 (2005); D. N. Aguilera, D.
Blaschke, M. Buballa, and V. L. Yudichev, Phys. Rev. D
72, 034008 (2005); P. Jaikumar, C. D. Roberts, and A.
Sedrakian, Phys. Rev. C 73, 042801 (2006); A. Schmitt,
I. A. Shovkovy, and Q. Wang, Phys. Rev. D 73, 034012
(2006).

[9] J. Madsen, Phys. Rev. Lett. 85, 10 (2000); C. Manuel,
A. Dobado, and F. J. Llanes-Estrada, J. High Energy Phys.
09 (2005) 076.

[10] D. T. Son, Phys. Rev. D 59, 094019 (1999).
-9



NORONHA, REN, GIANNAKIS, HOU, AND RISCHKE PHYSICAL REVIEW D 73, 094009 (2006)
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