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Spin dependent structure functions of the nucleon
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We calculate the spin dependent structure functions g1�x� and g2�x� of the proton and neutron. Our
calculation uses the meson cloud model of nucleon structure, which has previously given a good
description of the HERMES data on polarized sea quark distributions, and includes all the leading
contributions to spin dependent effects in this model. We find good agreement between our calculations
and the current experimental data for the structure functions. We include in our calculations kinematic
terms, which mix transverse and longitudinal spin components, for hadrons of spin 1=2, 1, and 3=2, and
which can give considerable contributions to the g2 structure functions. We also consider the possible
interference terms between baryons or mesons in different final states with the same quantum numbers,
and show that most of these terms do not give leading contributions to the spin dependent structure
functions.
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I. INTRODUCTION

The spin dependent structure functions of the nucleon
are the subject of much theoretical and experimental inter-
est. The main reason for this interest has been the large
amount of evidence, starting with the EMC experiment [1]
which strongly suggests that constituent quark models
cannot fully describe the spin structure of protons and
neutrons. This has led to considerable activity in order to
determine how the spin of nucleons is built up from the
intrinsic spin and orbital angular momentum of their con-
stituent quarks and gluons.

Since 1988 further polarized deep inelastic scattering
experiments have generally confirmed the EMC results for
the proton-photon asymmetry A1 and proton spin structure
function g1�x� [2– 4]. These measurements have also been
performed on deuteron and neutron targets [5,6], which has
enabled the Bjorken sum rule [7] to be tested at the five
percent level.

In addition, there have been measurements, using trans-
versely polarized targets, of the second nucleon-photon
asymmetries AN2 and the related structure functions gN2 �x�
[8–12]. The g2�x� structure functions are of interest be-
cause they do not have a simple interpretation in the quark-
parton model, but are related to transverse momentum of
quarks and higher twist operators which measure correla-
tions between quarks and gluons. The identification of a
higher twist component in a measurement of gN2 �x� would
be significant as this would give new information on the
gluon field inside the nucleon, and its relationship with the
quark fields.

Recently new experimental approaches have sought to
augment the information available from deep inelastic
scattering (DIS) experiments. These include semi-
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inclusive polarized DIS (HERMES and COMPASS), po-
larized proton-proton collisions (RHIC), and polarized
photoproduction.

There have been a number of theoretical approaches to
calculating g1�x� and g2�x� using phenomenological mod-
els of nucleon structure such as the MIT bag model [13–
15] and the chiral soliton model [16–18]. In addition, there
have been lattice calculations of some of the nucleon
matrix elements of operators corresponding to small mo-
ments of the structure functions [19].

In this paper, we shall use the meson cloud model
(MCM) to calculate the spin dependent structure functions
of the nucleon. This model has been applied successfully in
spin independent DIS, giving a good description of the
HERA data on semi-inclusive DIS with a leading neutron
[20,21], and also dijet events with a leading neutron
[22,23]. In addition, the MCM gives a good description
of the observed violation [24,25] of the Gottfried sum rule
[26–28].

The MCM has been used previously to calculate g1�x�
[29,30]. In those calculations pseudoscalar mesons were
identified as the main constituents of the meson cloud.
While these mesons do not directly contribute to the struc-
ture function, the presence of the cloud transfers some
angular momentum from the quarks in the ‘‘bare’’ proton
to the meson cloud and results in a decrease in the calcu-
lated first moment of gp1 compared to the MIT bag model.
More recently it has been realized that vector mesons,
particularly the �, can also play a role in the spin structure
of the proton [31]. In particular, these will give rise to
flavor symmetry breaking in the sea, and the � �u�x� �
� �d�x� difference has been calculated by a number of
authors [32,33]. Interestingly, these calculations predict
that the spin dependent symmetry breaking is quite small,
in contrast to the spin independent symmetry breaking
combination �u�x� � �d�x� which is observed to be large.
Recently, these calculations were extended to the spin
dependent sea distributions (� �u;� �d;�s;��s) [34], and
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FIG. 1. The photon may be scattered from (a) virtual meson
and (b) virtual baryon.
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were found to be in good agreement with the recent results
from HERMES [35].

In this paper we revisit the earlier calculations of gN1 �x�
in light of the developments in the MCM since that time.
We also extend the calculations of structure functions using
the MCM to gN2 �x�, and investigate the kinematic regions
where it may be possible to observe a twist-3 piece of the
structure functions.

In Sec. II of this paper we present the formalism for
discussing spin dependent structure functions in the meson
cloud model, including a discussion of the kinematic terms
which lead to g1 of cloud components contributing to g2 of
the nucleon (and vice versa) [33]. Contributions to the
structure functions from interference between different
states of the cloud [32] are discussed in Sec. III, and it is
shown that most of the leading interference contributions
vanish. In Sec. IV we apply the MCM formalism and
determine all the necessary momentum distributions of
the components of the meson cloud. We also discuss the
correct prescription to use in describing the energy of the
intermediate state hadrons in the MCM. In Sec. V we
calculate the spin dependent structure functions of the
baryons and mesons in the cloud using the MIT bag model.
The numerical results for the nucleon structure functions
are shown and discussed in Sec. VI. In the last section we
summarize our findings.

II. SPIN DEPENDENT STRUCTURE FUNCTIONS
IN THE MESON CLOUD MODEL

In the LAB frame the cross section for inclusive inelastic
lepton-nucleon scattering may be written in terms of the
product of lepton and hadron tensors

d2�
d�dE0

�
�2

q4

E0

E
L��W

��; (1)

where � is the fine structure constant, E�E0� is the energy
of the incident (scattered) lepton, and q2 is the squared
four-momentum transfer. In spin dependent (polarized)
scattering we are interested in the antisymmetric part of
the hadron tensor WA

��, which can be written in terms of
two structure functions G1 and G2 [36]

WA
�� �

i
mN

�����q
�
�
s�NG1��;Q

2�

�
s�NpN � q� p

�
NsN � q

m2
N

G2��;Q
2�

�
: (2)

Here � is the energy transfer, Q2 � �q2, and s�N is the
nucleon spin vector, normalized to s2

N � �m
2
N . In the

Bjorken limit �Q2; �! 1� the structure functions scale,
modulo perturbative QCD logarithmic evolution in Q2,

�
mN

G1��;Q2� ! g1�x�
�2

m2
N

G2��;Q2� ! g2�x�; (3)

where the scaling variable x � Q2=�2mN�� lies between 0
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and 1. In this limit we have

WA
�� � i�����q�

�
s�N

pN � q
g1�x�

�
s�NpN � q� p

�
NsN � q

�pN � q�2
g2�x�

�
: (4)

In order to discuss the structure functions separately we use
a projection operator

P�� �
i

2pN � q
�����q

�s�N; (5)

such that

P��WA
���pN; sN; q� �

m2
Nq

2 � �sN � q�2

�pN � q�
2 g1�x� � �2g2�x�;

(6)

where

�2 �
4x2m2

N

Q2 : (7)

In the MCM [37,38], the nucleon can be viewed as a bare
nucleon plus some baryon-meson Fock states which result
from the fluctuation of nucleon to baryon plus meson N !
MB. The wave function of the nucleon can be written as
[29]

jNiphysical �
����
Z
p
jNibare �

X
MB

X
	M	B

Z
dyd2k?


	M	B
MB �y; k

2
?�

� jM	M �y;k?�;B	B�1� y;�k?�i: (8)

Here Z is the wave function renormalization constant and

	M	B
MB �y; k

2
?� is the wave function of the Fock state con-

taining a meson (M) with longitudinal momentum fraction
y, transverse momentum k?, and helicity 	M, and a baryon
(B) with momentum fraction 1� y, transverse momentum
�k?, and helicity 	B. The model assumes that the lifetime
of a virtual baryon-meson Fock state is much longer than
the interaction time in the deep inelastic or Drell-Yan
process, thus scattering from the virtual baryon-meson
Fock states can contribute to the observed structure func-
tions of the nucleon, as shown in Fig. 1.
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The contribution to the nucleon tensor W�� from pro-
cesses such as that in Fig. 1, where the virtual photon
interacts with a component of the cloud (such as a �
meson), is given by

�W�� �
Z d3pB
�2��3

mM

mB

X
	;	0
jJNMBj2WM

���k; sM; q�; (9)

where sM is the meson spin vector (normalized to s2
M �

�m2
M), and JNMB�pN; k; pB; sN; sM; sB� is the meson propa-

gator multiplied by the NMB vertex. The meson tensor
here is defined by

WM
���k; sM; q� �

1

2�

X
X

�2��4�4�k� q� pX�hk; sMjJ�jXi

� hXjJ�jk; sMi: (10)

As first shown by Sullivan [37], the meson contribution to
the nucleon tensor is expressed in terms of the meson
tensor and the nucleon-meson-baryon vertex, and this leads
to the contribution being expressed as a convolution be-
tween the meson tensor and the probability distribution for
finding the meson in the cloud with momentum fraction y,
e.g.

�FN2 �x� �
Z 1

x
dyf�N=N�y�F

�
2

�
x
y

�
(11)

gives the contribution to the nucleon structure function F2

arising from the virtual photon interacting with the �
meson from the N ! N� part of the meson cloud.

Baryon or meson components of the cloud with spin �
1=2 will contribute directly to the antisymmetric part of the
nucleon tensor. We consider three cases of interest.

A. Spin 1=2 baryons

A spin 1=2 baryon in the cloud, such as a nucleon or a �,
has the antisymmetric part of its tensor similar to Eq. (4),
with the nucleon mass, momentum, and spin vector re-
placed by mB, k (the baryon four momentum), and sB,
respectively. Multiplying by the projection operator ~P�� �
�mN=mB�P

��, where P�� is given in Eq. (5), gives

~P��W�1=2�A
�� �k; sB; q� �

mN

mB
	A1gB1 �k; q� � A2gB2 �k; q�
;

(12)

where we have the coefficients

A1 �
1

pN � qk � q
�sN � qsB � q� q

2sN � sB�; (13)

A2 �
q2

pN � q�k � q�2
�sN � ksB � q� k � qsN � sB� (14)

and the structure functions gBi are those for the spin 1=2
baryon. In what follows we will use time-ordered pertur-
bation theory (TOPT), which has the advantage that all the
094008
baryon and meson structure functions that are required are
those for on-shell hadrons. We can now write the contri-
butions of the spin 1=2 baryon to the observed nucleon
structure functions as convolutions [33]

m2
Nq

2 � �sN � q�
2

�pN � q�2
�g1�x� � �2�g2�x�

�
Z ymax

x

dy
y

�
B1�y�g

B
1

�
x
y
;Q2

�
� B2�y�g

B
2

�
x
y
;Q2

��
;

(15)

where ymax is the maximum allowable value of the mo-
mentum fraction y � k � q=pN � q, which is usually 1, and
the baryon momentum distributions are

B1;2�y� �
Z �k2

?
�max

0
d ~k2
?

Z 2�

0
d

j ~pNj

�2��3
y
@y0

@y

X
	B;	M

jJNBMj
2A1;2:

(16)

Here y0 is the longitudinal momentum fraction

~k � ~k? � y
0 ~pN (17)

which, in the infinite momentum frame (j ~pNj ! 1), is
related to y by

y0 �
y

1�
���������������
1� �2

p �
1�

��������������������������������������������
1�

�2

y2m2
N

� ~k2
? �m2

B�

s �
: (18)

Most previous calculations of structure functions in the
MCM have not taken into account the difference between
the light-cone momentum fraction y and the longitudinal
momentum fraction y0, as these are the same in the Bjorken
limit. However, at finiteQ2 the difference is not negligible.

The maximum transverse momentum squared is

�k2
?�max �

m2
N

�2 �1�
���������������
1� �2

q
��1� 2y�

���������������
1� �2

q
� �m2

B

! Q2 1� y

x2 �m2
B � m2

N; (19)

which at small x is much larger than any momentum cutoff
that is required for the vertex, so �k2

?�max may safely be
taken to infinity.

From Eq. (15) we see that the nucleon structure func-
tions pick up contributions from both gB1 and gB2 of the
baryon in the cloud. This occurs because the spin vector of
the cloud baryon s�B is not parallel to the initial nucleon
spin vector s�N . So if the initial nucleon is longitudinally
polarized, the baryon in the cloud will have both longitu-
dinal and transverse spin components, and hence gB2 will
give a finite contribution to gN1 . Similarly gN2 will get a
contribution from gB1 . As the bare gN2 structure functions
are expected to be small, this kinematic contribution from
the baryon-meson cloud could be a major portion of these
structure functions.
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Following Ref. [33] we write Eq. (15) in terms of the
nucleon and baryon helicities, 	N and 	B, and the nucleon
transverse spin vector s>N�
	2
N �
js>N j

2

m2
N

�2

�
�g1�x� � �

2�g2�x�

�
X
	B

	B
Z ym

x

dy
y

��
	2
Nf1L�y� �

js>N j
2

m2
N

f1T�y�
�
gB1

�
x
y
;Q2

�

�

�
	2
Nf2L�y� �

js>N j
2

m2
N

f2T�y�
�
gB2

�
x
y
;Q2

��
; (20)

where the momentum distributions f1;2L;T�y� are similar
(up to signs) to those given in Eqs. (2.25–2.28) of Ref. [33]
with mV and 	V replaced by mB and 	B, respectively. We
give these expressions in Appendix A below.

By combining the longitudinal 	N � 1�js>N j=mN �
N � 0� with the transverse 	N � 0�N � 1� amplitude
in Eq. (20), and defining the functions

�f1
1;2L;T�y� � f	��1

1;2L;T�y� � f
	��1
1;2L;T�y�; (21)

we can obtain the separate contributions to the nucleon g1

and g2 structure functions:

�g1�x;Q2� �
1

1� �2

Z 1

x

dy
y

X
i�1;2

	�f1
iL�y�

� �f1
iT�y�
g

B
i

�
x
y
;Q2

�
(22)

�g2�x;Q2� � �
1

1� �2

Z 1

x

dy
y

X
i�1;2

�
�f1

iL�y�

�
�f1

iT�y�

�2

�
gBi

�
x
y
;Q2

�
: (23)
B. Spin 1 mesons

The analysis for spin 1 mesons exactly follows that
above for spin 1=2 baryons, and was given by Kumano
and Miyama [33]. The reason for this is that the most
general form of the antisymmetric part of the meson tensor
is the same for spin 1 mesons as for spin 1=2 baryons [39].
Hence, the results of the previous subsection can be di-
rectly translated to the vector meson case, simply by
replacing mB and 	B by mM and 	M, respectively, and
replacing the baryon structure functions by meson struc-
ture functions.

Interestingly, the symmetric part of the meson tensor for
spin 1 mesons contains two additional terms, which are
both proportional to the structure function bM1 �x� at leading
twist (via a generalized Callan-Gross relation). This would
lead to a contribution to the nucleon structure function
F2�x� coming from (for example) b�1 , though it is expected
that this will be rather small compared to the dominant
094008
MCM contribution coming from the pions in the cloud via
F�2 .

C. Spin 3=2 baryons

The number of independent Lorentz invariant structure
functions for a spin J hadron increases approximately
linearly with J. If AJhH;h0H0 are the imaginary part of the
forward Compton helicity amplitudes for �h � hadronJH !
�h0 � hadronJH0 , it can be seen that there are 6J� 2 (6J�
1) independent amplitudes for J-integer (half-integer) sat-
isfying P and T invariance and helicity conservation. Of
these, 2J (2J� 1) amplitudes contribute to spin dependent
scattering. Thus, the general expression for the antisym-
metric part of the hadronic tensor for a particle of spin J is
[39]

WA
�� �

X2J
L�1;3...

i
J
Lg1

�L
�����1��1�2...�L

q�q
�2 � � � q�L

�
X2J

L�1;3...

i
J
Lg2

�L�1 �
����p	�1

��
�2...�L
q�q

�1 � � � q�L:

(24)

In this expression ��1�2...�L is a completely symmetric,
traceless pseudotensor. It can be thought of as a general-
ized Pauli-Lubanski spin vector. For spin 1=2 and spin 1
only �� is nonvanishing, and it is proportional to the usual
spin vector s�. The structure functions J

Lg1;2 are general-
izations of the usual spin dependent structure functions. At
leading twist we have

J
Lg1 �

XJ
H��J

hJ;H; J;�HjL; 0iqJH"
J
Lg2 � 0; (25)

and for J � 3=2 in particular

3=2
1 g1 �

1������
20
p �3q�3=2��3=2�

" � 3q�3=2��3=2�
# � q�3=2��1=2�

"

� q�3=2��1=2�
# �

3=2
3 g1 �

1������
20
p �q�3=2��3=2�

" � q�3=2��3=2�
# � 3q�3=2��1=2�

"

� 3q�3=2��1=2�
# �:

(26)

The polarization vectors for a spin 3=2 particle have a
spinor nature [40] which slightly complicates the expres-
sion for the Pauli-Lubanski vector

s�
�

3
2; 	

�
� 3

2i�
��� Tr	 �E��	�E��	�
p; (27)

where 	 can take the values 1=2, 3=2, and the trace is
taken over spinor indices. We have the normalization s2 �
�	2M2.

As in the spin 1=2 and spin 1 cases, we can take �� /
s�. We also require ���� in the spin 3=2 case. We take the
-4
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traceless combination of symmetric pseudotensors

���� /
1

	2 s
�s�s� � S�s�p�p��; (28)

where S symmetrizes over the Lorentz indices. After some
work we obtain

WA
�� � i�����q�

�
s�

�

�
2���
5
p 3=2

1 g1 �
2!2

2
���
5
p 3=2

3 g1

�

�
4

3
���
5
p

p�s � q

�2
3=2
3 g1 �

�
s�

�
�
p�s � q

�2

�

�

�
2���
5
p 3=2

1 g2 �
2!2

2
���
5
p 3=2

3 g1

��
; (29)

where

!2 � 1�
�s � q�2

	2�2 (30)

which goes to 2 in the Bjorken limit.
We can now follow the same steps as for spin 1=2 and

spin 1 hadrons to obtain the MCM contributions to the spin
dependent structure functions of the nucleon. In this case
the generalizations of the coefficients Ai and Bi above
depend on the helicity of the struck baryon, so it is useful
to rewrite the spin 3=2 structure functions as gJHi which
depend only on one helicity state. We have

g�3=2��3=2�
i �

3

2
���
5
p 3=2

1 gi �
1

2
���
5
p 3=2

3 gi

g�3=2��1=2�
i �

1

2
���
5
p 3=2

1 gi �
3

2
���
5
p 3=2

3 gi:

(31)

This gives

~P��W�3=2�A
�� �k; sB; 	; q� �

mN

mB
	A3=2

1 g�3=2��3=2�
1 �k; q�

� A1=2
1 g�3=2��1=2�

1 �k; q�

� A3=2
2 g�3=2��3=2�

2 �k; q�

� A1=2
2 g�3=2��1=2�

2 �k; q�
; (32)

where the coefficients are linear combinations of A1 and A2

from Eq. (14)

A3=2
1 �

14� 2!2

15
A1�

4

15
A2 A1=2

1 �
6� 2!2

5
A1�

4

5
A2

A3=2
2 �

18� 2!2

15
A2 A1=2

2 �
2� 2!2

15
A2 (33)

and

!2 � 1�
�

1�
m2
H

yy0m2
N

�1�
���������������
1� �2

q
�

�
2
: (34)

Now doing the required integrations (details can be found
in Appendix A), we end up with a result similar to Eq. (23):
094008
�g1�x;Q
2� �

1

1� �2

Z 1

x

dy
y

X
i�1;2

X
h�1=2;3=2

	�f�3=2�h
iL �y�

� �f�3=2�h
iT �y�
g3=2h

i

�
x
y
;Q2

�
(35)

�g2�x;Q
2� � �

1

1� �2

Z 1

x

dy
y

X
i�1;2

X
h�1=2;3=2

�
�f�3=2�h

iL �y�

�
�f�3=2�h

iT �y�

�2

�
g�3=2�h
i

�
x
y
;Q2

�
: (36)
III. INTERFERENCE CONTRIBUTIONS

In polarized DIS, we can consider the possibility of
interference terms between intermediate states containing
different hadrons. This possibility is allowed in polarized
DIS as the observed spin dependent structure functions do
not contribute to the total ��N cross section, but only to
�� � �3=2 � �1=2 or, equivalently, to �I the cross section
associated with interference between transverse and longi-
tudinal polarizations of the virtual photon [36]. Previous
authors have considered interference between � and �
mesons [32,41], � and � mesons [42], K and K� mesons
[43], and N and � baryons [30,34,44]. We show an ex-
ample of an interference term in Fig. 2.

The interference terms between mesons of different
helicity are particularly interesting as they appear to offer
a mechanism whereby angular momentum in the cloud can
be directly coupled to quarks, possibly giving rise to large
sea quark polarizations [41]. However, care needs to be
taken over which interference terms can actually contribute
to the observed structure functions. Let ~AhH;h0H� be the
imaginary part of the forward helicity amplitude for the
interference term �h � hadron1H ! �h0 � hadron2H� . In
the Bjorken limit quark helicity is conserved, which im-
plies that the only amplitudes that contribute to �� are in
the combinations � ~A1H;1H��H � ~A�1H;�1H��H�. Also the
generalization of the Callen-Gross relation gives
~A0H;0H��H ! 0. These two results imply that for (pseudo)-
scalar mesons interfering with (pseudo)vector mesons only
combinations of amplitudes � ~A10;10� � ~A�10;�10� � can con-
tribute to the structure function. However, this combination
-5
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will be zero by parity invariance, meaning that interference
between mesons cannot contribute to the leading twist
structure functions. Amplitudes like ~A10;0H��1 can contrib-
ute to the interference cross section �I between transverse
and longitudinal photon polarizations at higher twist.

In the case of interference between N and � baryons,
this contribution involves the combination of amplitudes
� ~A1�1=2�;1H��1=2 � ~A�1�1=2�;�1H��1=2� which need not
vanish.

We can write the contribution of interference terms to
the nucleon tensor W��, where the two particles that
interfere are labeled X and Y and the spectator hadron is
labeled by S:

�WXY
���pN;sN;q��

Z d3ps
�2��3

2
�������������
mXmY
p

mS

ES

�
X

	X;	Y;	S

	JNXSJ�NYSW
X!Y
�� �kX;sX;kY;sY;q

�JNXSJ
�
NYSW

Y!X
�� �kY;sY;kX;sX;q�
;

(37)

where the interference tensor is given by

WX!Y
�� �kX; sX; kY; sY; q� �

1

4�
�������������
mXmY
p

X
X0;Y0

�4�p2
X0 �m

2
X0 �

� �4�p2
Y0 �m

2
Y0 �hkX; sXjJ�jX

0i

� hY0jJy� jkY; sYi: (38)

We see that the interference tensors in Eq. (37) are related
by

WY!X
�� �kY; sY; kX; sX; q� � 	WX!Y

�� �kX; sX; kY; sY; q�
�:

(39)

This enables us to write the contribution to the nucleon
tensor as

�WXY
���pN; sN; q� �

Z d3ps
�2��3

2
�������������
mXmY
p

mS

ES

�
X

	X;	Y ;	S

2R	JNXSJ�NYS


�WX!Y
�� �kX; sX; kY; sY; q�: (40)

In TOPT, the 3-vectors of the interfering particles ~kX;Y will
be identical, however their energies are not, as both parti-
cles are on-shell. We introduce two momentum fractions

yX;Y �
kX;Y � q
pN � q

; (41)

noting that the longitudinal momentum fraction y0 is the
same for both hadrons. If we define

k� � 1
2�k

�
X � k

�
Y �; �k� � 1

2�k
�
X � k

�
Y � (42)
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y � 1
2�yX � yY�; �y � 1

2�yX � yY� (43)

s� � 1
2�s

�
X � s

�
Y �; �s� � 1

2�s
�
X � s

�
Y �; (44)

then in the Bjorken limit we have �k! 0, �y! 0, and
�s! 0.

We can now write the most general form of the anti-
symmetric tensor for the interference term

�W�A�XY�� � i�����q
�
�
s�

k � q
gXY1 �

�
s�

k � q
�

s � q

�k � q�2
k�
�
gXY2

�
�s�

k � q
~gXY1 �

s � q

�k � q�2
�k�~gXY2

�

� i
~k�X ~k�Y � ~k�X ~k�Y

2k � q
~aXY1 � i

~s�X~s�Y � ~s�X~s�Y
2k � q

~aXY2 ;

(45)

where we denote ~v� � �v� � u � qq�=q2� for any four
vector v. This includes four possible new interference
‘‘structure functions.’’ All of these new terms arise from
our use of TOPT, and would vanish in a covariant formu-
lation. However, the price to be paid in the covariant
formulation is that we would have to use structure func-
tions of off-shell hadrons, which are difficult to define and
measure. As �k � 	�m2

Y �m
2
X�=�4y

0p�; ~0
 and �s �
	f0; 	�m2

Y �m
2
X�=�4�y

0p�2�
 ~k?; �m
2
Y �m

2
X�=�4y

0p�g, the
contributions from ~gXY1;2 will be kinematically suppressed,
and look like higher twist corrections to the observed g1

and g2.
The two structure functions ~aXY1 and ~aXY2 involve anti-

symmetric combinations of hadron four vectors and are
independent of polarization. These terms do not give any
contribution to the nucleon structure functions because
when the projector ~P�� is applied to them we obtain a
coefficient AXYi which is proportional to sin
. Integration
over 
 then results in these terms being zero. This agrees
with our earlier observation that interference involving
(pseudo) scalar mesons and (pseudo) vector or scalar me-
sons does not contribute at leading twist, as this violates
parity invariance.

In a similar fashion to our procedure in the previous
section, we multiply the antisymmetric interference tensor
by the projector ~P�� � �mN=

�������������
mXmY
p

�P��, which gives

~P���W�A�XY�� �
mN�������������
mXmY
p 	AXY1 gXY1 �

~AXY1 ~gXY1

� AXY2 gXY2 �
~AXY2 ~gXY2 
; (46)

where

AXY1 �
1

pN � qk � q
�sN � qs � q� q2sN � s� (47)

~A XY
1 �

1

pN � qk � q
�sN � q�s � q� q2sN � �s� (48)
-6



SPIN DEPENDENT STRUCTURE FUNCTIONS OF THE NUCLEON PHYSICAL REVIEW D 73, 094008 (2006)
AXY2 �
q2

pN � q�k � q�2
�sN � ks � q� k � qsN � s� (49)

~A XY
2 �

s � q

pN � q�k � q�
2 �sN � q�k � q� q

2sN � �k�: (50)

We observe that AXY1 and AXY2 are the same (up to mass
factors) as the coefficients given in Eqs. (13) and (14) for
spin 1=2 baryons in the cloud. For the other two coeffi-
cients, we find

~A XY
1 � 		N

m2
X �m

2
Y

4yy0m2
N

�1�
���������������
1� �2

q
� (51)

~AXY
2 � � ~AXY1

�
1�

m2
X �m

2
Y

yy0m2
N

�1�
���������������
1� �2

q
�

�
; (52)

which both vanish in the Bjorken limit.
In the expression for the interference tensor [Eq. (40)]

we can write the part of the integrand that depends on the
vertices as a sum of polarization independent plus longi-
tudinal and transverse terms

2
�������������
mXmY
p

mS

�2��3ES

X
	S

2R	JNXSJ�NYS


� C	0 �
� � 	NC
	
L�
� � NC

	
T�
�; (53)

where 
 is the angle between k? and ~s>N , N � j ~s>N j=mN

and 	 labels the helicity of the struck hadron. If we con-
sider the case of interference between a pion and a rho with
helicity 1, we find that C0 is zero while CL and CT are
not. When combined with the appropriate AXYi coefficients
and integrated over 
, we find that these contributions are
zero. Hence, there are no contributions to the interference
tensor from interference between � and � mesons. Similar
conclusions can also be drawn about any contributions
from interference between K and K� mesons.
Interference between N and � baryons also appears to be
suppressed. We find that when the spectator meson is a
pion the coefficients C0, CL, and CT are nonzero, however
their angular dependence is proportional to terms like
cos
, sin
, or cos2
, all of which again integrate to
zero when combined with the appropriate coefficients.
Details of this calculation are in Appendix B below. In
the case of the spectator meson being a � meson the
coefficients are very difficult to calculate because of the
complicated gamma structure of the two vertices.
However, this contribution is already greatly suppressed
because of the small probability of the j��i state. Thus
interference contributions to the polarized structure func-
tions are mostly zero or very small in the meson cloud
model, and we shall henceforth neglect them.

Our conclusions regarding the contributions of interfer-
ence terms are different from those of earlier authors who
considered these terms [30,32,34,41–44]. These earlier
works generally calculated interference terms by consid-
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ering separately JNXS and JNYS as given in Appendix B of
Ref. [29], or similar, which are worked out from consider-
ing the direct processes. However, it appears that these
calculations of the vertex factors have not followed the
same, or consistent, phase conventions when considering
different vertices. This is not important when considering
direct processes, as all terms are proportional to jJj2, but
for interference terms involving JNXSJ�NYS, any change in
relative phase between the two vertices renders the calcu-
lation meaningless. In this work we have not calculated the
two vertices separately, but considered the complete inter-
ference process. The advantage of this is that the two
amplitudes for the processes XS! YS and YS! XS
must be added. As these two amplitudes are conjugate,
the result must be real, which gives a check that the phase
factors have been correctly accounted for. More details are
given in Appendix B.

IV. SPIN DEPENDENT MOMENTUM
DISTRIBUTIONS OF MESONS AND BARYONS IN

THE CLOUD

We now turn to the calculation of the various momentum
distributions �f�y� of the components of the cloud. In
general, these distributions are of the form (up to kinematic
factors given in the previous section and Appendix A)

�fBM �
Z �k2

?
�m

0
dk2
?J

	1	2
NBM�y; k

2
?��J

	1	2
NBM�y; k

2
?��
y: (54)

In this case JNBM is the nucleon-baryon-meson vertex
function multiplied by the propagator of the struck com-
ponent of the cloud, i.e.

J	1	2
NBM /

V� ~p; "; ~k; 	1; ~p0; 	2�

EN � EM � EB
; (55)

which is the amplitude that a nucleon with momentum ~p
and helicity �1=2 is found in a meson cloud Fock state
where the struck hadron has momentum ~k and helicity 	1

and the spectator hadron has momentum ~p0 and helicity 	2.
Note that we have explicitly used TOPT to write the
propagator of the struck particle being proportional to the
energy denominator in this expression.

In the infinite momentum frame (IMF), p � j ~pj ! 1,
Drell, Levy, and Yan [45] (building on earlier work by
Weinberg [46]) showed that contributions from Fock states
containing antiparticles vanish and also that only the con-
tributions with forward moving (y � 0) particles contrib-
ute. As we saw earlier, all relevant momenta can be
expressed in terms of y, which we take as the longitudinal
momentum proportion carried by the meson, and ~k?. The
amplitude is now proportional to

V	1	2
IMF �y; k

2
?�

m2
N �M

2
BM�y; k

2
?�
; (56)

where
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TABLE I. Strong coupling constants used in this work.

g2
NN�
4�

f2
N��

4�2

g2
NN�

4� fNN�
f2
N��

4�

13.6 12:3 GeV�2 0.84 6:1gNN� 20:45 GeV�2

F. BISSEY, FU-GUANG CAO, AND A. I. SIGNAL PHYSICAL REVIEW D 73, 094008 (2006)
M2
BM�y; k

2
?� �

m2
M � k

2
?

y
�
m2
B � k

2
?

1� y
(57)

is the invariant mass squared of the Fock state.
Using TOPT guarantees that, for a given jBMi compo-

nent of the cloud, the probability of finding the meson M
with longitudinal momentum fraction y is equal to that of
finding the baryon B with longitudinal momentum fraction
1� y. This is not necessarily true in a covariant approach
[29], which leads to nonconservation of charge and mo-
mentum. However, a problem arises in TOPT when the
vertex contains derivative coupling between fields [e.g. the
usual pseudovector �NN vertex contains a term propor-
tional to � ����@��� � @���� where  is the nucleon
field and � is the vector field], as these terms introduce off-
shell dependence into the vertex function which is not
suppressed in the IMF. This leads to two possible choices
for the meson energy: (i) the on-shell meson energy EM ��������������������
m2
M � k

2
q

, or (ii) the off-shell meson energy, i.e. the
difference between baryon energies EN � EB. While the
second choice may be more ‘‘natural‘‘ in that the vertex
structure is only due to baryonic currents [47,48], the first
appears more compatible with TOPT in that the meson
remains on-shell. In practice a number of authors [31,33]
have used both prescriptions, and treated them as two
different models.

We can gain some insight into the choice of meson
energy if we recall that TOPT in the IMF is equivalent to
light-cone perturbation theory (LCPT) [45,49,50]. In
LCPT it is important to be aware of the light-cone singu-
larities in the particle propagators. For spin-zero particles
the Klein-Gordon propagator (in light-cone coordinates) is
[49]

�F�x� �
�i

�2��3
Z
d2p?

Z 1
0

dp�

2p�
	��x��e�ip�x

����x��eip�x
: (58)

The singularity at p� � 0 does not affect the light-cone
behavior of the propagator, which is governed by the light-
cone discontinuities ��x��. For particles of higher spin,
the propagators all pick up terms proportional to

��x��
1

�2��3
Z
d2p?

Z 1
�1

dp�

2p�
exp	�i�p�x�� ~p? � ~x?�


(59)

in addition to the terms proportional to ��x��. The term
proportional to ��x�� is an instantaneous part of the propa-
gator. This term can be absorbed into the regular propa-
gator by replacing in the numerator of the diagrams in
which the particle propagates over a single time interval,
the momentum p associated with the line by

~p �
�
p�;

X
inc

p� �
X
int

0p�; ~p?

�
; (60)
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where
P

inc sums over all the initial particles in the diagram
and

P0
int

sums over all the particles in the intermediate state

except the particle of interest [50]. Returning to TOPT in
the IMF, we see that this is equivalent to choice (ii) for the
meson energy, for nonscalar mesons. For spin-zero mesons
there are no terms corresponding to instantaneous propa-
gation (in light-cone coordinates), and the propagator is not
adjusted. Hence for scalar and pseudoscalar mesons the
correct meson energy is choice (i), i.e. the mesons are
always treated as on-shell.

The vertex function V		
0

IMF�y; k
2
?� is calculated from the

effective interaction Lagrangians (see Appendix B) which
are usually employed in the meson exchange models [51].
Phenomenological vertex form factors GBM�y; k2

?� are also
introduced into Eq. (55) to describe the unknown dynamics
of the fluctuation N ! BM arising from the extended
structure of hadrons. We use the exponential form factor

GBM�y; k
2
?� � exp

�
m2
N �mBM�y; k

2
?�

2�2
BM

�
; (61)

with �BM being a cutoff parameter, which is well defined
in the model and provides a cutoff in both t and u (the four
momentum squared of the intermediate baryon). The form
factor satisfies the relation GBM�y; k2

?� � GMB�1� y; k2
?�.

Using form factors introduces new parameters f�BMg into
any calculation using the MCM, with each Fock state
having (in principle) its own cutoff. However, the Jülich
group [29] and Zoller [52] used high-energy particle pro-
duction data to determine all the �BM of interest, and found
that the data could be described by two parameters: �1 for
octet baryons and pseudoscalar and vector mesons, and �2

for decuplet baryons. The upper limits for these two pa-
rameters were determined to be about 1 GeV, which is
fairly soft, and gives the probability of all Fock states
totalling about 40%. Melnitchouk, Speth, and Thomas
[28] found a good fit to both the violation of the
Gottfried sum rule [24] and the observed ratio of
�d�x�= �u�x� from the E866 experiment [25] using values
�1 � 0:80 GeV and �2 � 1:00 GeV, and we shall use
these values of the cutoffs in this work.

The Fock states we consider are jN�i, jN�i, j��i, and
j��i. The coupling constants and probabilities for each of
these states in the nucleon wave function are shown in
Tables I and II. The effect of increasing one or both cutoffs
is to increase the probability for the states controlled by the
cutoff, and correspondingly decrease the probability of
finding the bare nucleon. Also the probability for higher
mass Fock states increases faster with the cutoff than the
-8
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FIG. 3. Fluctuation functions for N ! N� with N being
struck. The thick solid and dashed curves are for �f1L and
�f2L, respectively. The thin solid and dashed curves stand for
10�f1T and 100�f2T , respectively.
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FIG. 4. Fluctuation functions for N ! �� with � being
struck. The thick solid and dashed curves are for �f1L and
�f2L, respectively. The thin solid and dashed curves stand for
10�f1T and 100�f2T , respectively. �f1�2�L�T� � �f�3=2��1=2�

1�2�L�T� �

3�f�3=2��3=2�
1�2�L�T� .
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FIG. 5. Fluctuation functions for N ! N� with N being
struck. The thick solid and dashed curves are for �f1L and
�f2L, respectively. The thin solid and dashed curves stand for
10�f1T and 100�f2T , respectively.

TABLE II. Meson cloud model cutoff parameters and proba-
bilities. Z is the wave function renormalization Z �
�1�

P
BMPBM�

�1. In this paper we have used �1 � 0:8 GeV
and �2 � 1:0 GeV. We also display the probabilities obtained
using the cutoffs of the Jülich group [29].

�1 (GeV) �2 (GeV) PN� P�� PN� P�� Z

0.8 1.0 0.132 0.118 0.015 0.025 0.775
1.0 1.0 0.252 0.118 0.106 0.025 0.666
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probability for lower mass states, so increasing e.g. �1

increases the ratio of jN�i states to jN�i states. The
contributions from Fock states involving higher invariant
mass squared are very small, at most a few percent of the
contributions from the states we consider here. In Figs. 3–8
we show the fluctuation functions fNBM�y� for each of the
Fock states. In each of these calculations we take x � 0:2
and Q2 � 2:5 GeV2, i.e. �2 � 0:056. In general, we see
that the longitudinal functions �f1L;2L are much larger that
the transverse functions �f1T;2T . This means that the con-
tributions to g1 of the nucleon coming from g2 of the struck
hadron will be small, whereas the kinematic contributions
to g2 of the nucleon from g1 of the struck hadron should not
be ignored as they will generally be larger than the con-
tributions coming from g2 of the Fock state hadrons. We
0.2 0.4 0.6 0.8 1
y

0

0.005

0.01

0.015

0.02

∆
f ρN

FIG. 6. Fluctuation functions for N ! N� with � being struck.
The thick solid and dashed curves are for �f1L and �f2L,
respectively. The thin solid and dashed curves stand for
10�f1T and 100�f2T , respectively.
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FIG. 7. Fluctuation functions for N ! �� with � being
struck. The thick solid and dashed curves are for �f1L and
�f2L, respectively. The thin solid and dashed curves stand for
10�f1T and 100�f2T , respectively. �f1�2�L�T� � �f�3=2��1=2�

1�2�L�T� �

3�f�3=2��3=2�
1�2�L�T� .
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also observe that the fluctuation functions arising from
j��i states are generally much larger than those of the
other Fock states we consider. Amplitudes with the �
having s � 3=2 are particularly important. We therefore
expect that the j��i fluctuation will play a very important
role in the MCM contributions to the spin structure func-
tions. Fluctuation functions involving �mesons should not
be neglected either, as these are of similar size to the jN�i
fluctuation functions.
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FIG. 8. Fluctuation functions for N ! �� with � being struck.
The thick solid and dashed curves are for �f1L and �f2L,
respectively. The thin solid and dashed curves stand for
10�f1T and 100�f2T , respectively. �f1�2�L�T� � �f�3=2��1=2�

1�2�L�T� �

3�f�3=2��3=2�
1�2�L�T� .
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V. POLARIZED STRUCTURE FUNCTIONS OF
BARE HADRONS

To use the meson cloud model, we need to know the
polarized structure functions of all the baryons and mesons
in the Fock expansion of the nucleon wave function. At
present the only polarized structure functions that are
known experimentally are those of the proton and neutron
(apart from the trivial case of the pseudoscalar or scalar
mesons). It would appear unlikely that the structure func-
tions of the � mesons and the � baryons, which are the
most important polarized cloud constituents, will be mea-
sured in the near future. Our approach therefore is to
estimate all the structure functions we require, including
those of the nucleons, using the MIT bag model [53,54]
and the methods developed by the Adelaide group [30,55]
and ourselves [34,56]. This approach gives a reasonable
description of the unpolarized structure functions of the
nucleons when compared to experimental data.

In the bag model the dominant contributions to the
parton distribution functions of a hadron in the medium-x
range come from intermediate states with the lowest num-
ber of quarks, so the intermediate states we consider con-
tain one quark (or antiquark) for the mesons and two
quarks for the baryons. Following [55] we can write these
contributions as

q"#h;f�x� �
Mh

�2��3
X
m

h�jPf;mj�i
Z
dpn
j
i�pn�j2

j
j�0�j2

� ��Mh�1� x� � p
�
n �j ~�

"#
�;f�pn�j

2; (62)

where Mh is the hadron mass, ‘‘�’’ components of mo-
menta are defined by p� � p0 � p3, and pn is the 3-
momentum of the intermediate state. ~� is the Fourier
transform of the MIT bag ground state wave function
��r�, and 
m�p� is the Fourier transform of the Hill-
Wheeler overlap function between m-quark bag states:

j
m�p�j2 �
Z
dRe�ip�R

�Z
dr�y�r�R���r�

�
m
: (63)

In Eq. (62) we take i � 1, j � 2 for the mesons and i � 2,
j � 3 for the baryons. The matrix element h�jPf;	j�i
appearing in Eq. (62) is the matrix element of the projec-
tion operator Pf;m onto the required flavor f and helicity 	
for the SU(6) spin-flavor wave function j�i of the hadron
under consideration.

The input parameters in the bag model calculations are
the bag radius R, the mass of the quark (antiquark) mq for
which the parton distribution is calculated, the mass of the
intermediate state mn, and the bag scale �2 —at this scale
the model is taken as a good approximation to the valence
structure of the hadron. The natural scale for the model is
set by the typical quark k?, which is around 0.4 GeV. In
Table III we list the values for these parameters adopted in
this work. These values have previously been shown to
give a good description of the unpolarized nucleon parton
-10



TABLE III. Input parameters for the bag model calculation of
bare structure functions.

R (fm) mq (MeV) mn (MeV) �2 (GeV2)

N 0.8 0 800 0.23
� 0.7 0 425 0.23

0 0.2 0.4 0.6 0.8 1
x

-0.02
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x 
g 1

FIG. 9. ‘‘Bare’’ structure functions xg1�x� of the nucleons,
delta baryons and � meson at Q2 � 2:5 GeV2. The thick solid
and dashed lines are for the proton and neutron, respectively. The
thin solid line is for the �� baryon and the thin dashed line is for
the � meson.
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distributions [30] and also of the meson distributions [34].
After calculating the hadron structure functions at the bag
scale �2, we evolve them using next-to-leading order
(NLO) evolution [57] to the scale ofQ2 � 2:5 GeV2 where
the HERMES results for gp1 [4] and gn1 [6] are available.
While NLO evolution from the bag scale appears stable, it
would be of interest to compare with next-to-next-to-
leading order (NNLO) evolution, as it is known that LO
evolution does not give very good results for this procedure
[58]. Unfortunately, the necessary NNLO coefficient func-
tions and anomalous dimensions for spin dependent struc-
ture functions and parton distributions have not all been
calculated at this time.

The calculated polarized structure functions gp1 �x� and
gn1�x� agree reasonably well with experimental data at
medium and large x, however they do not give a good
description of the low x data (see the thin solid curves in
Figs. 11 and 12). This discrepancy may well arise because
our bag model calculations cannot estimate the polarized
gluon distribution �g�x�, which is believed to play an
important role in the observed spin of the nucleons [59].
We can add a phenomenological �g�x�,

�g�x� � Ng�1� x�
�; (64)

to our calculated structure functions, where global analyses
of polarized deep inelastic scattering data suggest � should
be in the range of 7–10 [60]. In this work we use a value of
� � 10, however we have found that the calculated struc-
ture functions are not very sensitive to the value of �. We
normalize the polarized gluon distribution so that the con-
tribution of polarized gluons to the first moment of gp1
(Ellis-Jaffe sum rule) and gn1 is �0:05, which gives theo-
retical moments that are in agreement with experiment.
The structure functions g1 for the bare proton, neutron, ��

and � are given in Fig. 9. We have not taken account of any
possible topological contributions to the singlet axial
charge g�0�A , which can also contribute to g1�x� at x � 0
[61]. As our procedure gives a reasonable description of
the observed gp1 �x� and gn1�x�, especially once MCM con-
tributions have been added (see below), there appears little
need to add an extra phenomenological term to the bare
structure functions.

The structure functions g2 for the bare hadrons are
estimated via the Wandzura-Wilczek relation [62] which
is obtained by considering only twist-2 contributions to g1

and g2,
094008
gWW2 �x;Q2� � �g1�x;Q2� �
Z 1

x

dy
y
g1�y;Q2�: (65)

We also note that previous bag model studies of g2�x�
[14,15,56] accord reasonably well with the experimental
data.

VI. NUMERICAL RESULTS AND DISCUSSIONS

We show our results for the MCM contributions to gp1 �x�
and gp2 �x� at Q2 � 2:5 GeV2 in Fig. 10. As expected, the
dominant contributions to gp1 are the longitudinal contri-
butions of the form �fiL � gi, while the transverse con-
tributions are fairly small at this scale. For gp2 the
transverse contributions are similar in size to the longitu-
dinal contributions, but tend to be opposite in sign, which
makes the overall MCM contribution to gp2 smaller than for
gp1 . We also show the contribution from the jN�i portion of
the MCM wave function. While important, it is clear that
taking into account only this part of the wave function does
not give a good indication of the total MCM contribution to
the spin dependent structure functions. The � baryon,
especially the s � 3=2 component, plays an important
role and should not be ignored.

In Figs. 11 and 12 we compare theoretical calculations
for gp1 and gn1 with recent experimental measurements from
HERMES Collaboration [4,6]. The calculation of gn1�x�
agrees very well with the data, but the agreement is less
impressive in the case of gp1 �x�, where the calculated
structure function is significantly smaller than the data
points in the region x > 0:3, and the peak of the calculated
structure function occurs near x � 0:3. As can be seen in
Fig. 11, the fit to the experimental data is considerably
improved by including both the polarized gluon distribu-
tion and meson cloud effects. It is known [30,63] that the
-11
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FIG. 10. Meson cloud model contributions to gp1 �x� and gp2 �x�
at Q2 � 2:5 GeV2. The thick lines are the total longitudinal
contributions to the structure functions. The thick dashed lines
are the total transverse contributions to the structure functions
[multiplied by 10 in the case of g1T�x�]. The thin lines show the
total contribution of the jN�i Fock state to the structure func-
tions [multiplied by 5 in the case of g2�x�].
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FIG. 12. As in Fig. 11 but for xgn1 . The HERMES data are
taken from [6].
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FIG. 11. Spin dependent structure functions xgp1 at Q2 �
2:5 GeV2. The thin solid curve is the bag model calculation.
The thick dashed curve is the bag model calculation plus con-
tributions from the polarized gluon. The thick solid curve is the
total result in the MCM calculations. The HERMES data are
taken from [4].
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meson cloud lowers the bag model calculation for gp1 over
the entire range of x since the angular momentum of the
meson cloud carries some of the spin of the nucleon.
However these calculations overestimate gp1 �x� in the re-
gion x < 0:1 and give results with much smaller magnitude
than the experimental data for gn1�x� in the region x < 0:2.
Including the polarized gluon distribution significantly
improves the fit to the experimental data. The importance
of these polarized gluon contributions is more obvious in
the calculation of the structure function gn1 . Without these
contributions our theoretical calculations are not able to
reproduce the shape of the experimental data. We note that
the magnitude of the polarized gluon distribution we use is
determined only by the Ellis-Jaffe sum rule, and we have
not attempted to change the shape of the distribution to
improve the agreement with the data. A harder polarized
gluon distribution would reduce gp1 even more at large x.
Another factor which affects the quality of our fit to the
data at large x is the difficulty the bag model calculation of
structure functions has in this region because of the non-
relativistic projection used to form momentum eigenstates
[55], which results in the calculated distributions being
systematically smaller than the data.

The values for the Ellis-Jaffe sum rule for the proton and
neutron are found to be 0.120 and �0:027, respectively,
which are close to the experimental values at this scale ofR

0:85
0:021 g

p
1 �x�dx � 0:122 0:003�stat:�  0:010�sys:� [4]

and �0:037 0:013�stat:�  0:005�sys:�  0:006�extrap:�
[6]. The Bjorken sum rule is found to be 0.147 which is
close to the experimental value, and can also be compared
with the theoretical value calculated to O��3

S� [64] of
0.173. This is consistent with the value of gA calculated
in the bag model being 10% smaller than the experimental
value. In this work, the structure functions have been
calculated by considering only the contributions from the
valence partons. In the MCM, the polarized antiquark
distributions � �u�x� and � �d�x� are found to be rather small
[34,65]. However, Pauli blocking effects [32,66] may be of
-12
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FIG. 13. Spin dependent structure functions xgp2 at Q2 �
2:5 GeV2. The thin solid curve is the bag model calculation.
The thick dashed curve is the bag model calculation plus con-
tributions from the polarized gluon. The thick solid curve is the
total result in the MCM calculations. The data are taken from
SLAC-E155 [9] and 0:8 GeV2 <Q2 < 8:2 GeV2.

TABLE IV. Comparison of our calculations with experiment
for the moments of the g2 structure functions, where Mn	g2
 �R

1
0 x

ng2�x�dx.

M2	g
p
2 
 � 103 M4	g

p
2 
 � 103 M6	g

p
2 
 � 103

This work �5:13 �1:14 �0:33
Experiment [9]�7:2 0:5 0:3

M2	g
n
2
 � 103 M4	g

n
2
 � 103 M6	g

n
2
 � 103

This work �0:564 �0:203 �0:067
Experiment [8] 3:3 6:5
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similar size in the polarized distributions as in the unpo-
larized distributions [28], and could contribute 5%–10% to
the observed value of the Bjorken sum rule.

Now we turn our attention to the calculations for the
structure functions g2�x�. The results are presented in
Figs. 13 and 14 for the proton and neutron, respectively,
along with experimental data from E99-177, E97-103, and
E155 Collaborations. The agreement between theoretical
calculations and experimental measurements for the proton
in the region 0:05< x< 0:7 is very good. The calculations
for gn2 are consistent with the recent precision measure-
ment at JLab for x ’ 0:2, although experimental informa-
tion on the x-dependence of gn2�x� is not conclusive due to
large error bars. Once again we find that including the
polarized gluon contribution is crucial to the calculations
for the region x < 0:2, especially for the calculation of
0 0.2 0.4 0.6 0.8
x
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0

0.01

0.02

xg
2n

FIG. 14. As in Fig. 11 but for xgn2 . The data are taken from
Jefferson Lab experiments [11,12] and 0:57 GeV2 <Q2 <
4:83 GeV2.
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gn2�x�. The cloud mesons can have a dramatic effect on
the calculations for the structure functions gp;n2 , especially
in the region 0:1< x< 0:4. For gn2 in the region of x� 0:1
the cloud contributions are comparable in magnitude with
the bare contributions.

The close agreement between our calculations and the
experiments implies that any twist three portion of g2�x� is
rather small. We note that experimental data from E155 [9]
is compatible, within 2 standard deviations, with there
being no twist three contribution to the structure functions.
If precision experiments at low values of Q2 also show no
firm evidence for twist three contributions to g2, this will
provide a new challenge for model builders, as it is ex-
pected that higher twist parts of the structure functions will
be of similar size to leading twist contributions at the
model scale [56]. We give our results for the first few
moments of gp2 and gn2 , along with the experimental esti-
mates of these moments in Table IV. The disagreement
between our value of the second moment of gp2 and that of
E155 is largely due to the data point at x � 0:78 which gets
a large weighting in the calculation of the moment.

VII. SUMMARY

We have used the meson cloud model to calculate the
spin dependent structure functions g1�x� and g2�x� of the
proton and neutron. An important part of this calculation is
the use of bare structure functions of the hadrons in the
model calculated in the MIT bag model, with the addition
of an extra polarized gluon term, which gives good agree-
ment with the observed value of the lowest moment of gp1
(Ellis-Jaffe sum rule).

We included in our calculations the full effects of kine-
matic terms that arise at finiteQ2 because the spin vector of
the struck hadron is not parallel with the spin vector of the
initial nucleon. This leads to three or more additional
contributions to each spin dependent structure function
for each hadron species included in the model nucleon
wave function. While these contributions vanish in the
Bjorken limit, they can make a substantial proportion of
the observed structure functions at finite Q2, and are par-
ticularly important for describing the neutron structure
functions. We note that these contributions have the same
form as expected for target mass corrections [36] and
-13
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should not be confused with genuine higher twist contri-
butions to the structure functions, which arise from new
operators involving quark-gluon correlators [56,67]. As the
quality of data on neutron structure functions improves, it
will be interesting to compare the behavior of the structure
functions as a function of Q2 with that predicted by the
MCM. We have not done this here, as most of the data is at
fairly low x, and theQ2 variation in this kinematic region is
quite small.

We have considered the effects of possible interference
between intermediate states containing different hadrons,
which can contribute to the spin dependent parts of the DIS
cross section. Our analysis shows that for the most part
these terms cannot affect the observed structure functions
or parton distributions. It is possible that states involving
higher spins, e.g. j��i, can give interference contributions.
The difficulties in calculating the dynamics of the relevant
vertices are formidable, however these terms are sup-
pressed in the MCM owing to their high mass, so we
have ignored these contributions in this work.

Our calculations of the spin dependent structure func-
tions show good agreement with the experimental data. We
see significant corrections to the structure functions calcu-
lated using the bag model arising both from the inclusion
of a polarized gluon distribution and from the cloud con-
tributions. In both cases these improve the agreement with
the experimental data. Our calculations of g2�x� includes
only the Wandzura-Wilczek term, which gives the twist
two portion of the structure function.

There is a further spin dependent structure function of
the nucleon, which we have not discussed in this paper.
This is the transversity distribution h1�x�, which measures
the distribution of transversely polarized quarks in a trans-
versely polarized nucleon. In the nonrelativistic limit
h1�x� � g1�x�, so a measurement of h1 can tells us about
the importance of relativistic effects in the quark wave
function. We will be extending our calculations to the
transversity distribution of the proton and neutron, where
we expect that meson cloud model effects will affect
significantly the observed structure functions.
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APPENDIX A: BARYON AND MESON
MOMENTUM DISTRIBUTIONS

We reproduce here the results for the general form of the
baryon and meson momentum distributions f	1;2L;T�y� as
094008
given by Kumano and Miyama [33] for spin 1 mesons. As
we have noted above, these results also hold for spin 1=2
baryons and can be generalized to spin 3=2 baryons. First,
we note that the portion of the integrand of Eq. (16) that
depends on JNMB, the NMB vertex times the propagator of
the struck hadron, may be written as a sum of an unpolar-
ized, a longitudinal and a transverse part:

j ~pNj

�2��3
y
@y0

@y

X
	0
jJNBMj2 � C	0 � 	NC

	
L � N cos
C	T;

(A1)

where 
 is the angle between ~k? and ~s>N , ~k? � ~s
>
N �

j ~k?jN cos
, and 	 labels the helicity of the struck hadron.
We find that the unpolarized part is such that C�	0 � C	0 , so
any contribution arising from this part will cancel itself
when we compute �f using Eq. (21). Therefore we will
ignore any contributions from C	0 in the following.
Performing the integration over 
 then gives Eq. (20)
with the hadron momentum distributions given by

f	1L;T�y� �
Z �k2

?
�m

0
d ~k2
?r	1L;T� ~k

2
?; m� (A2)

f	2L;T�y� �
Z �k2

?
�m

0
d ~k2
?r

	
2L;T�

~k2
?; m�; (A3)

wherem is the mass of the struck hadron and the integrands
r	1;2i are given by

r	1L� ~k
2
?; m� � 2�C	L

�
1�

k2
?

yy0m2
N

�
���������������
1� �2

q
� 1�

�
(A4)

r	1T� ~k
2
?; m� � ��

2�C	T
k?
ymN

(A5)

r	2L� ~k
2
?; m� � ��

2�C	L
m2

y2m2
N

(A6)

r	2T� ~k
2
?; m� � �2�C	T

k?m
2

y2y0m3
N

�
���������������
1� �2

q
� 1�: (A7)

We note that we have changed the signs of f1T and f2L
from those of [33], as this is more consistent with the
notation we use below for the spin 3=2 baryon momentum
distributions In the Bjorken limit only f1L remains non-
zero. By combining the longitudinal 	N � 1�N � 0� with
the transverse 	N � 0 (N � 1) amplitude in Eq. (20), and
defining the functions

�fj1;2L;T�y� � f	��j1;2L;T�y� � f
	��j
1;2L;T�y� (A8)

with j the spin of the struck hadron, we can obtain the
separate contributions to the nucleon g1 and g2 structure
functions:
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�g1�x;Q
2� �

1

1� �2

Z 1

x

dy
y

X
i�1;2

	�fjiL�y�

��fjiT�y�
g
j
i

�
x
y
;Q2

�
(A9)

�g2�x;Q
2� � �

1

1� �2

Z 1

x

dy
y

X
i�1;2

�
�fjiL�y�

�
�fjiT�y�

�2

�
gji

�
x
y
;Q2

�
: (A10)

The momentum distributions for spin 3=2 baryons follow a
similar pattern to those above. In this case the distributions
also have to be labeled by h � 1

2 ;
3
2 with 	 � h. We

obtain

f�3=2�	
1L;T �y� �

Z �k2
?
�m

0
d ~k2
?

�
14� 2!2

15
r	1L;T� ~k

2
?; m�

�
4

15
r	2L;T� ~k

2
?; m�

�
(A11)

f�3=2�	
2L;T �y� �

Z �k2
?
�m

0
d ~k2
?

18� 2!2

15
r	2L;T� ~k

2
?; m� (A12)

f�1=2�	
1L;T �y� �

Z �k2
?
�m

0
d ~k2
?

�
6� 2!2

5
r	1L;T� ~k

2
?; m�

�
4

5
r	2L;T� ~k

2
?; m�

�
(A13)

f�1=2�	
2L;T �y� �

Z �k2
?
�m

0
d ~k2
?

2� 2!2

5
r	2L;T� ~k

2
?; m�: (A14)

Now defining

�f�3=2�l
1;2L;T�y� � l	fl	��l1;2L;T �y� � f

l	��l
1;2L;T �y�
; (A15)

the contributions to the structure functions become

�g1�x;Q2� �
1

1� �2

Z 1

x

dy
y

X
i�1;2

X
h�1=2;3=2

	�f�3=2�h
iL �y�

� �f�3=2�h
iT �y�
g�3=2�h

i

�
x
y
;Q2

�
(A16)

�g2�x;Q
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1

1� �2

Z 1

x

dy
y

X
i�1;2

X
h��1=2�;�3=2�

�
�f�3=2�h

iL �y�

�
�f�3=2�h

iT �y�

�2

�
g�3=2�h
i

�
x
y
;Q2

�
: (A17)
APPENDIX B: CALCULATION OF N��
INTERFERENCE TERMS

As an example of the general technique for calculating
the vertex functions in the MCM, and more specifically
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how to calculate interference terms, we present the calcu-
lation of the terms for interference between jN�i and j��i
states, where the pion is the spectator. We start from the
interaction Lagrangians for the two vertices [29,48,51]

L 1 � igNN� � �5� (B1)
L 2 � fN��
� @��U� � H:c:; (B2)

where U��p; s� is the Rarita-Schwinger spinor for the spin
3=2 field. These give the required vertices in the numer-
ators of JNN� and JN��, whereas the denominators will be
given by the propagators of the nucleon and �. respec-
tively. Standard techniques then give us that R	JN��J�NN�

is proportional to the trace of

1
2 	u�p; s� �u�p; s�
��5E��k1; s1� �u�k2; s2�

� u�k2; s2� �E��k1; s1��5�p
0
�; (B3)

where E��k1; s1� is the positive energy spin 3=2 spinor,
which is a linear combination of Dirac spinors of positive
and negative helicity with polarization vectors �� for
longitudinal and left or right circular polarization in the
moving frame. We note that the nucleon and � in the
intermediate states do not have identical momentum or
spin 4-vectors, which may have been previously over-
looked in earlier calculations. This fact makes the interfer-
ence calculations much more difficult than the usual
noninterference terms as E��k1; s1� �u�k2; s2� cannot be
written as a propagator, but requires careful evaluation.
We also note that our calculation adds together two con-
tributions depending on whether the initial MCM state is
jN�i or j��i. As these two are Hermitian conjugates, the
final result should be real, which acts as a check that we
have correctly accounted for all phase factors.

It is easiest to do the calculation in two parts, corre-
sponding to the 	 � 1=2 helicities of the intermediate
state hadrons. For the coefficients C	0;L;T of Eq. (53) we
obtain

C�0 �
� � C�0 �
� �
k2
?�mN �m��

4
���
6
p
mN

��������������
mNm�
p

y02
cos
 (B4)
C�L �
� � �C
�
L �
� �

k2
?�mN�1� 2y0� �m��

4
���
6
p
mN

��������������
mNm�
p

y02
cos


(B5)

and
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y02mN
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�y0 � 1�y02�mNm��

3=2

� sin�
�: (B6)

These coefficients now must be multiplied by coefficients
AN�

1;2 , ~AN�
1;2 from Eq. (46), all of which have the structure

AN�
i � aLi 	N � a

T
i N cos
 (B7)

and similarly for ~AN�
1;2 , where 	N and N refer to the

polarization of the parent nucleon. The functions r	1;2L;T
(and their analogous ~r	1;2L;T) are then given by
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r	iL �
Z 2�

0
d
aLi C

	
L (B8)

r	iT �
Z 2�

0
d
aTi C

	
T cos
 (B9)

while any contribution to the unpolarized cross section will
be proportional to

Z 2�

0
d
	C�0 � C

�
0 
: (B10)

By inspection all these angular integrals are zero. Thus the
interference between jN�i and j��i intermediate states
makes no contribution to the observed structure functions.
Similar arguments hold for the case of interference be-
tween jN�i and jN�i intermediate states.
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