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Rare top quark decay t! u1 �u2u2 in the standard model
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The one-loop induced top quark decay t! u1 �u2u2 �ui � u; c� is calculated in the context of the
standard model. The dominant contribution to this top quark decay arises from the Feynman diagrams
induced by the off-shell tu1g

� vertex, whereas the box diagrams are negligibly small. In contrast with the
on-shell tu1g vertex, which only gives rise to a pure dipolar effect, the off-shell tu1g� coupling also
involves a monopolar term, which gives a larger contribution than the dipolar one. It is found that the
branching ratio for the three-body decay t! u1 �u2u2 is about of the same order of magnitude of the two-
body decay t! u1g, which stems from the fact that the three-body decay is dominated by the monopolar
term.

DOI: 10.1103/PhysRevD.73.094005 PACS numbers: 14.65.Ha, 12.15.Ji, 12.15.Lk
I. INTRODUCTION

The top quark detection at the Fermilab Tevatron [1]
greatly boosted the interest in top quark physics. The large
mass of this quark suggests that it could be very sensitive
to new physics effects, which may manifest themselves
through anomalous rates for the top quark production and
decay modes. Although some properties of the top quark
have already been examined at the Tevatron [2], a further
scrutiny is expected at the CERN large hadron collider
(LHC). This machine will operate as a veritable top quark
factory, producing about eight millions of �tt events per year
in its first stage, and hopefully up to about 18 millions in
subsequent years [3]. Yet in the first stage of the LHC,
many rare processes involving the top quark are expected
to be accessible. It is thus worth investigating all of the top
quark decays within the standard model (SM) in order to
find out any scenario that may be highly sensitive to new
physics effects.

In the standard model (SM), the main decay channel of
the top quark is t! bW. Although the nondiagonal t!
dW and t! sW modes are more suppressed, they still
have sizable branching ratios. For instance, Br�t! sW�
is of the order of 10�3. As far as rare decays are concerned,
the three-body tree-level induced modes t! diWZ and
t! u1WW, with di � b, s, d and u1 � u, c, are strongly
dependent on the precise value of the top quark mass. It has
been shown that the t! u1WW decays are severely GIM-
suppressed [4], but t! bWZ can have a branching ratio of
the order of 10�5 for a top quark mass larger than 187 GeV
[5]. This decay mode has been suggested as a probe for the
top quark mass because it is almost in the threshold region
[6]. At the one-loop level, there arise the flavor changing
neutral current (FCNC) decays t! u1V �V � g; �Z� and
t! u1H, which are considerably GIM-suppressed, with
branching ratios ranging from 10�10 to 10�13 [7–9].
Motivated by the fact that any process that is forbidden
or strongly suppressed within the SM constitutes a natural
laboratory to search for any new physics effects, FCNC top
quark decays have been the subject of considerable interest
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in the literature [10–14]. It turns out that they may have
large branching ratios, much larger than the SM ones,
within some extended theories such as the two-Higgs
doublet model (THDM) [10], supersymmetry (SUSY)
models with nonuniversal soft breaking [11], SUSY mod-
els with broken R-parity [12], and even more exotic sce-
narios [13]. Similar results for the decays t! u1V and
t! u1H were obtained within the context of effective
theories [14].

In this work, we present a calculation of the t! u1 �u2u2

decay (u2 stands for the u or c quark), which arises at the
one-loop level in the SM. Although the study of rare top
quark transitions has attracted considerable attention, to
our knowledge the rare decay t! u1 �u2u2 has never been
analyzed before. The rest of the paper is organized as
follows. Section II is devoted to the analytical calculation
of the decay t! u1 �u2u2. The numerical results and dis-
cussion are presented in Sec. III along with the final
remarks.

II. THE DECAY t! u1 �u2u2

Decays of the type t! u1 �u2u2 proceed through the
reducible diagrams shown in Fig. 1(a), which are mediated
by the Z,H, � or g bosons. While those Feynman diagrams
mediated by the Z and H bosons are enhanced due to the
fact that the intermediary boson is on resonance (provided
that mH � mt), those diagrams mediated by the photon
(gluon) are enhanced by the effect of the photon (gluon)
pole. There are also contributions from box diagrams
carrying W gauge bosons and down quarks [see
Fig. 1(b)]. Since each type of diagram renders a finite
amplitude by its own, the different contributions can be
considered as independent. It can be shown that the t!
u1 �u2u2 decay is essentially determined by those graphs
involving a virtual gluon, i.e., those reducible diagrams
involving the one-loop vertex tu1g

� and the tree-level
vertex g� �u2u2. The role played by this contribution is
evident from the fact that it constitutes an electroweak-
QCD mixed effect. This is to be contrasted with those
-1 © 2006 The American Physical Society
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FIG. 2. Feynman diagrams contributing to the tu1g vertex in
the unitary gauge. In the R� gauge there are an extra set of
diagrams in which the W boson is replaced by its associate
pseudo-Goldstone boson.

(a)(a)(a)

(b)

FIG. 1. Feynman diagrams contributing to the t! u1u2 �u2

decay. The bubble stands for all the contributions of the type
shown in Fig. 2.
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reducible graphs mediated by the �, Z and H bosons, as
well as the box diagrams, which are entirely determined by
electroweak couplings. As a consequence, the pure elec-
troweak contributions become suppressed by a factor of
�=�s as compared with the electroweak-QCD mixed ones.

Once the most relevant properties of the t! u1 �u2u2

decay were described, we would like to emphasize a note-
worthy feature of this process. It is closely related to the
fact that the t! u1 �u2u2 decay is mediated by a virtual
massless vector boson, i.e., the gluon or the photon.
Without losing generality, it is enough to discuss the gluon
contribution as it is the dominant one. Naively, one would
expect that the rate for the two-body decay t! u1g is
larger than that for the three-body decay t! u1 �u2u2,
which in fact is not true. This stems from the fact that
while the on-shell tu1g vertex is characterized by a dipole
structure (the tu1 pair couples to the gluon through the
gauge tensor Ga

��), the corresponding off-shell tu1g
� ver-

tex involves also a monopole structure (the tu1 pair inter-
acts directly with the Aa� gauge field). Therefore, while the
t! u1g transition is entirely determined by the dipole
structure, both the dipole and the monopole structures
contribute to the t! u1 �u2u2 process. It turns out that the
contribution from the monopolar term can be considerably
larger than that arising from the dipolar one. We have
found that this is indeed the case for the rare decay t!
u1 �u2u2. It means that while the t! u1g decay is deter-
mined by the dipolar term, the t! u1 �u2u2 mode is gov-
erned by the monopolar one. Moreover, the three-body
decay is unsuppressed because it includes the QCD vertex
g� �u2u2, which is much less suppressed than the electro-
weak vertices �� �u2u2 and Z� �u2u2. The above properties
nicely conspire to enhance the t! u1 �u2u2 decay rate up to
the same order of magnitude of the t! u1g branching
ratio.

We now turn to analyze the general structure of the tu1g
vertex, which is generated at the one-loop level via the
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Feynman diagrams shown in Fig. 2. The most general form
of this vertex involves up to ten form factors, which are
associated with the Lorentz structures ��PL;R, �p�
p1��PL;R, q�PL;R, ����p� p1�

�PL;R, and ���q
�PL;R,

with PL;R � �1� �5�=2. There are however a few inde-
pendent form factors. After imposing the on-shell condi-
tions on the fermionic fields, the Gordon identities allows
one to eliminate the four form factors associated with �p�
p1��PL;R and ����p� p1�

�PL;R. In addition, the q��� �
0 condition, valid for a real gluon, can be safely used as the
off-shell gluon couples to a pair of approximately massless
quarks. Thus, the only non negligible contributions to the
t! u1 �u2u2 decay are those of the monopolar (��PL;R)
and dipolar (���q�PL;R) terms. Furthermore, no contribu-
tions proportional to PR can arise in the mu1

� 0 limit.
Consequently, the vertex function associated with the tu1g
coupling can be written as

�a� �
�a

2
��

�

�
�a

2

�
igs

�
F1�q2���PL �

i
mt
F2�q2�PL���q�

�
; (1)
where gs is the coupling constant and �a=2 stand for the
generators associated with the color group. It is worth
mentioning that the monopolar contribution F1 vanishes
in the on-shell limit as a consequence of the Ward identity
q��� � 0. This means that a FCNC vertex involving an
on-shell gluon can only arise through a dipolar term, such
as occurs in electrodynamics. This is not true for an off-
shell gluon: in such a case the monopolar term yields the
dominant contribution. This behavior will be explicitly
shown below. We will first calculate the form factors in
an R� gauge and, in order to assure that our result is gauge-
independent, we will also calculate such form factors via
the unitary gauge. In the R� gauge the calculation leads to
the following amplitude
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�� �
gsg2

2

X
i

Vu1iV
y
it

Z dDk
�2	�D

X6

a�1

Ta�
�a

; (2)

where

T1
� � �
PL�k6 � p6 2 �mi����k6 � p6 1 �mi���PLP

�
;

(3)

T2
� � �

�
1

m2
t

�
�
PL�k6 � p6 2 �mi���PL�p6 2 �mt���P

�
;

(4)

T3
� �

�
1

m2
t

�
��p6 1�
PL�k6 � p6 1 �mi���PLP

�
; (5)

T4
� �

�
mi

m2
W

�
PR�k6 � p6 2 �mi����k6 � p6 1 �mi�

	 �mtPR �miPL�; (6)

T5
� � �

�
1

m2
t

��
mi

m2
W

�
PR�k6 � p6 2 �mi��mtPR �miPL�

	 �p6 2 �mt���; (7)

T6
� �

�
1

m2
t

��
mi

m2
W

�
��p6 1�k6 � p6 1 �mi��mtPR �miPL�;

(8)

�1 � 
k2 �m2
W�
�k� p1�

2 �m2
i �
�k� p2�

2 �m2
i �; (9)

�2 � 
k
2 �m2

W�
�k� p2�
2 �m2

i �; (10)

�3 � 
k2 �m2
W�
�k� p1�

2 �m2
i �; (11)

�4 � 
k
2 � �m2

W�
�k� p1�
2 �m2

i �
�k� p2�
2 �m2

i �;

(12)

�5 � 
k2 � �m2
W�
�k� p2�

2 �m2
i �; (13)

�6 � 
k
2 � �m2

W�
�k� p1�
2 �m2

i �; (14)

and

P�
 � g�
 �
�1� ��k�k


k2 � �m2
W

: (15)

In the previous expressions, the mu1
� 0 approximation

was used. In addition, mi denotes the mass of the internal
down quark and � is the gauge parameter. For simplicity
the calculation was performed in the t’Hooft-Feynman
gauge (� � 1). As a crosscheck, we also have performed
the calculation via the unitary gauge (� � 1), in which
there are only contributions from the first three terms in
Eq. (2), with P�
 replaced by P�
 � g�
 � k�k
=m2

W .
The results obtained by these two calculation schemes do
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coincide, which guarantees that the form factors associated
with the monopolar and dipolar structures of the tu1g

�

vertex are gauge-independent. Introducing the definition
Fi � ��2=8	�Ai we can write

A1 �
x

2xW�1� x�

X
i�d;s;b

Vu1iV
y
ti

�
f1

0 �
X3

a�1

f1
aB0�a�

� 2m2
t g1C0�x; xi�

�
; (16)

A2 �
1

2xW�1� x�

X
i�d;s;b

Vu1iV
y
ti

�
f2

0 �
X3

a�1

f2
aB0�a�

� 2m2
t g2C0�x; xi�

�
; (17)

where x � q2=m2
t , xW � m2

W=m
2
t , and xi � m2

i =m
2
t . The

fba functions depend on xi and read

f1
0 � xi; (18)

f1
1 �

1

1� x
��2�1� x� � �x� 4��xi � xW��xi

� 2�2�1� x� � �x� 4�xW�xW�; (19)

f1
2 �

1

�1� x�2
��x� 2��1� x� 2�xi � xW��xi

� 2�2�x� 2�xW � x�1� x� � 2�1� x2��xW� (20)

f1
3 �

1

�1� x�2
���x2� 5x� 4��x2� 3x� 8��xi� xW��xi

� 2�x2� 3x� 4��x2� 3x� 8�xW�xW�; (21)

g1 �
1

�1� x�2
�2�x�1� x�2��x� 2�x2

W � 2�x2� 1�xW�xW

���1� x�2�xi� 1�� �x� 2��x2
i � 3x2

W�

� 2��x� 1�2� 4�xW�xi�; (22)

and

f2
0 � xi; (23)

f2
1 �

1

1� x
��2�1� x� � �x� 2��xi � xW��xi

� 2�2�1� x� � �x� 2�xW�xW�; (24)

f2
2 �

x

�1� x�2
�3�1� x� 2�xi � xW��xi

� 2�6xW � 5�1� x��xW�; (25)
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f2
3 �

1

�1� x�2
��x2 � x� 2� �x2 � 5x� 2��xi � xW��xi

� 2�3x2 � x� 2� �x2 � 5x� 2�xW�xW�; (26)

g2 �
1

�1� x�2
�2x��1� x��1� x� 4xW� � 3x2

W�xW

� �3xx2
i � �xi � 1��1� x�2 � �2�1� 2x�

� 3x�2x� 3xW��xW�xi�; (27)

In writing the above expressions, the unitarity conditionP
iVu1iV

y
ti � 0 was taken into account, i.e., any term inde-

pendent of the internal quark mass was dropped out. Also,
it is straightforward to show that

P3
a�1 f

b
a � 0 for b � 1, 2,

which means that, as expected, the Ai amplitudes are free
of ultraviolet divergences.

We now are ready to calculate the contribution of the
tu1g� vertex to the t! u1 �u2u2 decay. Below, p2 and �p2

will stand for the 4-momenta associated with the u2 and �u2

quarks. It is useful to introduce the following dimension-
less variable y � �p1 � �p2�

2=m2
t . The u1 quark mass will

be retained in the phase space integral since a factor of
1=x2, associated with the gluon pole, enters into the t!
u1 �u2u2 squared amplitude. Using the expressions for the
tu1g

� and g�u2u2 vertices, it is straightforward to construct
the invariant amplitude associated with the diagram (a) of
Fig. 1. After making this, we can write the invariant mass
distribution d�=dx as follows

d��t! u1u2 �u2�

dx
�

mt

256	3

Z
dy

X
spins

jMj2; (28)

with the squared amplitude being

X
spins

jMj2 �
�2
s�

2

9s4
Wx

2 �F1�x; y�jA1j
2 � F12�x; y�2Re�A1A�2�

� F2�x; y�jA2j
2�; (29)

As far as the Fi�x; y� functions are concerned, they are
given by

F1�x; y� � �4�x2 � x�2y� 1� � 2y�y� 1��; (30)

F12�x; y� � �4x�1� x�; (31)

F2�x; y� � 4x�2y�y� 1� � x�2y� 1� � 1�: (32)

whereas the Passarino-Veltman scalar functions B0 and C0

are, in the usual notation:

B0�1� � B0�0; m
2
t xi; m

2
W�; (33)

B0�2� � B0�m2
t x;m2

t xi; m2
t xi�; (34)
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B0�3� � B0�m2
t ; m2

t xi; m2
W�; (35)

C0�x; xi� � C0�m
2
t ; 0; m

2
t x;m

2
t xi; m

2
W;m

2
t xi�: (36)

The integration limits are as follows

ymin � y2
0 �

1

2
�1� x�

�
1�

����������������
1�

4y2
0

x

s �
; (37)

ymax � y2
0 �

1

2
�1� x�

�
1�

����������������
1�

4y2
0

x

s �
; (38)

4y2
0 � x � �1� x0�

2; (39)

where x0 � mu1
=mt and y0 � mu2

=mt.
From Eq. (16) it is evident that A1, the monopole term,

vanishes in the on-shell limit (x! 0), in agreement with
the fact that the t! u1g decay is only determined by a
dipole term. We will show below that the monopole con-
tribution is slightly larger than the dipole one.

Since the Ai amplitudes do not depend on y, this variable
can be integrated over readily. In the y0 ! 0 limit, we are
left with

d�

dx
�

�2
s�2mt

1728s4
W	

3 �f1�x�jA1j
2 � f12�x�Re�A1A

�
2�

� f2�x�jA2j
2�; (40)

where

f1�x� �
1

x2 �1� 2x��1� x�2; (41)

f12 � �
6

x
�1� x�2; (42)

f2�x� �
1

x
�2� x��1� x�2: (43)

It is interesting to note that we will not take into account
the limiting case y0 ! 0 (mu2

� 0) when integrating over x
because the d�=dx distribution would become undefined in
x � 0 due to the gluon pole. This corresponds to the case
when the u2 quark emerges parallel to �u2 and we cannot
take the limit of massless u2 quark as it would lead to a
collinear singularity. Thus, although we have neglected the
outgoing quark masses in the transition amplitude, they
must be retained in the integration limits of the x variable.
III. NUMERICAL RESULTS AND FINAL
REMARKS

For the numerical analysis we will use the values of the
running coupling constant �s and quark masses at the mt
scale, namely, �s�mt� � 0:10683, mt�mt� � 174:3 GeV,
mb�mt� � 2:85 GeV, mc�mt� � 0:63 GeV, ms�mt� �
0:09 GeV, md�mt� � 0:0049 GeV, and mu�mt� �
-4
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0:00223 GeV [15]. It is worth noting that the numerical
results do not change considerably for small variations of
the outgoing quark masses.

We first would like to compare the size of the off-shell
tu1g� vertex with that of the on-shell one. Numerical
evaluation shows that the tu1g dipole contribution is 2
orders of magnitude smaller than the tu1g

� monopole
contribution and one order smaller than the tu1g� dipole
contribution. Thus, while the t! u1g decay only receives
the contribution of the dipolar term, the t! u1 �u2u2 tran-
sition receives an extra contribution of the monopolar term,
which is slightly larger than the dipolar contribution.

The fact that the contribution of the monopole form
factor to the tu1g� vertex is larger than that of the dipole
one is exhibited in the invariant mass distribution d��t!
u1 �u2u2�=dx, which is shown in Fig. 3, where we have
plotted separately the monopolar and dipolar contributions.
Therefore, it is evident that the t! u1 �u2u2 decay is
slightly dominated by the monopolar term.
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We now turn to the numerical evaluation of Br�t!
u1 �u2u2�. Using the values given above and ��t! bW� �
1:55 GeV, we obtain

Br�t! u1 �u2u2� � 3:38	 10�12: (44)

On the other hand, according to the literature Br�t!
u1g� � 5:73	 10�12 [7,16]. This result shows that Br�t!
u1 �u2u2� is about of the same order of magnitude than
Br�t! u1g�. If one sums over all the possible �u2u2 pairs,
the resulting Br�t! u1 �u2u2� is of the order of 10�11 and
thus larger than BR�t! u1g�. Although these decay rates
seem exceedingly small to be detected ever, they may be
largely enhanced in some SM extensions. In such a case
the effect discussed above may have some interesting
implications.

In conclusion, we have shown the interesting fact that
three-body decay t! u1 �u2u2 has a branching ratio about
the same order of magnitude than the one of the two-body
decay t! u1g. Although rare decays of this type are very
suppressed in the SM, they may have much larger branch-
ing ratios in other SM extensions, thereby constituting an
interesting place to search for any new physics effects.
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Note added.—After this work was submitted, a preprint
was posted to the preprint archive by Eilam, Frank and
Turan [16], who evaluate the t! cgg and t! u1 �u2u2

decays. Although these authors do not present explicit
analytical expressions for the t! u1 �u2u2 decay [16], our
numerical result for the branching ratio agrees with theirs.
We have also learned that Deshpande, Margolis and
Trottier presented a similar analysis in [17]. These authors
reached a similar conclusion on the t! c �qq decay in both
the standard and the two-Higgs doublet models.
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