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New limits on ‘‘odderon’’ amplitudes from analyticity constraints
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In studies of high energy pp and �pp scattering, the odd (under crossing) forward scattering amplitude
accounts for the difference between the pp and �pp cross sections. Typically, it is taken as f� �
� p

4�Ds
��1ei��1���=2 (�� 0:5), which has ��, ��! 0 as s! 1, where � is the ratio of the real to

the imaginary portion of the forward scattering amplitude. However, the odd-signatured amplitude can
have in principle a strikingly different behavior, ranging from having ��! nonzero constant to having
��! lns=s0 as s! 1, the maximal behavior allowed by analyticity and the Froissart bound. We
reanalyze high energy pp and �pp scattering data, using new analyticity constraints, in order to put new
and precise limits on the magnitude of ‘‘odderon’’ amplitudes.
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The conventional odd (under crossing) laboratory for-
ward scattering amplitude used for pp and �pp scattering,
suggested by Regge theory, is

4�
p
f� � �Ds��1ei��1���=2; (1)

which results in �� � �pp � � �pp ! 0, �� �
�pp � � �pp ! 0 as s! 1. Nicolescu et al. [1–3] have
introduced odd amplitudes called ‘‘odderons,’’ with the
interesting properties that they can have ��! non-zero
constant to even having ��! lns=s0 as s! 1.

There has been mounting evidence from many sources
that the crossing-even hadron-hadron cross section behaves
at high energy as ln2s, thus saturating the Froissart bound, a
result with a rather profound physical significance. Using
factorization and simultaneously fitting real analytic for-
ward scattering amplitudes to �� cross sections, �p cross
sections and pp and �pp cross sections and �-values, Block
and Kang [4] have shown that a ln2s fit, saturating the
Froissart bound, is in accord with the experimental data.
The COMPETE group [5], globally fitting hadron-hadron
cross sections, has offered evidence that favors a ln2s
behavior at high energies. Igi and Ishida [6,7] have shown
that the ��p systems and the pp and �pp systems saturate
the Froissart bound, using finite energy sum rules. Kang
and Nastase [8] proved that saturation of the QCD Froissart
bound is related to the creation of black holes of AdS size
in Planckian scattering. Block and Halzen have shown that
the Froissart bound is saturated for the �p system [9], the
��p systems and the pp and �pp systems [10], i.e., the
even (under crossing) cross section rose asymptotically as
ln2s. For their nucleon-nucleon analysis they used 4 ana-
lyticity constraints that anchored the high energy cross
section parametrizations to both the experimental pp and
�pp cross sections and their first derivatives at

���
s
p
�

4 GeV, giving fits with the smallest statistical parameter
06=73(9)=094003(8) 094003
errors. This technique completely ruled out the possibility
of an asymptotic lns rise. In this communication we extend
their analysis to include ‘‘odderons.’’

Block and Cahn [11] made an odderon analysis of pp
and �pp scattering in 1985 that put limits on odderon
amplitudes. Since we will later want to directly compare
our results with theirs, we will use their notation. Using
forward real analytic amplitudes to describe the data, they
wrote [11] the crossing-even real analytic laboratory am-
plitude for forward high energy scattering as

4�
p
f� � i

�
A� �	ln�s=s0� � i�=2
2 � cs��1ei��1���=2

� i
4�
p
f��0�

�
; (2)

and the conventional crossing-odd real analytic forward
amplitude as

4�
p
f� � �Ds

��1ei��1���=2: (3)

Here �< 1 parametrizes the Regge behavior of the
crossing-odd amplitude which vanishes at high energies
and A, �, �, c,D, s0 and � are real constants. The variable
s is the square of the center-of-mass system (c.m.) energy,
p is the laboratory momentum. The additional real con-
stant f��0� is the subtraction constant at � � 0 needed to
be introduced in a singly-subtracted dispersion relation
[11,12].

Again, following Block and Cahn [11], we now intro-
duce three types of odderon laboratory amplitudes for
forward scattering, f�j�� , where j � 0, 1, or 2. Introducing

the laboratory energy � �
������������������
p2 �m2

p
, where m is the

proton mass, they are

f�0�� � �
1

4�
	�0��; (4)
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f�1�� � �
1

4�
	�1��

�
ln�s=s0� � i

�
2

�
; (5)

f�2�� � �
1

4�
	�2��

�
ln�s=s0� � i

�
2

�
2
; (6)

where the 	�j�, j � 0, 1, 2 are all real coefficients. These
amplitudes, called odderon 0, odderon 1 and odderon 2,
respectively, are manifestly odd, since they are all propor-
tional to � times an even amplitude. Clearly, the laboratory
energy � is odd under crossing (�! ��), whereas terms
like [ ln�s=s0� � i

�
2 ] are even under crossing, so that their

overall product, f�j�� , is crossing-odd. It can be shown that
odderon 2 is the ‘‘maximal‘‘ odderon allowed by unitarity
and the Froissart bound (see Eqns. (4.114) and (4.115) of
Ref. [11]). We will combine these odderons individually
with the conventional odd amplitude of Eq. (3) to form a
new total odd amplitude. Since it is pure real, the amplitude
f�0�� only causes a small splitting in the �-values at high
energy; the amplitude f�1�� has a constant imaginary part, so
that it leads to a constant nonzero ��, while its real part
causes the �-values to split apart at high energy ; finally,
the amplitude f�2�� has an imaginary part that causes ��!
ln�s=s0� as s! 1, along with a real part that causes a
substantial splitting of the �-values at high energies. We
have chosen these amplitudes to be identical to those that
were used by Block and Cahn [11] in their work, so that at
the end of our analysis we can make a direct comparison of
our odderon coefficients 	�j� with theirs. We comment that
these real analytic forward scattering amplitudes, Eq. (2)–
(6), can also be derived as solutions to derivative dispersion
relations [2].

Using the optical theorem and our laboratory forward
scattering amplitude normalization, we write

�even �
4�
p

Imf� (7)

�odd �
4�
p

Imf�; (8)

the even and odd (under crossing) cross sections due to the
even and odd forward laboratory amplitudes f� and f�,
respectively. These cross section sums and differences

��pp� � �even � �odd; (9)

�� �pp� � �even � �odd; (10)

give rise to the pp and the �pp cross sections, respectively.
We remind the reader that the optical theorem states that

the cross section contributions of the amplitudes of
Eq. (4)–(6) are obtained by multiplying Imf�j�� by 4�=p.
Thus, we see that what is needed to combine an odderon
amplitude with the normal amplitude is the term 4�

p f
�j�
� .

Using the optical theorem and analyticity in the high
energy limit where p � �—after noting that 4�

p f
�j�
� can
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be replaced by 4�
� f

�j�
� —we obtain the total cross sections

��
�j� and ��

�j�, the ratios of the real to the imaginary portion
of the forward scattering amplitude, for j � 0, 1, 2 as

��
�0� � A� �

�
ln2s=s0 �

�2

4

�
� c sin���=2�s��1

�D cos���=2�s��1; (11)

��
�0� �

1

��
�0�

�
�� lns=s0 � c cos���=2�s��1

�
4�
�
f��0� �D sin���=2�s��1 � 	�0�

�
; (12)

or

��
�1� � A� �

�
ln2s=s0 �

�2

4

�
� c sin���=2�s��1

�D cos���=2�s��1 � 	�1�
�
2
; (13)

��
�1� �

1

���1�

�
�� lns=s0 � c cos���=2�s��1 �

4�
�
f��0�

�D sin���=2�s��1 � 	�1� ln�s=s0�

�
; (14)

or

���2� � A� �
�

ln2s=s0 �
�2

4

�
� c sin���=2�s��1

�D cos���=2�s��1 � 	�2�� ln�s=s0�; (15)

��
�2� �

1

��2��

�
�� lns=s0 � c cos���=2�s��1 �

4�
�
f��0�

�D sin���=2�s��1 (16)

�	�2�
�
ln2�s=s0� �

�2

4

��
; (17)

where the upper sign is for pp and the lower sign is for �pp
scattering.

We now introduce the definitions

A � c0 �
�2

4
c2 �

c2
1

4c2
; (18)

s0 � 2m2e�c1=�2c2�; (19)

� � c2; (20)

c �
�2m2�1��

sin���=2�
�P 0 ; (21)

D �
�2m2�1��

cos���=2�

: (22)
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1We use the value � � 0:5 in order to be able to directly
compare our results, using the same data set, the same high
energy parametrization and the same constraints, with an analy-
sis [10] which used 	�j� � 0, j � 0, 1, 2, i.e., had no odderon
amplitudes in its parametrization.
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After some algebraic manipulations, the cross sections ��
�j�

and the �-values ��
�j�, along with the cross section deriva-

tives
d��
�j�

d��=m� , can now be written as

��
�0���� � c0 � c1 ln

�
�
m

�
� c2ln2

�
�
m

�
� �P 0

�
�
m

�
��1

� 

�
�
m

�
��1

; (23)

���0���� �
1

��
�0�

�
�
2
c1� c2� ln

�
�
m

�
��P 0 cot

�
��
2

��
�
m

�
��1

�
4�
�
f��0��
 tan

�
��
2

��
�
m

�
��1
� 	�0�

�
; (24)

d��
�0����

d��=m�
� c1

�
1

��=m�

�
� c2

�
2 ln��=m�
��=m�

�

� �P 0 f��� 1���=m���2g

� 
f��� 1���=m���2g (25)

or

��
�1���� � c0 � c1 ln

�
�
m

�
� c2ln2

�
�
m

�
� �P 0

�
�
m

�
��1

� 

�
�
m

�
��1
� 	�1�

�
2
; (26)

��
�1���� �

1

��
�1�

�
�
2
c1 � c2� ln

�
�
m

�
� �P 0 cot

�
��
2

��
�
m

�
��1

�
4�
�
f��0� � 
 tan

�
��
2

��
�
m

�
��1

� 	�1� ln�s=s0�

�
; (27)

d��
�1����

d��=m�
� c1

�
1

��=m�

�
� c2

�
2 ln��=m�
��=m�

�

� �P 0 f��� 1���=m���2g

� 
f��� 1���=m���2g (28)

or

��
�2���� � c0 � c1 ln

�
�
m

�
� c2ln2

�
�
m

�
� �P 0

�
�
m

�
��1

� 

�
�
m

�
��1
� 	�2�� ln�s=s0�; (29)

��
�2���� �

1

��
�2�

�
�
2
c1 � c2� ln

�
�
m

�
� �P 0 cot

�
��
2

��
�
m

�
��1

�
4�
�
f��0� � 
 tan

�
��
2

��
�
m

�
��1

� 	�2�
�

ln2�s=s0� �
�2

4

��
; (30)
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d���2����

d��=m�
� c1

�
1

��=m�

�
� c2

�
2 ln��=m�
��=m�

�

� �P 0 f��� 1���=m���2g � 	�2�
�

�
��=m�

�

� 
f��� 1���=m���2g; (31)

in the high energy limit where s! 2m�, where the upper
sign is for pp and the lower sign is for �pp scattering. Units
of � in mb, and � and m in GeV, where m is the proton
mass, will be used. We will use� � 0:5, the value1 used by
Block and Halzen [10], which is appropriate for a Regge-
descending trajectory. The new even coefficients c0, c1, c2,
�P 0 and the odd coefficient 
, along with the exponents �
and �, are all real. These transformations linearize
Eq. (23), (26), and (29) in the parameters c0, c1, c2, �P 0

and 
, convenient for a �2 fit to the experimental total cross
sections and �-values.

We will use new analyticity constraints [13] in the fitting
of the �pp and pp data that anchor the theoretical cross
sections and their derivatives of our high energy parame-
trization with experimental cross sections and their deriva-
tives at a transition energy �0 which is just above the
resonance region. Let �� and �� be the total cross sec-
tions for pp and �pp scattering. It is convenient to define 4
experimental quantities evaluated at the transition energy
�0. The transition energy �0 is a low energy after which
resonance behavior finishes. Following Block and Halzen
[10], we will choose �0 � 7:59 GeV (corresponding to���
s
p
� 4 GeV).

We now introduce 4 new well-determined experimental
quantities, 2 crossing-even quantities �av and mav and 2
crossing-odd quantities �� and �m,

�av �
����0=m� � �

���0=m�
2

;

�� �
����0=m� � ����0=m�

2
;

mav �
1

2

�
d��

d��=m�
�

d��

d��=m�

�
���0

;

�m �
1

2

�
d��

d��=m�
�

d��

d��=m�

�
���0

;

(32)

capitalizing on the very accurate low energy experimental
pp and �pp cross section data that are available.

Using �av and mav, we now write the 2 crossing-even
analyticity constraint equations as
-3



TABLE I. The transition energy parameters and minimum
fitting energy used for constraining pp and �pp scattering.
Taken from Ref. [10]. m is the proton mass and � is the
laboratory proton energy.

�0, lab transition energy (GeV) 7.59
!

�����
s0
p

, c.m. transition energy (GeV) 4

����0� (mb) 40.18
����0� (mb) 56.99
� d��d��=m�����0

(mb) �0:2305

� d��d��=m�����0
(mb) �1:446

Minimum fitting energy

�min, lab minimum energy (GeV) 18.25
!

���������
smin
p

, c.m. minimum energy (GeV) 6.0
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�P 0 �
��0=m�2��

�� 1

�
mav � c1

�
1

��0=m�

�

� c2

�
2 ln��0=m�
��0=m�

��
; (33)

c0 � �av � c1 ln��0=m� � c2ln2��0=m�

� �P 0 ��0=m�
��1; (34)

reiterating that Eq. (33) and (34) utilize the experimental
even cross section �av and its slope mav evaluated at the
transition energy �0, where we join on to the asymptotic fit.

The situation is a little more complicated for the
crossing-odd constraints. For odderon 0, we have

� � 1�
�m
��
�
�0

m
; j � 0; (35)


 � ���
�
�0

m

�
1��

; (36)

whereas for odderon 1, we find

� � 1�
�m

��� 	�1���2�
�
�0

m
; j � 1; (37)


 � ���
�
�0

m

�
1��

; (38)

and for odderon 2,

� � 1�
�m� 	�2�f��0=mg

��� 	�2�f� ln�2m�0=s0�g
�
�0

m
; j � 2;

(39)


 � ���
�
�0

m

�
1��

; (40)

where s0 � 22:9 GeV2, which is the approximate value of
s0 found from the fit parameters of Table II, using Eq. (19).
Again, the crossing-odd constraints �� and �m are fixed
by the experimental pp and �pp cross sections and their
derivatives at the transition energy �0.

Utilizing the rich amount of accurate low energy data at
the transition energy �0, we have now constrained our high
energy fit at �0 � 7:59 GeV [10]. For safety, the data
fitting is started at an energy �min � 18:25 GeV (corre-
sponding to

��������
smin
p

� 6 GeV), appreciably higher than the
transition energy (see footnote 1). The appropriate cross
sections and slopes, taken from Ref. [10], are summarized
in Table I, along with the minimum energies used in the
asymptotic fits (see footnote 1). Very local fits had been
made to the region about the energy �0 in order to evaluate
the two cross sections and their two derivatives at �0 that
were needed in the above constraint equations. We next
impose the 4 constraint equations arising from analyticity
[13]:
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(i) F
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or odderon 0, the Eqs. (33)–(36), are used in our
�2 fit to Eqs. (23) and (24).
(ii) F
or odderon 1, the Eqs. (33), (34), (37), and (38),
are used in our �2 fit to Eqs. (26) and (27).
(iii) F
or odderon 2, the Eqs. (33), (34), (39), and (40) are
used in our �2 fit to Eqs. (29) and (30).
We stress that the odd amplitude parameters � and 
 and
hence the odd amplitude itself is completely determined by
the experimental values �m and �� at the transition
energy �0 and the value of 	�j�, j � 0, 1, 2. Further, the
even amplitude parameters c0 and �0P are now determined
by c1 and c2, along with the experimental values of�av and
mav at the transition energy �0. In particular, we only fit the
4 parameters c1, c2, f��0� and 	�j�, j � 0, 1, 2. Since the
subtraction constant f��0� enters only into the �-value
determinations, of the original 8 free parameters that
were needed to be fit for a ln2s energy dependence of the
cross sections ��, only the 3 parameters c1, c2 and 	�j�,
j � 0, 1, 2 are now free, giving us exceedingly little free-
dom in this fit—it is indeed very tightly constrained, with
little latitude for adjustment.

The adaptive Sieve algorithm [14] that minimizes the
effect that ‘‘outliers’’—points with abnormally high con-
tributions to �2 —have on a fit when they contaminate a
data sample that is otherwise Gaussianly distributed is
described in Refs. [10,14]. The sieved data set that we
will use for our �2 fit to �pp, � �pp, �pp, and � �pp for

���
s
p


6 GeV is detailed in Ref. [10], where Block and Halzen
found that the 25 points that were screened out had a �2

contribution of� 980, an average value of� 39, using the
cut ��2

imax � 6. For a Gaussian distribution, about 3
points with ��2

i > 6 are expected, giving a total �2 con-
tribution of slightly more than 18 and not 980. The effect of
the ‘‘Sieve’’ algorithm in ridding the data sample of out-
liers is major.

Table II summarizes the results of our 3 simultaneous
fits to the available accelerator data, using the sieved data
set of Ref. [10] which was obtained after using the Sieve



TABLE II. The fitted results for a 4-parameter �2 fit using odderons 0, 1 and 2, with �� ln2s,
to the total cross sections and �-values for pp and �pp scattering. The renormalized �2

min per
degree of freedom, taking into account the effects of the ��2

imax � 6 cut, is given in the row
labeled R� �2

min=d:f: The errors in the fitted parameters have been multiplied by the
appropriate r�2. For details on the renormalization of the errors by r�2 and the renormalization
of �2

min by R, see Ref. [14].

Parameters Odderon 0 Odderon 1 Odderon 2

Even amplitude

c0 (mb) 37.38 37.24 37.09
c1 (mb) �1:460� 0:065 �1:415� 0:073 �1:370� 0:0074
c2 (mb) 0:2833� 0:0060 0:2798� 0:0064 0:2771� 0:0064
�P 0 (mb) 37.02 37.20 37.39
� 0.5 0.5 0.5
f��0� (mb GeV) �0:075� 0:75 �0:050� 0:59 �:073� 0:58

Odd amplitude


 (mb) �28:56 �28:53 �28:49
� 0.415 0.416 0.416
	�j� (mb), j � 0, 1, 2 �0:034� 0:073 �0:0051� 0:0077 0:0042� 0:0019

�2
min 181.3 181.1 176.7

R� �2
min 201.2 200.9 196.1

Degrees of freedom (d.f.) 183 183 183

R� �2
min=d:f: 1.099 1.098 1.071
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algorithm on the Particle Data Group [15] compendium for
�pp, � �pp, �pp and � �pp, using a minimum fitting energy��������
smin
p

� 6 GeV and imposing the cut ��2
imax � 6. The fits

were made using 4 constraint equations with a transition
energy

���
s
p
� 40 GeV, for odderons 0, 1 and 2. Very sat-

isfactory probabilities (� 0:2) for 183 degrees of freedom
were found for all 3 odderon choices.

We summarize our results below:

(i) O
FIG. 1 (color online). Odderon 0: The fitted total cross sections
� �pp and �pp in mb, vs

���
s
p

, in GeV, using the 4 constraints of
Eqs. (33)–(36), for odderon 0 of Eq. (4). The circles are the
sieved data for �pp scattering and the squares are the sieved data
for pp scattering for

���
s
p
 6 GeV. The solid curve ( �pp) and the

dotted curve (pp) are �2 cross section fits, corresponding to a
dderon 0: Fig. 1 shows the individual fitted cross
sections (in mb) for pp and �pp for odderon 0 in
Table II, plotted against the c.m. (center-of-mass)
energy

���
s
p

, in GeV. The data shown are the sieved
data which have energies

���
s
p
 6 GeV. The fits to

the data sample with ��2
imax � 6, corresponding to

the dotted curve for �pp and the solid curve for pp,
are excellent, yielding a total renormalized �2 �
201:2, for 183 degrees of freedom, corresponding
to a fit probability of �0:2. Figure 2 shows the
simultaneously fitted �-values for pp and �pp for
odderon 0 from Table II, plotted against the c.m.
energy

���
s
p

, in GeV. The data shown are the sieved
data with

���
s
p
 6 GeV. The solid curve for �pp and

the dotted curve for pp fit the data reasonably well.
It should be noted from Table II that the magnitude
of odderon 0 is 	�0� � �0:034� 0:073 mb, a very
small coefficient. Indeed, it is compatible with
zero.
simultaneous fit to cross sections and �-values (Table II, of
(ii) O

odderon 0) of Eq. (23) and (24).
dderon 1: Fig. 3 shows the individual fitted cross
sections (in mb) for pp and �pp for odderon 1 in
094003-5
Table II, plotted against the c.m. energy
���
s
p

, in GeV.
The data shown are the sieved data which have
energies

���
s
p
 6 GeV. The fits to the data sample

with ��2
imax � 6, corresponding to the dotted

curve for �pp and the solid curve for pp, are ex-



FIG. 3 (
� �pp and
Eqs. (33
circles a
the siev
curve (p
correspo
�-value

FIG. 4 (color online). Odderon 1: The fitted �-values, � �pp and
�pp, vs

���
s
p

, in GeV, using the 4 constraints of Eqs. (33), (34),
(37), and (38), for odderon 1 of Eq. (5). The circles are the sieved
data for �pp scattering and the squares are the sieved data for pp
scattering for

���
s
p
 6 GeV. The solid curve ( �pp) and the dotted

curve (pp) are �2 cross section fits, corresponding to a simul-
taneous fit to cross sections and �-values (Table II, of odderon 1)
of Eq. (26) and (27).

FIG. 2 (color online). Odderon 0: The fitted �-values, � �pp and
�pp, vs

���
s
p

, in GeV, using the 4 constraints of Eqs. (33)–(36), for
odderon 0 of Eq. (4). The circles are the sieved data for �pp
scattering and the squares are the sieved data for pp scattering
for

���
s
p
 6 GeV. The solid curve ( �pp) and the dotted curve (pp)

are �2 cross section fits, corresponding to a simultaneous fit to
cross sections and �-values (Table II, of odderon 0) of Eq. (23)
and (24).
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cellent, yielding a total renormalized �2 � 200:9,
for 183 degrees of freedom, corresponding to a fit
probability of �0:2. Figure 4 shows the simulta-
neously fitted �-values for pp and �pp for odderon
1 from Table II, plotted against the c.m. energy

���
s
p

,
in GeV. The data shown are the sieved data with���
s
p
 6 GeV. The solid curve for �pp and the dotted
color online). Odderon 1: The fitted total cross sections
�pp in mb, vs

���
s
p

, in GeV, using the 4 constraints of
), (34), (37), and (38), for odderon 1 of Eq. (5). The
re the sieved data for �pp scattering and the squares are
ed data for pp scattering for

���
s
p
 6 GeV. The solid

�p) and the dotted curve (pp) are �2 cross section fits,
nding to a simultaneous fit to cross sections and

s (Table II, of odderon 1) of Eq. (26) and (27).

FIG. 5 (
� �pp and
Eqs. (33
circles a
the siev
curve (p
correspo
�-value

094003-6
curve for pp fit the data reasonably well. It should
be noted from Table II that the magnitude of odd-
eron 1 is 	�1� � �0:0051� 0:0077 mb, a very tiny
coefficient which is again compatible with zero.
(iii) O
dderon 2: Fig. 5 shows the individual fitted cross
sections (in mb) for pp and �pp for odderon 2 in
Table II, plotted against the c.m. energy

���
s
p

, in GeV.
color online). Odderon 2: The fitted total cross sections
�pp in mb, vs

���
s
p

, in GeV, using the 4 constraints of
), (34), (39), and (40), for odderon 2 of Eq. (6). The
re the sieved data for �pp scattering and the squares are
ed data for pp scattering for

���
s
p
 6 GeV. The solid

�p) and the dotted curve (pp) are �2 cross section fits,
nding to a simultaneous fit to cross sections and

s (Table II, of odderon 2) of Eq. (29) and (30).



FIG. 6 (color online). Odderon 2: The fitted �-values, � �pp and
�pp, vs

���
s
p

, in GeV, using the 4 constraints of Eqs. (33), (34),
(39), and (40), for odderon 2 of Eq. (6). The circles are the sieved
data for �pp scattering and the squares are the sieved data for pp
scattering for

���
s
p
 6 GeV. The solid curve ( �pp) and the dotted

curve (pp) are �2 cross section fits, corresponding to a simul-
taneous fit to cross sections and �-values (Table II, of odderon 2)
of Eq. (29) and (30).
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The data shown are the sieved data which have
energies

���
s
p
 6 GeV. The fits to the data sample

with ��2
imax � 6, corresponding to the dotted

curve for �pp and the solid curve for pp, are ex-
cellent, yielding a total renormalized �2 � 196:1,
for 183 degrees of freedom, corresponding to a fit
probability of �0:2. Figure 6 shows the simulta-
neously fitted �-values for pp and �pp for odderon
2 from Table II, plotted against the c.m. energy

���
s
p

,
in GeV. The data shown are the sieved data with���
s
p
 6 GeV. The solid curve for �pp and the dotted

curve for pp fit the data reasonably well. It should
be noted from Table II that the magnitude of odd-
eron 2 is 	�2� � 0:0042� 0:0019 mb, a very tiny
coefficient which is only about 2 standard devia-
tions from zero.
In Table III, we make predictions of total cross sections
and �-values for �pp and pp scattering for odderon 2 of
TABLE III. Predictions of high energy �pp an
odderon 2, from Table II.
���
s
p

, in GeV � �pp, in mb � �pp

300 55:14� 0:20 0:125� 0
540 60:89� 0:29 0:129� 0
1 800 75:19� 0:50 0:130� 0
14 000 107:1� 1:1 0:121� 0
50 000 131:55� 1:5 0:112� 0
100 000 146:39� 1:8 0:108� 0

094003
Table II. Only for very high energies above
���
s
p
� 14 TeV

is there any appreciable difference between � �pp and �pp,
as seen in Fig. 6. In fact, the results of all 3 fits are very
close to what was found in ref. [10], where there were no
odderon amplitudes, but had virtually identical �2=d:f:

These new upper limits on odderon amplitudes are to be
contrasted to the analysis made in 1985 by Block and Cahn
[11], where they found 	�0� � �0:25� 0:13 mb, 	�1� �
�0:11� 0:04 mb and 	�2� � �0:04� 0:02 mb, which
were about 2 standard deviations from zero, but with errors
of almost 2 to 10 times larger than the limits found in this
note. Our marked increase in present accuracy is attribut-
able to the use of the 4 analyticity constraints [13] em-
ployed in the present analysis, as well as to the use of the
improved sieved data set [10,14], which also has higher
energy points than were available in 1985.

Reactions other than pp and �pp scattering for detection
of clean signatures of odderon exchange have been pro-
posed. Specifically, Berger et al. [16,17] have calculated
the following inclusive cross sections at

���
s
p
� 20 GeV:

���� p! �0 � X� � 300 nb;

���� p! f2�1270�0 � X� � 21 nb;

���� p! a0
2 � p� � 190 nb;

(41)

whereas the H1 group [18] reports the experimental 95%
confidence level limits

���� p! �0 � X�< 49 nb;

���� p! f2�1270�0 � X�< 16 nb;

���� p! a0
2 � p�< 96 nb;

(42)

compatible with the absence of odderon exchange. In
particular, the �� p! �0 � X cross section puts a limit
on the odderon contribution to the production of C �
�mesons in �p reactions that is clearly well below the
theoretical prediction. These theoretical predictions, along
with recent lattice gauge theory results [19,20] that suggest
that the intercept of the odderon trajectory is probably
negative, are discussed in some detail in Ref. [21]. We
see that the elusive odderon, the C � P � �1 partner of
d pp total cross sections and �-values for

�pp, in mb �pp

:003 54:82� 0:20 0:134� 0:003
:004 60:59� 0:29 0:141� 0:003
:001 74:87� 0:52 0:146� 0:004
:005 106:6� 1:1 0:141� 0:005
:006 131:1� 1:6 0:134� 0:005
:006 145:9� 1:9 0:131� 0:005
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the C � P � 1 Pomeron, remains an intriguing problem of
QCD.

In conclusion, we find that the magnitude of all three
odderon amplitudes, 	�0� � �0:034� 0:073 mb, 	�1� �
�0:00051� 0:0077 mb and 	�2� � 0:0042� 0:0019 mb,
in comparison to all of the other amplitudes found in the
fit—typically of the order of 1.5 to 40 mb—are very tiny.
Indeed, all 3 are compatible with zero and we now can set
new upper limits a factor of 2 better for 	�0�, a factor of 5
better for 	�1� and a factor of 10 better for the maximum
odderon 	�2�. An accurate measurement of the �-value at
094003
the LHC, where Block and Halzen [10] predict �pp �
0:132� 0:001 when odderon amplitudes are zero and our
prediction from from Table III is �pp � 0:141� 0:005,
would really constrain the maximal odderon amplitude
	�2�.
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