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Virtual meson cloud of the nucleon and generalized parton distributions
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We present the general formalism required to derive generalized parton distributions within a
convolution model where the bare nucleon is dressed by its virtual meson cloud. In the one-meson
approximation the Fock states of the physical nucleon are expanded in a series involving a bare nucleon
and two-particle, meson-baryon, states. The baryon is assumed here to be either a nucleon or a �
described within the constituent-quark model in terms of three-valence quarks; correspondingly, the
meson, assumed to be a pion, is described as a quark-antiquark pair. Explicit expressions for the
unpolarized generalized parton distributions are obtained and evaluated in different kinematics.
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I. INTRODUCTION

The fundamental role of a nonperturbative pion cloud
surrounding the nucleon is well explained in quantum
chromodynamics (QCD) as a consequence of the
spontaneously-broken chiral symmetry. The pion cloud
associated with chiral-symmetry breaking was first dis-
cussed in the context of deep-inelastic scattering (DIS)
by Feynman [1] and Sullivan [2]. As realized by Thomas
[3], it can give an explanation of the flavor-symmetry
violation in the sea-quark distributions of the nucleon
thus naturally accounting for the excess of �d (anti)quarks
over �u (anti)quarks as observed through the violation of the
Gottfried sum rule [4–7]. Although the nucleon’s non-
perturbative antiquark sea cannot be ascribed entirely to
its virtual meson cloud [8], the role of mesons in under-
standing these data has been extensively discussed in
connection with parton distributions (for reviews, see
Refs. [9–11]).

A similar important role is expected to be played by the
meson cloud in the case of generalized parton distributions
(GPDs) that have recently been introduced and discussed
in connection with deeply virtual Compton scattering
(DVCS) and hard exclusive meson production (for reviews,
see Refs. [12–15]). Because of their intrinsic nonperturba-
tive nature GPDs cannot be calculated directly within
QCD. Up to now, only first results of their Mellin moments
have been obtained by lattice calculations (see, e.g.,
Ref. [16]). Therefore, in order to guide the planning of
possible experiments one has still to rely on models.

The first calculation performed in the MIT bag model
[17] did not consider the pion cloud explicitly. Further
calculations have been performed in the chiral quark-
soliton model [18–21]. The model is based on an effective
relativistic quantum field theory where the instanton fluc-
tuations of the gluon field are simulated by a pion field
binding the constituent quarks inside the nucleon. The
model is theoretically justified in the limit of the large
number of colors Nc, and in the leading order in the
1=Nc expansion it is not possible to obtain results for
separate flavors, only special flavor combinations being
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nonzero. GPDs have also been calculated within the
Nambu-Jona-Lasinio model [22]. A first attempt to explic-
itly include the meson cloud in a model calculation of
GPDs has been discussed in Ref. [23] in terms of double
distributions [24].

A complete and exact overlap representation of GPDs
has recently been worked out within the framework of
light-cone quantization [25,26]. A Fock-state decomposi-
tion of the hadronic state is performed in terms ofN-parton
Fock states with coefficients representing the momentum
light-cone wave function (LCWF) of the N partons. The
same approach has been followed in Refs. [27–29], where
GPDs both in the chiral-even and chiral-odd sector were
derived assuming that at the low-energy scale valence
quarks can be interpreted as the constituent quarks treated
in constituent-quark models (CQMs). This assumption is
based on the idea that there exists a scale Q2

0 where the
short range (perturbative) part of the interaction is negli-
gible and, therefore, the glue and sea are suppressed, while
a long range (confining) part of the interaction produces a
proton composed by (three) valence quarks, mainly [30].
Jaffe and Ross [31] proposed to ascribe the quark model
calculations of matrix elements to that hadronic scale Q2

0.
In this way, quark models summarizing a great deal of
hadronic properties may substitute for low-energy parame-
trizations, while evolution to larger momentum Q2 is dic-
tated by perturbative QCD.

In this paper, we will study the possibility of integrating
meson-cloud effects into the valence-quark contribution to
GPDs. Along the lines originally proposed in Refs. [32,33],
a meson-baryon Fock-state expansion is used to construct
the state j ~Ni of the physical nucleon. In the one-meson
approximation the state j ~Ni is pictured as being part of the
time a bare nucleon, jNi, and part of the time a baryon-
meson system, jBMi. In this framework, it will be shown
how to apply the convolution approach used for the stan-
dard parton distributions in deep inelastic scattering [34] to
the case of GPDs. The main idea of the convolution ap-
proach is that there are no interactions among the particles
in a multiparticle Fock state during the interaction with the
-1 © 2006 The American Physical Society
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hard photon. Therefore the external probe can scatter either
on the bare nucleon, jNi, or on one of the constituents of
the higher Fock states, jBMi. In the socalled DGLAP
region, with one (anti)quark emitted and reabsorbed by
the physical nucleon, the GPDs are obtained by folding the
quark GPDs within bare constituents (nucleons, pions,
deltas, etc.) with the probability amplitudes describing
the distribution of these constituents in the dressed initial
and final nucleon. In contrast, in the socalled ERBL region
where a q �q pair is emitted from the initial nucleon, the
GPDs are obtained from the overlap between wave func-
tions of Fock states with different parton number, which
corresponds, in the meson-cloud model, to the contribution
of the interference terms between the jBMi component in
the initial state and the bare nucleon in the final state.

The model is revisited in Sec. II where all the necessary
ingredients that one can find scattered in the literature are
consistently rederived to construct the LCWF in the
meson-cloud model. The definition of the unpolarized
GPDs are introduced in Sec. III, and the convolution for-
mulas for the GPDs in the meson-cloud model are explic-
itly derived in Sec. IV. In Sec. V we describe the model
calculation considering the case of a pure pion cloud, and
assuming a constituent-quark model to construct the
LCWFs of the bare nucleon and the constituents of the
baryon-meson Fock state. Numerical results are discussed
in Sec. VI and some conclusions are drawn in the final
section. Derivation of auxiliary quantities is detailed in
three appendices.

II. THE MESON-CLOUD MODEL FOR THE
NUCLEON

The basic assumption throughout this paper is that the
physical nucleon ~N is made of a bare nucleon N dressed by
the surrounding meson cloud so that the state of the physi-
cal nucleon is decomposed according to the meson-baryon
Fock-state expansion as a superposition of a bare-nucleon
state and states containing virtual mesons associated with
recoiling baryons. This state, with four-momentum p�N �
�p�N ; p

�
N ;pN?� � �p

�
N ; ~pN� and helicity �, is an eigenstate

of the light-cone Hamiltonian

HLC �
X
B;M

�HB
0 �q� �H

M
0 �q� �HI�N;BM��; (1)
094001
i.e.

HLCj~pN; �; ~Ni �
p2
N? �M

2
N

p�N
j~pN; �; ~Ni: (2)

Here HB
0 �q� stands for the effective-QCD Hamiltonian

which governs the constituent-quark dynamics, and leads
to the confinement of three quarks in a baryon state;
analogously, HM

0 �q� describes the quark interaction in a
meson state. Thus we assume that the three- and two-quark
states with the quantum numbers of a baryon and a meson
are the eigenstates of HB

0 �q� and HM
0 �q�, e.g.

HB
0 j~pB; �;Bi �

p2
B? �M

2
B

p�B
j~pB; �;Bi; (3)

HM
0 j~pM; �;Mi �

p2
M? �M

2
M

p�M
j~pM; �;Mi: (4)

In Eq. (1), HI�N;BM� is the nucleon-baryon-meson inter-
action, and the sum is over all the possible baryon and
meson configurations in which the nucleon can virtually
fluctuate. Using perturbation theory, we can expand the
nucleon wave function in terms of the eigenstates of the
bare Hamiltonian H0 � HB

0 �q� �H
M
0 �q�, i.e.

j~pN; �; ~Ni �
����
Z
p �
j~pN; �;Ni �

X
n1

0 jn1ihn1jHIj~pN; �;Ni
EN � En1

� i�

�
X
n1;n2

0 jn2ihn2jHIjn1ihn1jHIj~pN; �;Ni
�EN � En2

� i���EN � En1
� i��

� 	 	 	

�
; (5)

where
P
0 indicates the summation over BM intermediate

states, and Z is the wave function renormalization constant.
In the one-meson approximation, we truncate the series
expansion of Eq. (5) to the first order in HI, and as a result
we obtain
j~pN; �; ~Ni �
����
Z
p
j~pN; �;Ni �

X
B;M

j~pN; �;N�BM�i

�
����
Z
p
j~pN; �;Ni �

X
B;M

Z dp�B d2pB?
2�2��3p�B



Z dp�Md2pM?

2�2��3p�M

X
�0;�00

hB�~pB; �
0�M�~pM; �

00�jHIjN�~pN; ��i
EN � EB � EM

j~pB; �0;Bij~pM; �00;Mi: (6)
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In Eq. (6), the normalization factor
����
Z
p

only affects the
bare core jNi, and not the meson-baryon component. As
discussed in details in Refs. [8,35], this prescription is
consistent with assuming that the nucleon-baryon-meson
coupling constant in HI is taken equal to the renormalized
value gNBM, related to lowest order to the bare coupling
g0
NBM via gNBM �

����
Z
p

g0
NBM.

Finally, the hadron states in Eq. (6) are normalized as

hp0�;p0?; �
0;Hjp�;p?; �;Hi

� 2�2��3p���p0� � p����2��p0? � p?����0 : (7)

A. The nucleon wave function

In this Section starting from Eq. (6) we derive the
explicit general expression of the nucleon wave function
on the basis of bare-nucleon and baryon-meson Fock
states.

We first evaluate the energy denominator in Eq. (6) using
the following expression for the energy of the particles in
terms of light-front variables

E �
1

2

�
p� �

p2
? �M

2

p�

�
: (8)

If we write the momenta of the baryon, ~pB, and the meson,
~pM, in terms of the intrinsic (nucleon rest-frame) variables,
i.e.

p�B � yp�N ; p�M � �1� y�p
�
N ;

pB? � k? � ypN?; pM? � �k? � �1� y�pN?;

(9)
094001
we have

�EN � EB � EM� �
1

2p�N

�
M2
N �

M2
B � k2

?

y
�
M2
M � k2

?

1� y

�

�
1

2p�N
�M2

N �M
2
BM�y;k?��; (10)

where

M2
BM�y;k?� �

M2
B � k2

?

y
�
M2
M � k2

?

1� y
; (11)

is the invariant mass of the baryon-meson fluctuation.
Furthermore, the transition amplitude

hB�~pB; �
0�M�~pM; �

00�jHIjN�~pN; ��i in Eq. (6) can be re-
written as

hB�~pB; �
0�M�~pM; �

00�jHIjN�~pN; ��i

� �2��3��p�B � p
�
M � p

�
N ��

�2��pB? � pM? � pN?�


 V��0;�00 �N;BM�; (12)

where the vertex function V��0;�00 �N;BM� has the following
general expression

V��0;�00 �N;BM� � �uN��~pN; ��v
���	��~pM; �

00� ��~pB; �
0�:

(13)

Here uN is the nucleon spinor, 	 and  are the field
operators of the intermediate meson and baryon, respec-
tively, and �, �, � are bi-spinor and/or vector indices
depending on the representation used for particles of given
type.

Using the results of Eqs. (10) and (12), we find
j~pN; �; ~Ni �
����
Z
p
j~pN; �;Ni �

X
B;M

Z dyd2k?
2�2��3

1������������������
y�1� y�

p



X
�0;�00


��N;BM�
�0�00 �y;k?�jyp�N ;k? � ypN?; �0;Bij�1� y�p�N ;�k? � �1� y�pN?; �00;Mi; (14)
where we introduced the function
��N;BM�
�0�00 �y;k?� to define

the probability amplitude for a nucleon with helicity � to
fluctuate into a virtual BM system with the baryon having
helicity �0, longitudinal momentum fraction y and trans-
verse momentum k?, and the meson having helicity �00,
longitudinal momentum fraction 1� y and transverse mo-
mentum �k?, i.e.


��N;BM�
�0�00 �y;k?� �

1������������������
y�1� y�

p V��0;�00 �N;BM�

M2
N �M

2
BM�y;k?�

: (15)

We note that Eq. (14) is equivalent to the expression of the
nucleon wave function obtained in the framework of ‘‘old-
fashioned’’ time-ordered perturbation theory in the infinite
momentum frame (see Ref. [32]).
By imposing the normalization of the nucleon state as in
Eq. (7), from Eq. (14) we obtain the following condition on
the normalization factor Z

1 � Z� PBM=N; (16)

with

PBM=N �
X
B;M

Z dyd2k?
2�2��3



1

y�1� y�

X
�0;�00

jV1=2
�0;�00 �N;BM�j

2

�M2
N �M

2
BM�y;k?��

2 : (17)

Here PBM=N is the probability of fluctuation of the nucleon
in a baryon-meson state, and, accordingly, Z gives the
probability to find the bare nucleon in the physical nucleon.
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B. Partonic content of the nucleon wave function

In this Section we derive the expression of the nucleon
wave function (14) in terms of the constituent partons of
the nucleon core and of the meson-baryon components.

The light-front state of the bare nucleon is given by

j~pN; �;Ni �
X
�i;�i

Z �dx���
x
p

�
3
�d2k?�3


�N;�f�
� �fxi;ki?;�i; �igi�1;2;3�



Y3

i�1

jxip�N ;pi?; �i; �i; qi; (18)

where �N;�f�
� �fxi;ki?;�i; �igi�1;2;3� is the momentum light-

cone wave function which gives the probability amplitude
for finding in the nucleon three quarks with momenta
�xip�N ;pi? � ki? � xipN?�, and spin and isospin variables
�i and �i, respectively. In Eq. (18) and in the following
formulas, the integration measures are defined by�

dx���
x
p

�
N
�

�YN
i�1

dxi����
xi
p

�
�
�
1�

XN
i�1

xi

�
; (19)

�d2k?�N �
�YN
i�1

d2ki?

2�2��3

�
2�2��3�

�XN
i�1

ki?

�
: (20)

Next we consider the component of the meson-baryon
Fock state in Eq. (14).

The light-front state of the baryon is given by

j~pB; �
0;Bi �

X
�i;�i

Z �dx���
x
p

�
3
�d2k?�3


�B;�f�
�0 �fxi;ki?;�i; �igi�1;2;3�



Y3

i�1

jxip
�
B ;pi?; �i; �i; qi; (21)

where now the intrinsic variables of the quarks xi and k�i
refer to the baryon rest frame, i.e. xi � p�i =p

�
B and pi? �

ki? � xipB? �i � 1; 2; 3�.
An analogous expression holds for the light-front state

of the meson, i.e.
094001
j~pM; �
00;Mi �

X
�i;�i

Z dx4dx5���������
x4x5
p

dk4?dk5?

16�3 ��1� x4 � x5�


 ��2��k4? � k5?�


�M;�f�
�00 �fxi;ki?;�i; �igi�4;5�



Y5

i�4

jxip�M;pi?; �i; �i; qi; (22)

with xi � p�i =p
�
M, pi? � xipM? � ki? �i � 4; 5�.

When we insert the expressions of the baryon and meson
states in Eq. (14), it is convenient to rewrite the kinematical
variables of the partons as follows.

For i � 1, 2, 3:

xi �
p�i
p�B
�
p�i
p�N

p�N
p�B
�
�i
y
;

pi? � xipB? � ki? � xi�k? � ypN?� � ki?

� �ipN? � ki? � xik? � �ipN? � k0i?;

where �i � p�i =p
�
N is the fraction of the longitudinal

momentum of the nucleon carried by the quarks in the
baryon, and k0i? is the intrinsic transverse momentum of
the quarks with respect to the nucleon rest frame.

For i � 4, 5:

xi �
p�i
p�M
�
p�i
p�N

p�N
p�M
�

�i
1� y

;

pi? � xipM? � ki? � xi��k? � �1� y�pN?� � ki?

� �ipN? � ki? � xik? � �ipN? � k0i?;

with �i � p�i =p
�
N and k0i? the intrinsic variables of the

quarks in the meson with respect to the nucleon rest frame.
Accordingly we transform the variables of integration as
follows.

For i � 1, 2, 3:

xi ! �i � yxi; ki? ! k0i? � ki? � xik?:

For i � 4, 5:

xi ! �i � �1� y�xi; ki? ! k0i? � ki? � xik?:

The meson-baryon component of the nucleon wave
function in Eq. (14) can then be written as
j~pN; �;N�BM�i �
Z

dyd2k?
Z y

0

Y3

i�1

d�i�����
�i
p

Z 1�y

0

Y5

i�4

d�i�����
�i
p

Z Y5

i�1

dk0i?
�2�2��3�4

�
�
y�

X3

i�1

�i

�
��2�

�
k? �

X3

i�1

k0i?

�
�
�

1�
X5

i�1

�i

�


 ��2�
�X5

i�1

k0i?

�X
�0;�00

X
�i;�i

V��0;�00 �N;BM�

M2
N �M

2
BM�y;k?�

~�B;�f�
�0 �f�i;k

0
i?;�i; �igi�1;2;3� ~�

M;�f�
�00 �f�i;k

0
i?;�i; �igi�4;5�



Y5

i�1

j�ip
�
N ;k

0
? � �ipN?; �i; �i; qi; (23)

where the wave functions ~�B;�f�
�0 and ~�M;�f�

�00 incorporate the Jacobian J of the transformation xi ! �i, i.e.
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~�
B;�f�
�0 �f�i;k

0
i?;�i; �igi�1;2;3� �

���������������������������
J ��1; �2; �3�

q
~�B;�f�
�0 �fxi;ki?;�i; �igi�1;2;3� �

1

y3=2
~�B;�f�
�0 �fxi;ki?;�i; �igi�1;2;3�; (24)

~�
M;�f�
�00 �f�i;k

0
i?;�i; �igi�4;5� �

��������������������
J ��4; �5�

q
~�M;�f�
�00 �fxi;ki?;�i; �igi�4;5� �

1

�1� y�
~�M;�f��fxi;ki?;�i; �igi�4;5�: (25)

Finally, by introducing the following definition

~�
5q;�f�
� �y;k?; f�i;k0i?;�i; �igi�1;...;5� �

X
�0;�00

V��0;�00 �N;BM�

M2
N �M

2
BM�y;k?�

~�B;�f�
�0 �f�i;k

0
i?; �i; �igi�1;2;3� ~�

M;�f�
�00 �f�i;k

0
i?; �i; �igi�4;5�;

(26)

Eq. (23) can be simplified to the following expression:

j~pN; �;N�BM�i �
Z

dyd2k?
Z y

0

Y3

i�1

d�i�����
�i
p

Z 1�y

0

Y5

i�4

d�i�����
�i
p

Z Y5

i�1

dk0i?
�2�2��3�4

�
�
y�

X3

i�1

�i

�
��2�

�
k? �

X3

i�1

k0i?

�
�
�

1�
X5

i�1

�i

�


 ��2�
�X5

i�1

k0i?

�X
�i;�i

~�5q;�f�
� �y;k?; f�i;k0i?;�i; �igi�1;...;5�

Y5

i�1

j�ip�N ;k
0
? � �ipN?; �i; �i; qi; (27)

where ~�5q;�f�
� can be interpreted as the probability amplitude for finding in the nucleon a configuration of five partons

composed by two clusters of three and two quarks, with total momentum �yp�N ;pB?� and ��1� y�p�N ;pM?�, respectively.

III. THE UNPOLARIZED GENERALIZED PARTON DISTRIBUTIONS

In the definition of GPDs it is useful to choose a symmetric frame of reference where the virtual photon momentum q�

and the average nucleon momentum �p�N �
1
2 �p

�
N � p

0�
N � are collinear along the z axis and in opposite directions, i.e.

pN �
�
m2 ��2

?=4

2�1� �� �p�N
; �1� �� �p�N ;�

�?
2

�
�

�
m2 ��2

?=4

2�1� �� �p�N
; ~pN

�
;

p0N �
�
m2 ��2

?=4

2�1� �� �p�N
; �1� �� �p�N ;�

�?
2

�
�

�
m2 ��2

?=4

2�1� �� �p�N
; ~p0N

�
:

(28)

Furthermore, Q2 � �q�q� is the spacelike virtuality that defines the scale of the process, t � �2 � �p0�N � p
�
N�

2 is the
invariant transferred momentum square, and the skewness � describes the longitudinal change of the nucleon momentum,
2� � ���= �p�N .

According to Ref. [12], for each flavor q the soft amplitude corresponding to unpolarized GPDs reads

Fq�0N�N
� �x; �;�?� �

1

2
��������������
1� �2

p Z dz�

2�
ei �x �p�Ny

�
hp0N; �

0
Nj

� 
�
�

1

2
z
�
�� 

�
1

2
z
�
jpN; �Ni

��������z��z?�0
; (29)

where �x defines the fraction of the quark light-cone momentum ( �k� � �x �p�N ), �N (�0N) is the helicity of the initial (final)
nucleon, and the quark-quark correlation function is integrated along the light-cone distance z� at equal light-cone time
(y� � 0) and zero transverse separation (z? � 0) between the quarks. The leading-twist (twist-two) part of this amplitude
can be parametrized as

Fq�0N�N
� �x; �;�?� �

1

2 �p�N
��������������
1� �2

p �u�~p0N; �
0
N��

�u�~pN; �N�H
q� �x; �;�?� �

1

2 �p�N
��������������
1� �2

p �u�~p0N; �
0
N�



i����

2MN
u�~pN; �N�Eq� �x; �;�?�; (30)
094001-5
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where Hq� �x; �;�?� and Eq� �x; �;�?� are the chiral-even
helicity conserving and helicity flipping GPDs for partons
of flavor q, respectively. Taking different nucleon-helicity
combinations, we have

Fq��� �x; �;�?� � Fq��� �x; �;�?�

� Hq� �x; �;�?� �
�2

1� �2 E
q� �x; �;�?�;

(31)

Fq��� �x; �;�?� � ��F
q
��� �x; �;�?��

�

� �
������������
t0 � t
p

2M
1��������������

1� �2
p Eq� �x; �;�?�; (32)

where

� �
�1 � i�2

j�?j
; (33)

and

�t0 �
4�2M2

N

1� �2 (34)

is the minimal value for �t at given �.
FIG. 1. Deeply virtual Compton scattering from the bare nu-
cleon.
IV. THE CONVOLUTION MODEL FOR THE
UNPOLARIZED GPDS

Before deriving the convolution formulas for the GPDs
in the meson-cloud model, we need to specify our con-
ventions for the kinematical variables. The Fock expansion
of the nucleon wave function in Eq. (18) as well as the
LCWF for the hadron states in Eqs. (21), (22), and (27) do
not depend on the momentum of the hadron, but only on
the momentum coordinates of the constituents relative to
the hadron momentum. This fact reflects the well known
result in light-front dynamics that the center of mass
motion can be separated from the relative motion of the
constituents. On the other hand, the arguments of the
LCWF can most easily be identified in reference frames
where the hadron has zero transverse momentum. We call
such frames ‘‘hadron frames,’’ and more specifically we
introduce the names ‘‘hadron-in’’ and ‘‘hadron-out’’ for
the frames where the incoming and outgoing hadron has
zero transverse momentum, respectively [25]. In general,
we denote the momenta of constituents belonging to the
incoming hadrons with unprimed, and the momenta of
constituents belonging to the outgoing hadron with primed
variables. Furthermore, we label quantities in the hadron-in
(hadron-out) frame with an additional tilde (hat). The
relations between the momenta of the constituents in the
‘‘average frame’’ defined in Eq. (28) and the variables in
the hadron frames are obtained via a transverse boost, i.e. a
transformation that leaves the plus component of any four-
vector z unchanged. It reads
094001
�z�; z�;z?� !
�
z�; z� �

z? 	b?
b�

�
z�b2

?

2�b��2
;z? �

z�

b�
b?

�
;

(35)

where the two parameters b� and b? are given by b� �
�1� �� �p�N and b? � ��?=2 for the transformation from
the average frame to the hadron-in frame. Likewise, a
transverse boost with parameters b� � �1� �� �p�N and
b? � ��?=2 leads from the average frame to the
hadron-out frame.

In the following we will derive the convolution formulas
for the GPDs in the three different regions corresponding to
� � �x � 1, �� � �x � �, and �1 � �x � ��.

A. The region � � �x � 1

In this region the GPDs describe the emission of a quark
from the nucleon with momentum fraction �x� � and its
reabsorption with momentum fraction �x� �. In the
meson-cloud model, the virtual photon can hit either the
bare nucleon N or one of the higher Fock states. As a
consequence, the DVCS amplitude can be written as the
sum of two contributions

Fq�0N�N
� �x; �;�?� � ZFq;bare

�0N�N
� �x; �;�?�

� �Fq�0N�N
� �x; �;�?�; (36)

where Fq;bare is the contribution from the bare nucleon,
described in terms of Fock states with three-valence
quarks, and �Fq is the contribution from the BM Fock
components of the nucleon state, corresponding to five-
parton configurations. This last term can further be split
into two contributions, with the active quark belonging
either to the baryon (�Fq=BM) or to the meson (�Fq=MB),
i.e.

�Fq�0N�N
� �x; �;�?� �

X
B;M

��Fq=BM�0N�N
� �x; �;�?�

� �Fq=MB�0N�N
� �x; �;�?��: (37)

The valence-quark contribution corresponding to the
diagram of Fig. 1 can be calculated in terms of the light-
front overlap representation derived in Ref. [25], and ap-
plied here to the case of N � 3 valence quarks. It reads
-6



FIG. 2. Deeply virtual Compton scattering from the virtual
(a) baryon and (b) meson components of a dressed nucleon.
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Fq;bare
�0N�N
� �x; �;�?� �

1

�1� �2�

X
�i�i

X3

j�1

�sjq
Z
�d�x�3�d2 �k?�3


 �� �x� �xj��
N;�f��
�0N

�fx̂0i; k̂
0
i;�i; �ig�


�N;�f�
�N
�f~xi; ~ki;�i; �ig�; (38)

where the LCWF �N;�f�
� �fxi;ki?;�i; �ig� is the bare-

nucleon LCWF of Eq. (18), and sj labels the quantum
numbers of the jth active parton. The integration in
Eq. (38) is over the average quark transverse momenta
�ki? and the average quark longitudinal momentum frac-
tions �xi � �k�i = �p�N . The kinematical variables appearing as
arguments in the LCWFs in Eq. (38) have been defined in
the ‘‘hadron-in’’ and ‘‘hadron-out’’ frames following the
conventions of Ref. [25]. In particular, the momenta of the
partons belonging to the incoming hadron are given by

~x i �
�xi

1� �
; ~ki? � �ki? �

�xi
1� �

�?
2
; (39)

for the spectator quarks (i � j);

~x j �
�xj � �

1� �
; ~kj? � �kj? �

1� �xj
1� �

�?
2
; (40)

for the active quark. Likewise, the LCWF arguments for
the outgoing hadron are explicitly given by

x̂ 0i �
�xi

1� �
; k̂0i? � �ki? �

�xi
1� �

�?
2
; (41)

for the spectator quarks (i � j);
094001
x̂ 0j �
�xj � �

1� �
; k̂0j? � �kj? �

1� �xj
1� �

�?
2
; (42)

for the active quark.
We now consider the contribution from the BM compo-

nent of the nucleon wave function, starting from the
�Fq=BM�0N�N

term in Eq. (37) represented in Fig. 2(a). In this

case, the baryon is taken out from the initial nucleon with a
fraction �yB � � of the average plus-momentum �p�N , and
after the interaction with the initial and final photons is
reinserted back into the final nucleon with a fraction �yB �
� of the average plus-momentum �p�N . The transverse mo-
mentum of the baryon is �pB? ��?=2 before, and �pB? �
�?=2 after the scattering process. The meson substate is a
spectator during the whole scattering process, with mo-
mentum in the initial and final state equal to � �p�M;� �pB?�.

The baryon contribution to the �Fq�0N�N
scattering ampli-

tude can easily be evaluated by calculating the matrix
element in Eq. (29) between the BM components of the
initial and final nucleon expressed in the hadron-in and
hadron-out frame, respectively. For the initial state, they
are given by
X
B;M

Z d~yB������
~yB
p

d~yM������
~yM
p ��1� ~yB � ~yM�

Z d2 ~kB?d2 ~kM?

2�2��3
�2�~kB? � ~kM?�



X
�0;�00


�N�N;BM�
�0�00 �~yB; ~kB?�j� �yB � �� �p

�
N ; �pB? �

�?
2
; �0ij �p�M;� �pB?; �00i: (43)

The coordinates of the baryon and meson states in the average frame are related to the variables in the hadron-in frame
through the transverse boost in Eq. (35) as explained before. They are explicitly given by

~y B �
�yB � �
1� �

; ~kB? � �pB? �
1� �yB
1� �

�?
2
; (44)
~yM �
�yM

1� �
; ~kM? � �pM? �

�yM
1� �

�?
2
: (45)

Analogously, the BM components of the final nucleon state are given by
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X
B;M

Z dŷ0B������
ŷ0B

p dŷ0M������
ŷ0M

p ��1� ŷ0B � ŷ
0
M�
Z d2k̂0B?d2k̂0M?

2�2��3
�2�k̂0B? � k̂0M?�



X
�0;�00



�0N�N;BM�
�0�00 �ŷ0B; k̂

0
B?�j� �yB � �� �p

�
N ; �pB? �

�?
2
; �0ij �p�M;� �pB?; �00i; (46)

where the coordinates in the hadron-out frame and in the average frame are related by

ŷ 0B �
�yB � �
1� �

; k̂0B? � �pB? �
1� �yB
1� �

�?
2
; (47)

ŷ 0M �
�yM

1� �
; k̂0M? � �pM? �

�yM
1� �

�?
2
: (48)

The final result for the baryon contribution to the �Fq�0N�N
scattering amplitude is

�Fq=BM�0N�N
� �x; �;�?� �

1��������������
1� �2

p X
M

X
�;�0;�00

Z 1

�x

d�yB
�yB

Z d2 �pB?
2�2��3

Fq=B�0�

�
�x

�yB
;
�
�yB
;�?

�

�N�N;BM�
��00 �~yB; ~kB?��


�0N�N;BM�
�0�00 �ŷ0B; k̂B?��

�;

(49)

where

Fq=B�0�

�
�x

�yB
;
�
�yB
;�?

�
�

1

2
����������������������
1� �2= �y2

B

q Z dz�

2�
ei �p�B z

� �x= �yBhp0�B ;p
0
B?; �

0j � 
�
�
z
2

�
�� 

�
z
2

�
jp�B ;pB?; �i

��������z��z?�0
(50)

is the scattering amplitude from the active baryon in the BM component of the nucleon. The overlap representation of Fq=B��0

in terms of LCWFs is given explicitly in Appendix A.
Analogously, we can derive the meson contribution to the scattering amplitude, corresponding to the case when the

meson takes part to the interaction process while the baryon remains as a spectator [see Fig. 2(b)]. In such a case the role of
the meson and baryon substates is interchanged with respect to the situation described before. The meson is taken out from
the initial nucleon with a fraction �yM � � of the average plus-momentum �p�N , and after the interaction with the initial and
final photons is reinserted back into the final nucleon with a fraction �yM � � of the average plus-momentum �p�N . The
transverse momentum of the meson is �pM? ��?=2 before, and �pM? ��?=2 after the scattering process. Vice versa, the
baryon substate is inert during the whole scattering process, with the same momentum � �p�B ;� �pM?� in the initial and final
state. Therefore the meson contribution to the �Fq�0N�N

scattering amplitude is given by

�Fq=MB�0N�N
� �x; �;�?� �

1��������������
1� �2

p X
B

X
�;�0;�00

Z 1

�x

d�yM
�yM

Z d2 �pM?
2�2��3

Fq=M�0�

�
�x

�yM
;
�
�yM
;�?

�

�N�N;BM�
�00� �1� ~yM;�~kM?�


 �

�0N�N;BM�
�00�0 �1� ŷ0M;�k̂M?��

�; (51)

where

Fq=M�0�

�
�x

�yM
;
�
�yM
;�?

�
�

1

2
�����������������������
1� �2= �y2

M

q Z dz�

2�
ei �p�Mz

� �x= �yM hp0�M ;p
0
M?; �

0j � 
�
�
z
2

�
�� 

�
z
2

�
jp�M;pM?; �i

��������z��z?�0
(52)

is the scattering amplitude from the active meson in the BM component of the nucleon. In Eq. (51), the meson coordinates
in the hadron-in and hadron-out frames are related to the variables in the average frame by

~yM �
�yM � �
1� �

; ~kM? � �pM? �
1� �yM
1� �

�?
2
; (53)

ŷ 0M �
�yM � �
1� �

; k̂0M? � �pM? �
1� �yM
1� �

�?
2
: (54)

The explicit expression of Fq=M��0 in terms of LCWFs is given in Appendix B.
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1. Forward limit

In the limit �� ! 0, where �x goes over to the parton
momentum fraction x, and � � �? � 0, the scattering
amplitude without nucleon helicity flip reduces to the
ordinary parton distribution, i.e.

Fq���x; 0; 0� � Fq���x; 0; 0� � q�x� � Zqbare�x� � �q�x�:

(55)
094001
In Ref. [27], we derived the forward limit of the valence-
quark contribution, i.e. Fq;bare

�� �x; 0; 0� � qbare�x�: Here we
show that the forward limit of Eqs. (49) and (51) gives the
�q�x� contribution to the parton distribution considered in
Ref. [9] within the meson-cloud model.

In the case of the active baryon, we have ~yB � ŷ0B � yB
and ~kB? � k̂0B? � kB?, and Eq. (49) reduces to the fol-
lowing expression
�Fq=BM�� �x; 0; 0� �
X
M

Z 1

x
dyB

Z d2kB?

2�2��3
1

yB

X
�;�00
j
��N;BM���00 �yB;kB?�j

2Fq=B��

�
x
yB
; 0; 0

�
�
X
M

Z 1

x

dyB
yB

qB

�
x
yB

�
fBM;N�yB�;

(56)

where the splitting function

fBM;N�yB� �
Z d2kB?

2�2��3
X
�;�00
j
��N;BM���00 �yB;kB?�j

2 (57)

coincides with the definition given in Ref. [9].
Analogously, in the case of the active meson we have ~yM � ŷ0M � yM and ~kM? � k̂0M? � kM? and Eq. (51) reduces to

the following expression

�Fq=MB�� �x; 0; 0� �
X
B

X
�;�00

Z 1

x

dyM
yM

Z d2kM?

2�2��3
j
��N;BM���00 �1� yM;�kM?�j

2Fq=MB��

�
x
yM

; 0; 0
�

�
X
B

Z 1

x

dyM
yM

fMB;N�yM�qM

�
x
yM

�
; (58)
FIG. 3. Deeply virtual Compton scattering in the ERBL
region.
where we use the definition

fMB;N�yB� �
Z d2kB?

2�2��3
X
�;�00
j
��N;BM���00 �1� yM;�kM?�j

2:

(59)

Since the probability for the dressed nucleon to consist
of a bare baryon and meson is independent of which one
interacts with the probe, we assumed in Eq. (59) the
following condition

fMB;N�yM� � fBM;N�1� yM�: (60)

This property cannot be derived a priori from the definition
of the convolution model, but it is an additional physical
input which may be used to restrict the vertex functions of
the model as we will discuss in Sec. V. Moreover, the
relation (60) automatically ensures both momentum and
baryon number sum rules.

As a final result, the contribution of the higher Fock
states to the parton distribution is given by

�q�x� �
X
MB

�Z 1

x

dy
y
fMB=N�y�qM

�
x
y

�

�
Z 1

x

dy
y
fBM=N�y�qB

�
x
y

��
; (61)
which coincides with the formulation of the meson-cloud
model in deep-inelastic process (see, for example, Ref. [9]
and references therein).

B. The region �1 � �x � ��

In this region, the scattering amplitude describes the
emission of an antiquark from the nucleon with momentum
fraction �� �x� �� and its reabsorption with momentum
fraction �� �x� ��. As a consequence, the only nonvanish-
ing contribution can come from the active antiquark in the
meson substate of the BM Fock component of the nucleon
-9
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wave function, i.e.

Fq�0N�N
� �x; �;�?� � �Fq=MB�0N�N

� �x; �;�?�; (62)

where �Fq=MB�0N�N
� �x; �;�?� corresponds to the meson scattering amplitude illustrated in Fig. 2(b), and is given by

�Fq=MB�0N�N
� �x; �;�?� �

1��������������
1� �2

p X
B

X
�;�0;�00

Z 1

� �x

d�yM
�yM

Z d2 �pM?
2�2��3

Fq=M�0�

�
�x

�yM
;
�
�yM
;�?

�

�N�N;BM�
�00� �1� ~yM;�~kM?�


 �

�0N�N;BM�
�00�0 �1� ŷ0M;�k̂M?��

�: (63)
Here the relations between the coordinates in the hadron
frames and in the average frame are the same as in
Eqs. (53) and (54). In addition, we note that Eq. (63)
corresponds to the same convolution formula (51), with
the integration range over �yM between � �x and 1, and with
the explicit LCWF overlap representation of Fq=M�0� in the
range �1 � �x � �� given in Appendix B.

1. Forward limit

The scattering amplitude from the meson substate has
the following forward limit:

Fq=M��

�
x
yM

; 0; 0
�
� q

�
x
yM

�
� � �q

�
�

x
yM

�
: (64)

As a consequence, in the forward limit Eq. (63) reduces to

�Fq=MB�� �x; 0; 0� � �
X
B

Z 1

�x

dyM
yM

�qM

�
�

x
yM

�
fMB;N�yM�

� �� �q��x�: (65)

C. The region �� � �x � �

In this region, the scattering amplitude describes the
emission of a quark-antiquark pair from the initial nucleon.
As discussed in Ref. [25], in the Fock-state decomposition
of the initial- and final-state partons we have to consider
only terms where the initial state has the same parton
content as the final state plus an additional quark-antiquark
pair. In the present meson-cloud model, the initial state is
094001
given by the five-parton component in Eq. (27), while the
final state is described by the three-valence-quark configu-
ration given in Eq. (18), multiplied by the normalization
factor

����
Z
p

. To label the coordinates of the initial and final
partons we follow the conventions explained in Ref. [25].
This means that we use the same numbering for the spec-
tator partons in the LCWFs of the initial and final-state
partons. Thus the three partons in the outgoing nucleon are
numbered not as i � 1, 2, 3, but as i � 1; . . . ; 5 with the
labels of the active quark (j) and the active antiquark (j0)
omitted. In principle, we can distinguish between two
cases: i) the active quark belongs to the baryon substate
�j � 1; 2; 3�, and the active antiquark is in the parton
configuration of the meson substate of the initial nucleon;
ii) both the active quark and antiquark belong to the meson
substate of the initial nucleon (j � 4 and j0 � 5) and the
baryon is a spectator during the scattering process.
However, this last contribution is vanishing because it
involves the overlap of two orthogonal states, i.e. the
wave functions of the baryon in the initial state and of
the bare nucleon in the final state. As a consequence, the
only nonvanishing contribution corresponds to the case i)
which is pictured in Fig. 3.

The final result for the scattering amplitude in the ERBL
region is derived using the overlap representation of
Ref. [25] with the initial wave function describing the
initial 5-parton configuration given in Eq. (27) and the
final state described by the valence-quark wave function
in Eq. (18). It reads
Fq�0N�N
�

����
Z
p

�1� ���1� ��2
X
B;M

X
�i;�i

X3

j�1

X
j0
�sj;sq��j;��j0Kc

Z
d~yB

Z
d~yM��1� ~yB � ~yM�

Z
d2 ~kB?

Z
d2 ~kM?��~kB? � ~kM?�



Z

d �xj
Z Y

i�1
i�j;j0

d�xi
Z

d2 �kj?

Z Y5

i�1
i�j;j0

d2 �ki?
1

�2�2��3�3
�� �xj � �x��

 
~yB �

X3

i�1
i�j

�xi
1� �

�
�xj � �

1� �

!
�

 
1� ��

X5

i�1
i�j;j0

�xi

!


 �2

�
~kB? �

X3

i�1

�ki? �
�?
2
�1� ~yB�

�
�2

 
�?
2
� 5

X5

i�1
i�j;j0

�ki?

!
~�5q;�f�
�N
�~yB; ~kB?; f~xi; ~ki?; �i; �igi�1;...;5�


 � ~�3q;�f�
�0N
�fx̂0i; k̂

0
i?; �i; �igi�1;2;3��

�; (66)

where Kc is a color factor which comes from the color component of the initial- and final-state wave functions. By taking
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the color component equal to
P
ijk1=

���
6
p
"ijkjq

iqjqki and
P
ij1=

���
3
p
�ijjq

iqji for the baryon and meson state, respectively, we
have Kc � 1=

���
3
p

.
In Eq. (66) the coordinates of the initial partons in the hadron-in frame are related to the parton momenta in the average

frame by

~xi �
�xi

1� �
; ~ki? � �ki? �

�xi
1� �

�?
2
; for i � j; j0;

~xj �
�xj � �

1� �
; ~kj? � �kj? �

1� �xj
1� �

�?
2
; ~xj0 � �

�xj � �

1� �
; ~kj0? � � �kj? �

1� �xj
1� �

�?
2
; (67)

where for the average momentum of the spectators partons we used the standard definition �ki �
1
2 �ki � k

0
i�, while for the

active quark we defined �kj �
1
2 �kj � k

0
j�; i.e. half the relative momentum between the active quark and antiquark. The

corresponding relations for the coordinates of the final partons in the hadron-out and average frames are

x̂ 0i �
�xi

1� �
; k̂0i? � �ki? �

�xi
1� �

�?
2
; for i � j; j0: (68)

Finally, the five-parton component of the initial-state wave function ~�5q;�f�
�N

in Eq. (66) is given by~ki? ~�i?

~�5q;�f�
�N
�~yB; ~kB?; f~xi; ~�i?; �i; �igi�1;...;5� �

1

~y3=2
B

1

~yM

X
�0;�00

V�N�0;�00 �N;BM�

M2
N �M

2
BM�~yB; ~kB?�

~�B;�f�
�0 �f

~�i; ~�i?; �i; �igi�1;2;3�


 ~�M;�f�
�00 �f

~�i; ~�i?; �i; �igi�4;5� (69)
with the coordinates in the baryon-in (�i; with i � 1, 2, 3)
and meson-in (�i; with i � 4, 5) frames defined as

~� i �
~xi
~yB
; ~�i? � ~ki? � ~�i~kB?; i � 1; 2; 3;

~�i �
~xi
~yM
; ~�i? � ~ki? � ~�i~kM?; i � 4; 5:

(70)
V. MODEL FOR THE PION CLOUD OF THE
PROTON

In this section we specify the ingredients for the model
calculation of the unpolarized GPDs of the proton. We
restrict ourselves to consider only the pion-cloud contribu-
tion disregarding the contributions from mesons of higher
masses which are suppressed. As a consequence, the ac-
companying baryon in the jB�i component of the dressed
proton is a nucleon or a �.

A. Vertex functions

The vertex functions for the transition p! B� are given
by

V��0;0�p;N�� � igpN� �u�0 �~p0N��5u��~pp�;

V��0;0�p;��� � igp�� �u��0 �~p
0
���pp � p

0
���u��~pp�

(71)

where u��~pN� and u��0 �~p�� are the nucleon spinor and
the Rarita-Schwinger spinor, respectively, defined in
Appendix C.
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Because of the extended nature of the vertices one has to
replace the coupling constants in Eq. (71) with phenome-
nological vertex form factors,GNBM�y; k

2
?�, which parame-

trize the unknown dynamics at the vertices. We use the
following parametrization [36]

GNBM�y; k
2
?� � gNBM

�
�2
BM �M

2
N

�2
BM �M

2
BM�y; k

2
?�

�
2
; (72)

where �BM is the cutoff parameter and the invariant mass
of the baryon-meson fluctuation M2

BM is given in Eq. (11).
We note that the dipole parametrization of the vertex form
factors satisfies the condition GNBM�y; k

2
?� � GNBM�1�

y; k2
?�which automatically guarantees the property (60) for

the splitting functions.
For the coupling constants we use the numerical values

given in Refs. [36,37], i.e. g2
NN�=4� � 13:6 and

g2
N��=4� � 11:08 GeV�2, with gNN� � gpp�0 and
gN�� � gp����� . The coupling of a given type of transi-
tion with different isospin components is obtained in terms
of isospin Clebsch-Gordan coefficients, i.e. gpn�� �
�

���
2
p
gpp�0 , gp�0�� � �gp���0=

���
2
p
� gp�����=

���
3
p

.
The violation of the Gottfried sum rule and flavor sym-

metry puts constraints on the magnitude of the cutoff
parameters. We use the values �BM � 1:0 GeV and
�BM � 1:3 GeV for the �N and �� components, respec-
tively, because they give contributions to the �u and �dwhich
are consistent with the requirement that the meson-cloud
component of the sea-quark contribution cannot be larger
than the measured sea quark and also with flavor-symmetry
violation [36].
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With the specified parameters, in the case of the p!
B� transition one has [37],

PN�=p � Pp�0=p � Pn��=p � 3Pp�0=p � 13%;

P��=p � P�����=p � P���0=p � P�0��=p � 2P�����=p

� 11%:
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B. LCWFs in the constituent-quark model

As explained in details in Ref. [27], the LCWFs of the
baryons and pion in Eqs. (21) and (22), respectively, can be
expressed in terms of the canonical wave functions, solu-
tions of the instant-form Hamiltonian for the N-valence
quarks of the hadron, through the following relation
��f�� �fxi;ki?;�i; �igi�;1;...;N� � 2�2��3
1�������
M0

p
YN
i�1

�
!i

xi

�
1=2 X

�1;...;�N

��c�� �fki;�i; �i; �igi�1;...;N�
YN
i�1

D1=2�
�i�i
�Rcf�~ki��; (73)
where ��c�� is the canonical wave function, and
D1=2�
�i�i
�Rcf�~ki�� are the Melosh rotations defined in

Ref. [27]. In Eq. (73), !i �
������������������
m2
i � k2

i

q
is the energy of

the i-th quark, and M0 �
P
i!i is the free mass of the

system of N noninteracting quarks.
In the case of the nucleon, we adopt the canonical wave

function of the relativistic CQM model of Ref. [38], given
by a product of a space and a spin-isospin term which is
SU(6) symmetric. For a more detailed discussion of the
model see Ref. [38].

The � is described as a state of isospin T � 3=2 ob-
tained as a pure spin-flip excitation of the nucleon, with the
corresponding spatial part of the wave function equal to
that of the nucleon.

Finally, the canonical wave function of the pion is taken
from Ref. [39] and reads

��;�c�� ~k1; ~k2;�1; �2� �
i

�3=4�3=2

�
1

2
�1

1

2
�2j00

�

 exp��k2=�2�2��; (74)

with ~k � ~k1 � � ~k2, and � � 0:3659 GeV. The choice of
the model from Ref. [39] is consistent with the CQM we
adopt for the nucleon and the �, since the central potential
between the two constituent quarks in the pion is described
as a linear confining term plus Coulomb-like interaction.
As explained in more details in Ref. [39], the canonical
expression (74) represents a variational solution to the
mass equation. The phase of the pion wave function (74)
is consistent with that of the antiquark spinors of Ref. [40].

VI. RESULTS

The general formalism developed in the preceding sec-
tions has been applied to calculate the unpolarized GPDs
Hq and Eq for the proton dressed by a pion cloud. The
different contributions coming from the p! BM fluctua-
tions are derived from the basic p! p�0 and p!
����� transitions. Because of the isospin relations be-
tween the different charged channels and the SU(6) sym-
metry of the spin-isospin part of the proton wave function,
in the region � � �x � 1 the other contributions are ob-
tained making use of the following relations:

�Fu=n�
�
� 2�Fd=p�

0
; �Fd=n�

�
� 2�Fu=p�

0
;

�Fu=�0�� � 1
4�F

u=���0
; �Fd=�0�� � �Fd=���0

;

�Fu=����� � 9
4�F

u=���0
; �Fu=�

0p � �Fd=�
0p;

�Fu=�
�n � 4�Fu=�

0p; �Fu=�
��0
� �Fu=�

0�� ;

�Fd=�
���� � 3�Fd=�

0�� : (75)

Similarly, in the�1 � �x � �� region we have the follow-
ing relations:

�Fd=�
�n � 4�Fd=�

0p; �Fd=�
��0
� �Fd=�

0�� ;

�Fu=�
���� � 3�Fu=�

0�� ; �Fd=�
0p � �Fu=�

0p:

(76)

In addition, for � � �x � 1, we have

�Fu=�
0p� �x; �; t� � ��Fd=�

0p�� �x; �; t�;

�Fd=�
0p� �x; �; t� � ��Fu=�

0p�� �x; �; t�;

�Fd=�
����� �x; �; t� � ��Fu=�

������ �x; �; t�:

(77)

The multidimensional integration required for the nu-
merical computation of the different contributions to Fq�0N�N
was implemented in a parallel computation using the par-
allelized version of the VEGAS routine of Ref. [41]. In this
way one makes easier an otherwise time-consuming com-
putation. The results presented in this Section have been
obtained for some combinations of t and � as an example
of the effects introduced by the sea.

First let us study the forward limit, � � 0, t � 0.
In Fig. 4 the spin-averaged Hq and the helicity-flip Eq

GPDs are plotted together with the separated contributions
from the bare proton (dashed-dotted line), the baryon
(dashed lines) and the meson (dotted lines) in the baryon-
pion fluctuation. All these contributions add up incoher-
ently to give the total result (full curves). The bare-proton
contribution is the same as that already calculated in
Ref. [27], rescaled by the wave function renormalization
constant Z. It is always positive within its support
(0 � �x � 1) with the exception of Ed for which it is
-12
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negative. The same behavior characterizes the baryon con-
tribution from the baryon-pion fluctuation that is also
limited to the range 0 � �x � 1, consistently with the as-
sumption that the only active degrees of freedom for such a
baryon are the valence quarks. Both contributions vanish at
the end points of their support. The sea-quark contribution,
extending all over the full range �1 � �x � 1, is deter-
mined by the antiquark residing in the meson of the
baryon-pion fluctuation. The resulting effect of the pion
cloud is thus to add a contribution for negative �x and to
increase the magnitude of the GPDs for positive �x with
respect to the case of the bare proton. In particular, for
positive and small �x the pion-cloud contribution as a whole
is comparable to that of the bare proton, confirming the
important role of the sea at small �x found within the chiral
quark-soliton model [18,20,21]. Since for �x > 0 the con-
tribution of the baryon-meson fluctuation is effective only
at low �x values, the same faster fall off ofEq with respect to
Hq for �x! 1 is obtained as in Ref. [27]. This is a con-
sequence of the decreasing role of the Melosh transform to
generate angular momentum in Eq with increasing quark
momentum.

In all cases at �x � 0 the GPDs have a zero. This is due to
fact that in the overlap integrals the various terms of the
proton wave function are taken at one of their end points.
This peculiar feature was discussed in Ref. [42] and ex-
plained as an artifact due to the truncated Fock-state ex-
pansion. The singular behavior of the usual parton
distributions for �x! 0 cannot be obtained from any finite
number of Fock-state contributions, all of which vanish at
�x � 0.

In any case, the forward limit of the first moment sum
rules for the spin-averaged GPDs,
094001
Z 1

�1
dxHu�x; 0; 0� � 2;

Z 1

�1
dxHq�x; 0; 0� � 1; (78)

is correctly fulfilled. For the helicity-flip GPDs the first
moment sum rule readsZ 1

�1
dxEq�x; 0; 0� � �q; (79)

where �u (�d) is the anomalous magnetic moment of the u
(d) quarks, with �u � �d � 3��p � �n� and �u � �d �
�p � �n, �p and �n being the proton and neutron anoma-
lous magnetic moments, respectively.

Experimentally, we have �p � 1:793 and �n � �1:913,
thus giving �u � 1:673 and �d � �2:033. Without the
pion cloud the values of the nucleon anomalous magnetic
moments were found to be rather far from the experimental
ones, i.e. �p � 0:91 and �n � �0:82, corresponding to
�u � 1:0 and �d � �0:74 [27]. This result is, however,
in agreement with analogous light-front calculations with
pointlike quarks [43–45] and the values derived in the
forward limit of GPDs derived in the Nambu-Jona-
Lasinio model [22]. Including the pion cloud we have
�u � 1:14 and �d � �1:03, corresponding to �p � 1:10
and �n � �1:07, closer to the phenomenological values.
Similar effects are also expected for the pion-cloud con-
tribution to the form factors at finite value of t, improving
the agreement between the CQM predictions and the ex-
perimental results [46].

In Fig. 5 the same results plotted in Fig. 4 are reorgan-
ized to show the isoscalar u� d and isovector u� d
combinations. In the large-Nc limit Hu �Hd and Eu �
Ed appear in leading order inNc, whileHu �Hd and Eu �
Ed appear in subleading order [14]. Also in our model
Hu �Hd and Eu � Ed are found to be larger than Hu �
Hd and Eu � Ed. The behavior of the isoscalar combina-
tions is also very similar to that provided by the chiral
quark-soliton model [18,20]. The sea-quark contribution is
-13



0

2

4

6

8
Hu+d

0

2

4
Hu-d

0

0.5

1

1.5

-1 -0.5 0 0.5 1
x̄

Eu+d

0

1

2

3

4

-1 -0.5 0 0.5 1
x̄

Eu-d

FIG. 7. Isoscalar (u� d, left panels) and isovector (u� d, left
panels) combinations of the spin-averaged (upper panels) and
helicity-flip (lower panels) generalized parton distributions
calculated in the meson-cloud model, at � � 0:1 and t �
�0:2 GeV2. Line style as in Fig. 4.

B. PASQUINI AND S. BOFFI PHYSICAL REVIEW D 73, 094001 (2006)
an odd (even) function of �x for the isoscalar (isovector)
combination. As discussed above, the isovector combina-
tions vanish at �x � 0 due to the truncated Fock-state
expansion of the proton wave function. Would the dip at
�x � 0 be filled by including the whole series expansion, the
behavior of the isovector combinations would resemble
that derived in the chiral quark-soliton model [21], where
GPDs in the neighborhood of �x � 0 are mostly determined
by the Dirac sea. In our model the sea contribution comes
only from the antiquark present in the one-pion component
of the cloud.

Anyway, since there are no gluons in the model the total
momentum of the proton is carried by quarks and anti-
quarks only. Therefore the second moment sum rule,

Z 1

�1
dxx�Hu �Hd��x; 0; 0� � MQ � 1; (80)

and the spin sum rule,

Z 1

�1
dxx�Hu �Hd � Eu � Ed��x; 0; 0� � 2JQ � 1 (81)

are consistently fulfilled in the model. In addition,

Z 1

�1
dxx�Eu � Ed��x; 0; 0� � 2JQ �MQ � 0: (82)

Going beyond the forward limit we first discuss the t
dependence of the GPDs at � � 0 by comparing results in
Fig. 4 at t � 0 with those in Fig. 6 at t � �0:2 GeV2. The
relative contribution of the different components is not
modified by switching on the momentum transfer t, only
the overall magnitude is decreased. This is in agreement
with the common believe that the main part of the t
dependence of the GPDs is exhibited by their first mo-
ments, i.e. by the quark Dirac and Pauli form factors.
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With a nonvanishing � one can explore the ERBL region
with j �xj � �where in our model only transition amplitudes
between the bare-proton and baryon-meson components
are contributing. The combined dependence of the isosca-
lar and isovector combinations of GPDs on � and t is
shown in Figs. 7–9. The t dependence at constant � �
0:1 can be extracted from Figs. 7 and 8, while the �
dependence at constant t � �0:5 GeV2 is deduced from
Figs. 8 and 9.

From the isoscalar and isovector combinations of GPDs
plotted in Fig. 7 at � � 0:1 and t � �0:2 GeV2 we see that
GPDs in the ERBL region are rather regular functions over
the whole range, with zeros at the endpoints �x � �. This
result is quite different from the oscillatory behavior pre-
dicted by the chiral quark-soliton model [18] where the
valence contribution of the discrete level is a smooth
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panels) combinations of the spin-averaged (upper panels) and
helicity-flip (lower panels) generalized parton distributions cal-
culated in the meson-cloud model, at � � 0:1 and t �
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function extending into the ERBL region and adding to the
sea contribution. Here this is forbidden because the support
of the valence contribution is limited to the DGLAP region.
In addition, the transition amplitude between the bare-
proton and the baryon-meson components vanishes at the
boundary of the ERBL region. As discussed in Ref. [15],
the points �x � � correspond to very peculiar parton
configurations involving one parton with vanishing mo-
mentum in the initial or final-state hadron. As a conse-
quence, when approaching e.g. � from below, one probes a
quark-antiquark pair with one momentum fraction finite
and the other going to zero, a configuration similar to the
one of a meson distribution amplitude at its endpoints. On
the other hand leading-twist GPDs must be continuous at
�x � � to avoid logarithmically divergent scattering am-
plitudes in DVCS. In fact, this condition is fulfilled here
because also approaching �x � � from the DGLAP re-
gion in our model GPDs are constrained to go to zero. This
generates a discontinuity of the first derivative of GPDs at
�x � � which, however, is not in contradiction with gen-
eral principles. Including higher Fock-states of the type
suggested in Ref. [47] and/or considering evolution to a
higher scale will fill up the zero at �x � �.

In the DGLAP region both for �x � � and �x � �� no
striking difference arises in Fig. 7 for the spin-averaged
GPDs Hud with respect to the results in the forward limit
shown in Fig. 5, while for the helicity-flip GPDs the
(negative) d contribution coming from the baryon in the
jBMi component is responsible for a broader shape at �x �
�. The t dependence of the different and opposite contri-
butions to Eu and Ed is also responsible for the small size
and the oscillatory behavior of Eu�d at t � �0:5 GeV2

(Fig. 8). Increasing �, therefore compressing the support
for the valence contribution, this effect is even more visible
producing a negative Eu�d for �x � � as in Fig. 9, while the
behavior in the ERBL region remains the same.
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VII. CONCLUSIONS

The convolution model for the physical nucleon, where
the bare nucleon is dressed by its virtual meson cloud, has a
long and successful history in explaining properties such as
form factors and parton distributions. In this paper it has
been revisited and applied for the first time to study GPDs.
A light-front wave function overlap representation is ob-
tained in the one-meson approximation by inserting a
Fock-state expansion involving a bare nucleon and
meson-baryon states. The model fulfills the support con-
dition and general sum rules such as the number, momen-
tum and angular momentum sum rules. Explicit
expressions for the unpolarized GPDs have been derived
and applied to the case of the meson being a pion and the
baryon being either a nucleon or a �.

This meson-cloud model gives the possibility to link
GPDs calculated in the light-front formalism to the nu-
cleon description in terms of constituent quarks including a
sea contribution already at a low-energy scale and provid-
ing a suitable input for the evolution to higher scales. The
results presented in this paper for different kinematics
show an important contribution of the meson cloud at
low �x and a smooth contribution of the sea in the ERBL
region and for negative �x. As an effect of the truncated
Fock-state expansion, characteristic nodes occur at the
endpoints of the DGLAP and ERBL regions, i.e. at �x � 0
in the forward case and at �x � � in the off-forward case,
where the wave function has to vanish. However, this
artifact will disappear under evolution of GPDs to higher
scales. In addition, since the contribution in the ERBL
region is vanishing in the forward limit, it can not be easily
inferred from parametrizations in terms of parton distribu-
tions. Therefore, the present calculation gives new insights
to model the off-forward features of the GPDs, and can be
further used as input at the hadronic scale to study the
behavior under evolution at higher scales.
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APPENDIX A: BARYON SCATTERING
AMPLITUDE

In this section we give the LCWF overlap representation
of the baryon scattering amplitude given in Eq. (50), and
evaluated in the nucleon average frame where the plus and
transverse components of the momentum of the initial and
final baryon are given by
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p�B � �p�B

�
1�

�
yB

�
; pB? � �pB? �

�
2
;

p0�B � �p0�B

�
1�

�
yB

�
; p0B? � �pB? �

�
2
:

(A1)

This scattering amplitude gives a nonvanishing contribu-
tion only in the region � � �x � 1, where it describes the
emission of a quark from the baryon with momentum
fraction �x� �= �yB of the average plus momentum �p�B ,
and its reabsorption with �x� �= �yB. By analogy with the
nucleon case, we introduce the names ‘‘baryon-in’’ and
‘‘baryon-out’’ for frames where the incoming and outgoing
baryon has zero transverse momentum. The fraction of
plus momentum and the transverse components of the
momentum of partons before the scattering process in the
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baryon-in frame will be denoted with ~�i, and ~�i?, respec-
tively. The corresponding quantities for the final partons
in the baryon-out frames are defined by �̂ 0i and �̂i?.
Furthermore, defining the average momentum of the par-
tons as �k�i � �k

�
i � k

0�
i �=2 , we introduce the fraction

��i � �k�i = �p�B � �xi= �yB. When the active parton is taken
out from the baryon it carries a fraction ��j � �= �yB of the
average plus momentum �p�B , and its transverse momentum
is �kj? ��?=2. The arguments of the initial-state LCWF
in the baryon-in frame are obtained from the variables of
the partons in the average frame by means of the transverse
boost in Eq. (35) with parameters b? � �pB? ��?=2 and
b� � �p�B �1� �= �yB�. Furthermore, by using the spectator
condition, k0i � �ki � ki, one obtains
~�i �
��i

1� �= �yB
; ~�i? � �ki? �

��i
1� �= �yB

�
�pB? �

�?
2

�
; for i � j;

~�j �
��j � �= �yB
1� �= �yB

; ~�j? � �kj? � �pB? �
1� ��j

1� �= �yB

�
�pB? �

�?
2

�
:

(A2)

In the final state, the active parton has a fraction of the average plus momentum �p�B of the baryon equal to ��j � �= �yB,
and a transverse momentum �kj? ��?=2. The arguments of the final-state LCWF in the baryon-out frame are obtained
from the variables of the partons in the average frame by means of the transverse boost in Eq. (35) with parameters b? �
�pB? ��?=2 and b� � �p�B �1� �= �yB� and are given by

�̂ 0i �
��i

1� �= �yB
; �̂0i? �

�ki? �
��i

1� �= �yB

�
�pB �

�?
2

�
; for i � j;

�̂ 0j �
��j � �= �yB
1� �= �yB

; �̂0j? �
�kj? � �pB? �

1� ��j
1� �= �yB

�
�pB? �

�?
2

�
:

(A3)

Using a similar procedure as in the calculation of the valence-quark contribution to the scattering amplitude in the region
� � �x � 1, one finds that the LCWF overlap representation of Fq=B��0 is given by

Fq=B�0�

�
�x

�yB
;
�
�yB
;�?

�
�

1

�1� �2= �y2
B�

X3

j�1

X
�i�i

�sjq
Z
�d ���3�d

2 �k?�3�
�

�x
�yB
� ��j

�
�B;�f��
�0 �f~�i; ~�i?;�i; �ig��

B;�f�
� �f�̂ 0i; �̂

0
i?;�i; �ig�:

(A4)

APPENDIX B: MESON GENERALIZED PARTON DISTRIBUTIONS

In this section we derive the LCWF overlap representation of the meson scattering amplitude in Eq. (52), with the
momenta of the incoming and outgoing meson in the average frame given by

p�M � �p�M

�
1�

�
�yM

�
; pM? � �pM? �

�
2
; p�M � �p0�M

�
1�

�
�yM

�
; p0M? � �pM? �

�
2
: (B1)

In the following we separately discuss the contributions in the DGLAP region for positive and negative �x.

1. Region � � �x � 1

The derivation of Fq=M in terms of meson LCWFs goes along the same lines as in the case of the baryon discussed in
Appendix A. The final result is given by
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Fq=M�0�

�
�x

�yM
;
�
�yM
;�?

�
�

1����������������������
1��2= �y2

M

q X2

j�1

X
�i�i

�sjq
Z
�d ���2�d2 �k?�2�

�
�x

�yM
� ��j

�
�M;�f��
�0 �f�̂ 0i; �̂0i?;�i;�ig��

M;�f�
� �f~�i; ~�i?;�i;�ig�;

(B2)

where f~�ig, f~�i?g are the coordinates of the initial partons in the meson-in frame. They are related to the coordinates in the
average frame by the same transformation as in Eq. (A2), with the substitution �yB ! �yM, and pB? ! pM?. Likewise, in
Eq. (B2) f�̂ 0ig, �̂0i? are the coordinates of the final partons in the meson-out frame and satisfy the same relations as in
Eq. (A3) with �yB and pB? replaced by �yM and pM?, respectively.

2. Region �1 � �x � ��

In this region, the meson contribution to the scattering amplitude is given by

Fq=M�0�

�
�x

�yM
;
�
�yM
;�?

�
� �

1�����������������������
1� �2= �y2

M

q X2

j�1

X
�i�i

�sj �q

Z
�d ���2�d

2 �k?�2�
�

�x
�yM
� ��j

�
�M;�f��
�0 �f�̂ 0i; �̂

0
i?;�i; �ig�


�M;�f�
� �f~�i; ~�i?;�i; �ig�; (B3)
where the arguments of the LCWFs are given by the same
expression as in the region � � �x � 1.

APPENDIX C: VERTEX FUNCTIONS

In this Appendix we work out the case of the N ! N�
and N ! �� transitions in the light-front formalism.
Vertex functions for such transitions can be found in sev-
eral places (see, e.g., Refs. [9,48,49]), but it is convenient
to show their derivation.

The light-front vectors are defined as

A� � �A�; A�;A?�; (C1)

with

A � A0  A3; A? � �A1; A2�: (C2)

We also use the notations AR;L � A1  iA2 and ~A �
�A�;A?�.

The light-front nucleon spinors u��~p� are given by

u1=2�~p� �
1���������

2p�
p

p� �m

pR
p� �m

pR

0BBBBB@

1CCCCCA;

u�1=2�~p� �
1���������

2p�
p

�pL
p� �m

pL
m� p�

0
BBBBB@

1
CCCCCA:

(C3)

The gamma matrices are defined as in Ref. [50].
A similar expansion for the � field involves the Rarita-

Schwinger spinors given by
094001
u�3=2�~p� � ���1�~p�u1=2�~p�;

u�1=2�~p� �

���
2

3

s
��0 �~p�u1=2�~p� �

���
1

3

s
���1�~p�u�1=2�~p�;

u�
�1=2�~p� �

���
2

3

s
��0 �~p�u�1=2�~p� �

���
1

3

s
���1�~p�u1=2�~p�;

u�
�3=2�~p� � ���1�~p�u�1=2�~p�;

(C4)

where the polarization vectors are given by

���1�~p� �
�
�

���
2
p pR

p�
; 0;

�
�

1���
2
p ;�

i���
2
p

��
;

��0 �~p� �
1

m

�p2
? �m

2

p�
; p�;p?

�
;

���1�~p� �
� ���

2
p pL

p�
; 0;

�
1���
2
p ;�

i���
2
p

��
:

(C5)

In the evaluation of the transition amplitudes we need
the following expressions of scalar products

����1�
��~p���pN � p��� � �

kL���
2
p
y
;

���0 �
��~p���pN � p��� �

1

2M�y
�k2
? �M

2
� � y

2M2
N�;

����1�
��~p���pN � p��� �

kR���
2
p
y
; (C6)

where the relation p�? � k? � ypN? has been used.
The final results for the transition amplitudes N ! B�

with nucleon helicity � � 1
2 are given in Table I. The

corresponding results for the vertex functions with nucleon
helicity � � � 1

2 are given by
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TABLE I. Vertex functions for N ! N� and N ! ��.

�! �0 V�N;N�� V�N;���
1
2!

3
2 �igN��

kL����
2y
p

y
�M� � yMN�

1
2!

1
2 igNN�

MN �1�y���
y
p igN��

1����
6y
p

yM�

�k2
?�2M� � yMN� � �M� � yMN�

2�yMN �M���

1
2! �

1
2 �igNN�

kR��
y
p �igN��

kR����
6y
p

yM�

�k2
? � �M� � yMN��yMN � 2M���

1
2! �

3
2 �igN��

kRkR����
2y
p

y
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V��N;N���0;0 �y;k?� � ��1�1=2��0V���N;N��
��0 �y; k̂?�;

V��N;����0 �y;k?� � ��1�3=2��0V���N;���
��0 �y; k̂?�;

(C7)

where k̂? � �kx;�ky�.
Our calculation for the vertex functions is in agreement

with the results of Ref. [49]. However, we found discrep-
ancies with the results reported in Ref. [9]. These differ-
094001
ences in the vertex functions do not affect the splitting
functions of Eqs. (57) and (59) which enter in the con-
volution formulas of parton distributions, but are important
for the transverse-momentum dependence of the probabil-
ity amplitudes 
��0 which enter in the convolution formu-
las for the GPDs.
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