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Coulomb problem for vector bosons
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The Coulomb problem for vector bosons W� incorporates a well-known difficulty; the charge of the
boson localized in a close vicinity of the attractive Coulomb center proves to be infinite. The paradox is
shown to be resolved by the QED vacuum polarization, which brings in a strong effective repulsion that
eradicates the infinite charge of the boson on the Coulomb center. This property allows one to define the
Coulomb problem for vector bosons properly.
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I. INTRODUCTION

Consider a charged vector boson, which propagates in
the Coulomb field created by a heavy pointlike charge Zjej
assuming that the boson is massive, its mass being pro-
duced via the Higgs mechanism; the W�-bosons give an
example. We study relativistic effects in this Coulomb
problem. A situation where they can be important arises,
for example, for small primordial charged black holes
since an impact of their Coulomb field on a W-boson
prevails over the gravitational field.

It has ‘‘always’’ been known that there is a difficulty
in the Coulomb problem for vector bosons. Soon after
Proca formulated a theory for vector particles [1] it became
clear that it produces inadequate results for the Coulomb
problem [2–4]. This fact inspired Corben and Schwinger
[5] to modify the Proca theory, tuning the Lagrangian and
equations of motion in such a way as to force the gyro-
magnetic ratio of the vector boson to acquire a favorable
value g � 2. Later on the formalism of [5] was found to
have a connection with the non-Abelian gauge theory [6],
which makes it relevant for the present day studies. In
particular, g � 2 is the gyromagnetic ratio of the
W-boson in the standard model. A role of the identity g �
2 was thoroughly discussed in literature, see e. g.
Refs. [7,8].

Reference [5] found a realistic discrete energy spectrum
for the Coulomb problem for vector bosons. However, it
discovered also a fundamental flaw in the problem. For two
series of quantum states the charge of the vector boson
located on the Coulomb center turns infinite, which indi-
cates the fall of the boson on the center. One of these series
has the total angular momentum zero, j � 0, another one
has j � 1 (being further specified by a label ‘‘�� 3=2,’’
see Sec. IV D). This effect takes place for arbitrary small
value of the Coulomb charge Z, which is physically un-
acceptable. All this indicates that the Coulomb problem is
poorly defined. Thus, the Coulomb problem derived from
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the standard model produces results, which challenge the
model itself.

This difficulty was inspirational for several lines of
research. Early efforts are summarized in Ref. [9]. More
recent Refs. [10–12] suggested a new, refined modification
of the formalism for vector bosons. Reference [13] claimed
that it complies with results of Corben and Schwinger.
Some authors considered other forms of the equation gov-
erning vector bosons [14–16], which produce more accept-
able results for the Coulomb problem, but this advantage is
partially undermined by the fact that it does not rely on a
renormalizable theory.

The Coulomb corrections for a threshold e�e� !
W�W� cross section were calculated in Ref. [17].
Comparing our results with these works one should keep
in mind that the Corben-Schwinger problem, which we
consider in this work, is distinguished by the following
properties.
(1) I
-1
t manifests itself only for spin S � 1 particles,
being absent for particles with S � 0 and 1=2.
(2) I
t is relevant in a close vicinity of the Coulomb
center, when the ultrarelativistic limit is applicable.
(3) T
he problem persists for the charge density, being
absent in the energy spectrum (presuming that the
magnetic g-factor is g � 2).
The papers Ref. [17] addressed mainly the Coulomb cor-
rections for W�W� production for the nonrelativistic
W-bosons. The questions we consider do not show up in
this problem. Also, the authors of Ref. [17] were interested
in corrections important for the experiment. In particular,
they take into account the well-known Coulomb factor
(which also exists for S�0 and S�1=2 particle produc-
tion) and the effects due to the width of the W-boson,
which prove to be important mostly in the near-threshold
region.

In contrast, for understanding of the Corben-Schwinger
problem the width of the W-boson is irrelevant. The reason
stems from a simple fact that this problem arises close to
the Coulomb center, where even the energy of theW-boson
is negligible in the wave equation. Having this fact in mind,
we will neglect the width in the following discussion,
© 2006 The American Physical Society
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finding a solution for the Corben-Schwinger problem at
small distances.

In order to apply our results to the full-scale Coulomb
problem, when the events at large distances, where the
width is important, are also accounted for, one can adopt
one of the following attitudes. First, one can restrict con-
sideration to sufficiently large Coulomb charges, presum-
ing that the Coulomb binding energy B ’ �2Z2m=2, where
m ’ 80:419 GeV is the mass of theW-boson, is larger than
its width � � 2:12 GeV, data from Ref. [18]. Condition
B� �, which makes the effects related to the width
negligible, is satisfied provided Z > 30. Alternatively,
one can be interested in theoretical modifications of the
standard model, in which the width is small (by taking, for
example, the mass of a vector particle smaller than 2
fermion masses). At last, the most accurate treatment
would require that our solution of the Corben-Schwinger
problem is combined with the solution of the wave equa-
tion valid at large distances (which include the effects
related to the width) by sawing the two solutions in the
region of intermediate distances, but we will not dwell on
this subject in this paper any longer.

In this work we suggest a clear way to formulate the
Coulomb problem for vector particles properly, within the
frames of the standard model. Our main observation is that
the polarization of the QED vacuum has a profound impact
in the problem forcing the density of charge of a vector
boson to decrease at the origin, thus making the Coulomb
problem stable, well defined. This decrease has an expo-
nential character for the j � 0 state. For the j � 1,�� 3=2
state the suppression is of a power-type. In both these states
the suppression eradicates the difficulty of the Coulomb
problem.

From the first glance this result looks surprising.
Presumably, the vacuum polarization is meant to make
the attractive Coulomb field only stronger at small dis-
tances, which should result in an increase of the charge
density at the origin. Additionally, the vacuum polarization
for spinor and scalar particles in the Coulomb field is
known to produce only small, perturbative effects. In con-
trast, we claim a strong reduction of the charge density for
the vector particle. To grasp a physical mechanism in-
volved it is necessary to notice that the equation of motion
for vector particles incorporates a particular term, which
explicitly depends on the external current and has no
counterparts for scalars and spinors, see the last term in
Eq. (2.10). Precisely this term brings in a strong effective
repulsion, which stems from the vacuum polarization and
makes the Coulomb problem stable, well defined.

The renormalizability of the standard model means that
if all essential processes are taken care of, then the results
must be finite (at least within the perturbation theory after
the renormalization). The bound state problem is, strictly
speaking, not a perturbative problem. However, in the spirit
of the standard model the amplitude of the photon ex-
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change between leptons or/and quarks at high transferred
momenta should be considered alongside exchange by the
Higgs and Z-bosons. From this perspective the catastrophic
behavior of the charge density of a vector boson at small
distance, i.e. at large transferred momenta, in the Coulomb
problem could have been considered as an indication that
the Coulomb problem for vector bosons should include the
processes related to the Higgs and Z-bosons exchange from
the very beginning. In contrast to this widely spread pre-
sumption we find a way to formulate the Coulomb problem
for vector bosons entirely in terms of the W and electro-
magnetic fields, as a pure QED problem.

A complete standard model calculation, where all pos-
sible processes are accounted for accurately, would require
specific information on the nature of a heavy particle that
creates the Coulomb field, i.e. on all its quantum numbers
related to the standard model. This information is not
necessarily feasible. A simple example gives primordial
black holes; it is not easy to assert with certainty whether
they have, or have not the weak charge, and what are their
other quantum numbers in the standard model. The same
questions arise in relation to other possible candidates for
the heavy Coulomb center. As a result, a presumption that
the exchange of the Higgs and Z-boson should play a basic
role in the Coulomb problem leads to complications. It is
fortunate therefore that the detailed information on prop-
erties of the heavy particle proves to be redundant, that the
Coulomb problem can be properly defined using the only
physical parameter of the heavy particle, its electric
charge.

This point of view, which is advocated in the present
work keeps the Coulomb problem simple and transparent.
On the other hand, it also allows one to include all other
processes, which are left outside the scope of the Coulomb
problem, by means of perturbation theory. Our preliminary
calculations indicate that the exchange by the Higgs and
Z-bosons, as well as possible processes with lepton or
quark exchange, give only small corrections. The reason
stems from the fact that the found wave functions for
vector bosons are suppressed at small distances.
Consequently, the small-distance processes with the ex-
change by Higgs and Z-bosons are also suppressed (the
exchange by a lepton or quark contains the vanishing at the
Coulomb center fields, which describe the W-boson).

In Sec. II the Corben-Schwinger formalism for charged
vector bosons is derived directly from the standard model.
The pure Coulomb problem is discussed in Secs. III, IV,
and V, and several Appendixes. This analyses follows
Ref. [5], but some important details, including the non-
relativistic limit (Sec. III) and the eigenvalue problem for
j � 0 states (Sec. V) are discussed in more detail.
Sections VI and VII present the main result of the paper.
They show that the QED vacuum polarization plays a
defining role in the problem, as was first noticed in our
previous work [19]. The units @ � c � 1, e2 � 4��,
where e < 0, are used below.
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II. W-MESONS IN ELECTROMAGNETIC FIELD

A. W-bosons in standard model

Consider boson fields in the electroweak part of the
Lagrangian of the standard model, see e.g. Ref. [20],

L � �1
4�@�A� � @�A� � gA� �A��

2;

� 1
4�@�B� � @�B��

2 � 1
2D���D��: (2.1)

HereA� andB� are the triplet of SU�2� and theU�1� gauge
potentials, respectively, (abridged notation is used here).
The covariant derivative D�� takes into account that the
Higgs field � has a hypercharge Y � 2, which describes its
interaction with the U�1� field, and is transformed as a
doublet under the SU�2� gauge transformations. Taking the
unitary gauge one can present it via one real component

� �
0
�

� �
; � � ��: (2.2)

Assuming that the scalar field develops the vacuum expec-
tation value� � �0 and the Higgs mechanism takes place,
one finds that the gauge field can be presented as a new
U�1� field A�, and a triplet of massive fields W�� , Z�

A� � sin�A3
� � cos�B�; (2.3)

Z� � cos�A3
� � sin�B�; (2.4)

W� � �A1
� � iA2

��=
���
2
p
: (2.5)

Here W� 	 W�� represents the W-boson with charge e �
�jej, and � is the Weinberg angle.

Expanding the Lagrangian equation (2.1) in the vicinity
of� � �0 and retaining only bilinear in the fieldsW�,W��
terms, including their interaction with the electromagnetic
field, one derives an effective Lagrangian

LW � �1
2�r�W� �r�W��

��r�W� �r�W��

� ieF��W��W� �m
2W��W

�; (2.6)

which describes the propagation of W-bosons in an exter-
nal electromagnetic field. Here m is the mass of W. The
external field is accounted for in Eq. (2.6) in the derivative
r� � @� � ieA� and by the term with the field F�� �
@�A� � @�A�. The first and the last terms in Eq. (2.6) are
present in the Proca formalism [1], while the second one
was introduced by Corben and Schwinger [5].

From Eq. (2.6) one derives the classical Lagrange equa-
tion of motion for vector bosons

�r2 �m2�W� � 2ieF��W� �r
�r�W� � 0: (2.7)

Here an identity 
r�;r�� � ieF�� was used. Taking a
covariant derivative in Eq. (2.7) one finds

m2r�W� � iej�W� � 0; (2.8)

where
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j� � @�F��; (2.9)

is the external current, which creates the external field F��.
Evaluating r�W� from Eq. (2.8) and substituting the
result back into Eq. (2.7) one rewrites the latter one in a
more transparent form

�r2 �m2�W� � 2ieF��W� �
ie

m2r
��j�W�� � 0:

(2.10)

This equation of motion for vector bosons was suggested in
Ref. [5]. The coefficient 2 in front of the second term
ensures that the g-factor of the boson takes the value g �
2, see Eq. (2.25) below.

The derivation outlined shows that Eq. (2.10) represents
the classical equation of motion for W-bosons in the ex-
ternal electromagnetic field, which is valid within the
frames of the standard model. This equation has similar-
ities with the Klein-Gordon and Dirac equations (if the
latter one is written as the second-order differential equa-
tion), but there is also an important distinction. It is pro-
duced by the last term in Eq. (2.10), which explicitly
contains the external current; there is no similar term for
scalars and spinors. We will see how important this term is,
when we discuss the vacuum polarization.

We will use below a current of vector bosons jW� , which
can be obtained by considering a variation of the
Lagrangian equation (2.6) under variation of A�, which
yields

jW� � j�1�� � j
�2�
� � j

�3�
� ; (2.11)

j�1�� � �ie�W�� r�W� �r�W�� W��; (2.12)

j�2�� � �ie�r�W��W� �W�� r�W��; (2.13)

j�3�� � �ie@��W��W� �W
�
� W��: (2.14)

Differentiating in Eq. (2.14) term by term and taking into
account Eq. (2.8) one verifies that

j�3�� � j�2�� � ie�W��r�W
� �r�W�� W��

� j�2�� �
e2

m2 �W
�
�W� �W

�
� W��j

�: (2.15)

Using this result, the current Eq. (2.11) can be written in a
compact form

jW� � �ie�W
�
� r�W

� � 2r�W
�
�W

� � c:c:�

�
e2

m2 �W
�
�W� �W�� W��j�: (2.16)

Here c.c. refers to two complex conjugated terms.
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B. Static electric field

Consider a static electric field described by the electric
potential A0 � A0�r� and charge density � � ��r� �
��A0. For a stationary state of the W-boson one can
presume that

r2
0W� � ��"�U�

2W�; (2.17)

where " is the energy of the stationary state, and U �
U�r� � eA0 is the potential energy of the W-boson in the
electric field. Equation (2.8) in this case gives

w � �"�U����1r �W: (2.18)

The four-vector W� � �W0;W� is presented here via the
three-vector W and the modifies zeroth-component w �
iW0. In order to simplify notation we introduce also a very
important for us quantity � � ��r�,

� �
e�

m2 � �
�U

m2 : (2.19)

Equations (2.8) and (2.17) show that this definition com-
plies with (2.18). The quantity � appears in the equations
of motion alongside the initial potential U, see e.g.
Eq. (2.18). In this sense it plays a role of an effective
potential energy, which is specific for vector bosons. We
will call it the �-term, or �-potential. In this notation
Eq. (2.10) reads

��"�U�2 �m2�W � ��W � 2rUw� r��w�; (2.20)

��"�U�2 �m2�w � ��w� 2rU �W � �"�U��w:
(2.21)

A relation between w andW given by Eq. (2.18) shows that
among four equations of motion Eqs. (2.20) and (2.21) only
three are independent, precisely what one expects for
massive vector particles.

It will be useful to present Eqs. (2.20) in a slightly
different form, which can be derived by combining it
with Eq. (2.18) and using an identity �W � r� �r�
W� � r�r �W�, which gives

��"�U�2 �m2�W � r� �r�W� � �"�U�rw

� rUw: (2.22)

From the expression for the current of vector bosons
Eq. (2.16) one derives the charge density

�W � 2e��"�U��W� �W � w�w� �W� � rw

�W � rw� ��w�w�: (2.23)

C. G-factor

The behavior of vector bosons in the homogeneous
magnetic fields was studied in detail, see e.g. [9] and
references therein. The spectrum of this problem reads,
see Sec. I,
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"2 � m2 � p2
z � 2jejB�n� 1=2� 	�: (2.24)

Here n � 0; 1 . . . specifies the Landau levels, and 	 � �1,
0, 1 gives a projection of spin S � 1 of the vector boson.
Equation (2.24) shows that vector bosons possess the mag-
netic moment

� � eS=m; (2.25)

which means that the magnetic g-factor is g � 2.
III. NONRELATIVISTIC LIMIT

Consider a vector boson in a static electric field with the
potential energy U � eA0�r�. If we presume that the non-
relativistic approach is valid, which needs that jUj  m,
then in the lowest order of the perturbation theory in
powers of U=m one immediately finds from Eqs. (2.18)
and (2.20)

EW � �
1

2m
�W �UW: (3.1)

Here E ’ "�m is the energy, the vector W plays a role of
the wave function for the vector boson, and the nonrela-
tivistic Hamiltonian on the right-hand side has a usual form
for a massive charged particle.

Let us find corrections to Eq. (3.1) induced by relativistic
effects. The wave function of the massive vector particle �
is well defined in the rest frame. Therefore the vector W,
which describes the moving vector particle, inevitably
deviates from the wave function �. A relation between
W and � is easy to articulate for the free motion, when it is
given by the Lorentz boost, see e.g. a book [21],

W � ��
p�p ���
m�m� "�

: (3.2)

Generically, the potential energy brings in complications,
but within the necessary accuracy we can neglect them,
presuming also that " ’ m. Then Eq. (3.2) gives

W ’ ��
p�p ���

2m2 ; (3.3)

where p � �ir. This relation plays a role similar to the
Foldy-Wouthuysen transformation [22] for fermions.

Substituting Eq. (3.3) in Eqs. (2.18) and (2.20) and
expanding the latter ones in powers of U=m one finds the
following Schrödinger-type equation for the wave function
� of the vector boson

E�i � Hijj�j; (3.4)

Hij �

�
p2

2m
�U

�

ij � 
Hij; (3.5)
-4
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Hij � �
p4

8m3 
ij �
F � �p� Sij�

2m2 �
�U

6m2 
ij

�
1

6m2

�
3
@2U
@ri@rj

� �U
ij

�
: (3.6)

Here i, j � 1, 2, 3 label components of three-vectors, S is
the spin, which operates on a vector V according to
SijVj � �i�ijkVk.

The relativistic correction to the Hamiltonian 
H of
vector particles is given in Eq. (3.6). It is instructive to
compare this correction with the known Darwin
Hamiltonian 
HD, which accounts for relativistic effects
for spinor particles


HD � �
p4

8m3 �
F � �p� s�

2m2 �
�U

8m2 : (3.7)

Here s � �=2 is the operator of spin for spinor particles.
The three terms in the first line of Eq. (3.6) resemble their
counterparts in Eq. (3.7), the only distinction is the nu-
merical coefficient in front of the term with �U. We
conclude that these three terms have conventional mean-
ing, describing the relativistic correction to the kinetic
energy, the spin-orbit interaction, and the contact correc-
tion to the potential. The coefficient in front of the term
responsible for the spin-orbit interaction in Eq. (3.5) com-
plies with the gyromagnetic ratio g � 2 of the vector
boson, if one presumes that the Thomas ‘‘one-half rule’’
is applicable for vector particles the same way is for
spinors.

The last, fourth term in Eq. (3.6) finds no counterpart in
the Darwin Hamiltonian. It is instructive to write a con-
tribution of this term to the energy shift


EQ �
1

6

Z
Qij

@2A0

@rj@ri
d3r; (3.8)

Qij �
e

m2 �3��i�j � 
ijj�j2�: (3.9)

Equations (3.8) and (3.9) show that Qij plays a role of the
density of the quadrupole moment for vector bosons. We
conclude that the last, fourth term in Eq. (3.6) indicates that
vector bosons have a quadruple moment.

From the first glance the contact and the quadrupole
terms in the Eq. (3.6) have similarity with the �-term in
Eq. (2.19). However this resemblance is coincidental, since
the �-term does not contribute to (3.6), which takes into
account corrections of the order of �Z��2. Equation (2.19)
allows to estimate the �-potential as �� �mr0�

�2U�
�Z��2U, where r0 � �Z�m�

�1 is the Bohr radius. The
�-potential comes into the equation of motion with the
factor w, see the last term in Eq. (2.20). Equation (2.18)
gives an estimate jwj � �mr0�

�1jWj � Z�jWj. Overall, an
estimate for the correction produced by the �-term in
Eq. (2.20) is ��Z��3, which means that the �-term is too
small to contribute to Eq. (3.6). Thus, the contact and
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quadrupole interactions in Eq. (3.6) have no direct connec-
tion with the �-term. This fact makes a difference in
coefficients in front of the contact term in Eq. (3.6) and
the �-term in Eq. (2.19) acceptable. In particular, the fact
that they have opposite signs produces no contradiction.

IV. COULOMB PROBLEM

Consider the pure Coulomb field, presuming that it is
created by a pointlike heavy object with charge Zjej> 0.
Then for r > 0 one has

U � �
Z�
r
; � � 0: (4.1)

The second identity here follows from Eq. (2.19).

A. Perturbation theory

Let us treat the Coulomb problem using the nonrelativ-
istic perturbation theory. Take the nonrelativistic equa-
tion (3.1) as a starting point, and consider the
Hamiltonian equation (3.6) as a perturbation.
Conventional calculations, see Appendix B, lead to the
following result for the shift of the energy level character-
ized by the main quantum number n, orbital momentum l,
and total angular momentum j � l, l� 1


Enlj �
m�Z��4

n3

�
3

8n
�

1

2j� 1

�
: (4.2)

This formula is similar to the one that describes the energy
shifts for spinor particles; the only distinction comes from
values of j in Eq. (4.2), which are integers for vector
particles and half-integers for spinors. The order of several
lowest levels shows the following pattern

n � 1 1s1; n � 2 2p0; f2s1; 2p1g; 2p2;

n � 3 3p0; f3s1; 3p1; 3d1g; f3p2; 3d2g; 3d3:

(4.3)

Here the atomiclike notation nlj is adopted, the brackets
combine together the degenerate energy levels.

B. Central field

Consider the static central electric field (the Coulomb
problem gives an important example). The conservation of
the total angular momentum j in this field allows one to
separate the angular variables. We will use for this purpose
the electric, longitudinal, and magnetic spherical vectors,
Y�e�jm, Y�l�jm, Y�m�jm defined conventionally, see [21] and
Appendix C. Generically, one can present the vector W
as a linear combination of three spherical vectors with the
given value of j. It is convenient to refer to the three terms
in this combination as the electric, longitudinal, and mag-
netic modes (or polarizations) of a vector boson. The parity
conservation simplifies the problem further on. The state
with the magnetic polarization, which parity is different
-5
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from the parity of the other two modes, is not coupled with
these modes. Therefore the magnetically polarized mode
can be written in a simple form

W � fY�m�jm ; (4.4)

where f � f�r� is the radial function. The two modes
related to electric and longitudinal polarizations have
same parity, which makes coupling between these modes
possible. One needs therefore to consider them on the same
footing assuming that

W � uY�e�jm � vY
�l�
jm; (4.5)

where u � u�r�, v � v�r�. We will refer to them as electro-
longitudinal modes, or polarizations.

C. Magnetic polarization, j � 1

For the magnetic mode the angular momentum is re-
stricted j � 1 (the magnetic spherical vector is not defined
for j � 0, see Eq. (C1)). Substituting Eq. (4.4) into
Eq. (2.20) one finds the following equation for the radial
function f

��j � �"� Z�=r�2 �m2�f � 0: (4.6)

Here �j is

�j �
1

r2

d
dr

�
r2 d
dr

�
�
j�j� 1�

r2 : (4.7)

The form of Eq. (4.6) coincides with the Klein-Gordon
equation. Therefore the spectrum of the magnetic mode
replicates the spectrum of scalar particles, which is given
by the Sommerfeld formula

" � m
�
1�

�Z��2

��� n� j� 1=2�2

�
�1=2

: (4.8)

Here

� � ��j� 1=2�2 � �Z��2�1=2: (4.9)

In Eq. (4.8) n � 1; 2 . . . plays a role of the main quantum
number. In the nonrelativistic limit the magnetic mode
corresponds to the states 2p1; 3d2; 4f3; . . . .

D. Electrolongitudinal polarizations, j � 1

Consider electrolongitudinal polarizations, when the
vector W is given by Eq. (4.5). Substituting it into
Eqs. (2.18) and (2.20) and using the properties of the
spherical vectors from Appendix C one finds a system of
coupled equations for radial functions u, v

��j � �"� Z�=r�
2 �m2�u � �2

�����������������
j�j� 1�

q v

r2 ; (4.10)
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��j � �"� Z�=r�2 �m2�v � �2
�����������������
j�j� 1�

q u

r2 �
2v

r2

�
2Z�w

r2 : (4.11)

Here w � w�r� denotes the radial part of w. Using
Eq. (2.18) one finds for it

w � wYjm; (4.12)

w �
1

"� Z�=r

�
�

�����������������
j�j� 1�

q u
r
�
dv
dr
�

2v
r

�
: (4.13)

Equations (4.10) and (4.11) are sufficient to define the
functions u, v, but it is convenient to compliment them
by the radial form of Eq. (2.21), which reads

��j � �"� Z�=r�2 �m2�w �
2Z�v

r2 : (4.14)

Let us verify first that Eqs. (4.10) and (4.11) describe two
different modes. Consider with this purpose distances so
small that m Z�=r, where the potential energy domi-
nates over mass. In this region Eqs. (4.10) and (4.11)
reduce to�
d2

dr2�
2

r
d
dr
�
�Z��2�j�j�1�

r2

�
u�2�j�j�1��1=2 v

r2�0;

(4.15)

�
d2

dr2 �
4

r
d
dr
�
�Z��2 � j�j� 1� � 2

r2

�
v � 0: (4.16)

One derives from Eqs. (4.15) and (4.16) that there exists a
mode, in which at small distances v is small, jvj  juj,
which means that in this region the polarization is pre-
dominantly electric. From Eq. (4.15) one finds that this
mode satisfies the following asymptotic conditions at r!0

u! ar��1=2; jvj  juj: (4.17)

We will call it the ‘‘�� 1=2’’ mode below.
In order to find the second mode let us assume the

following asymptotic behavior for r! 0

u! br�; (4.18)

v! cr�: (4.19)

Substituting Eqs. (4.18) and (4.19) in Eqs. (4.15) and (4.16)
one finds a system of two homogeneous linear equations, in
which � plays a role of the eigenvalue. Solving this system
one finds � and the ratio c=b, deriving

u! br��3=2; (4.20)

v! b
�� 1=2�����������������
j�j� 1�

p r��3=2: (4.21)

This mode will be referred to as the �� 3=2 mode [23].
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Let us find now the discrete energy spectrum. Introduce
a function g � g�r�

g � Z�u�
�����������������
j�j� 1�

q
w

� Z�u�

�����������������
j�j� 1�

p
"� Z�=r

�
�

�����������������
j�j� 1�

q u
r
�
dv
dr
�

2v
r

�
:

(4.22)

Here Eq. (4.13) was used in the second identity. Taking the
corresponding linear combination of Eqs. (4.10) and (4.14)
one finds that g satisfies the Klein-Gordon equation

��j � �"� Z�=r�
2 �m2�g � 0: (4.23)

This result leaves only two options; either g equals zero
identically, or, alternatively, the spectrum of electrolongi-
tudinal modes can be found from Eq. (4.23). The first
alternative takes place for j � 0, when only the longitudi-
nal mode is present. The function u in this case should be
taken as zero, which makes zero also the function g in
Eq. (4.22). Thus, Eq. (4.23) provides no help for j � 0
states.

For j � 1 the function g is nonzero, for both �� 1=2
and �� 3=2 modes, see Appendix D. Equation (4.23)
defines the spectrum, which therefore satisfies the
Sommerfeld formula Eq. (4.23). In the nonrelativistic limit
the mixed electric-longitudinal modes correspond to the
following states with j � 1: 1s1; 2p2; 3d1; 3d3; 4f2 . . . .

E. Longitudinal polarization, j � 0

Consider zero angular momentum j � 0, which corre-
sponds to purely longitudinal polarization, see Eq. (C1).
The state with j � 0 is described by one radial function
v � v�r�,

W � vn; n � r=r: (4.24)

The radial function v satisfies Eqs. (4.10) and (4.11) in
which the function u is to be put to zero (electric polariza-
tion for j � 0 is impossible). These equations therefore
yield

d2v

dr2
�

2

r
dv
dr
� ��"� Z�=r�2 �m2�v

�
2v

r2 �
2Z�

r2

1

"� Z�=r

�
dv
dr
�

2v
r

�
: (4.25)

In order to make the physical meaning of this equation
more transparent let us eliminate the first derivative by
means of a substitution v! ’

v �
Z�

"2

�
"�

Z�
r

�
’
r
�

1� x

x2 ’; (4.26)

where it is convenient also to scale the radial variable r!x

r �
Z�
"
x; (4.27)
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assuming ’ � ’�x�. In this notation Eq. (4.25) can be
rewritten as a conventional Schrödinger-type eigenvalue
problem

H’ � �ß2’; (4.28)

H � �
d2

dx2 �
2�Z��2

x
�
�Z��2

x2 �
2

�x� 1�2
; (4.29)

where �ß2, which plays a role of an eigenvalue, is related
to the energy of the discrete level

ß2 � �Z��2
m2 � "2

"2 > 0: (4.30)

The operator H in Eq. (4.29) possesses three singular
points, x � 0, x � 1, and x � �1. The last one lies in
the nonphysical region, but it presents an obstacle for an
analytical study anyway. One can overcome this difficulty
using a substitution ’! ~’

’ �
�
d
dx
� ��� 1=2�

x� 1

x
�

1

x� 1

�
~’: (4.31)

It can be shown that ~’ satisfies an eigenvalue problem

~H ~’ � �ß2 ~’; (4.32)

~H � �
d2

dx2 � 2
�Z��2

x
�

�
��

1

2

��
��

3

2

�
1

x2 : (4.33)

The main result of the transformation Eq. (4.31) is that the
operator ~H has only two singular points, x � 0 and x � 1.
An interesting method, which allows one to ‘‘invent’’ the
substitution Eq. (4.31) and derive then Eq. (4.32) is pre-
sented in Appendix E. It takes its origins in an elegant
treatment of quantum mechanics developed by the
Götingen School and is known as matrix mechanics.

A regular at r � 0 solution of the eigenvalue problem
(4.32) reads

~’ � e�ßxxL�1F
�
L� 1�

�Z��2

ß
; 2L� 2; 2ßx

�
: (4.34)

Here F��;�; z� is the confluent hypergeometric function
and L is defined by

L � �� 1=2: (4.35)

To make the solution given by Eq. (4.34) regular at infinity
one should assume that

ß �
�Z��2

L� n� 1
�

�Z��2

�� n� 1=2
; n � 2; 3 . . . (4.36)

The corresponding eigenfunctions are given by Eq. (4.34),
in which the hypergeometric function is reduced to a
polynomial

~’ � e�ßxx��3=2F�2� n; 2�� 3; 2ßx�: (4.37)

Equations (4.31) and (4.37) give then the function ’, while
-7
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(4.24) and (4.26) transform it into v andW. The function ’
exhibits the following behavior at the boundaries

’ / exp��ßx�; x! 1; (4.38)

’ / x��1=2; x! 0: (4.39)

Equation (4.36) gives the spectrum

" � m
�
1�

�Z��2

��� n� 1=2�2

�
�1=2

; n � 2; 3 . . .

(4.40)

which complies with the Sommerfeld formula Eq. (4.8). In
the nonrelativistic limit the longitudinal mode corresponds
to the following states with j � 0: 2p0; 3p0; 4p0 . . .

F. Summary for Coulomb problem

Our discussion of the Coulomb problem for vector par-
ticles confirms that for all polarizations and all angular
momenta j the discrete energy spectrum is described by the
Sommerfeld formula Eq. (4.8), as was first found by
Corben and Schwinger [5].

For j � 1 there exists three modes. One of them is
purely magnetic, it has l � j, while two others are con-
structed from the electric and longitudinal polarizations,
each one of these two modes has an admixture of l � j� 1
and l � j� 1 states. These two modes coexist for j � 1,
while for j � 0 only one of them, which in this case has a
purely longitudinal polarization and l � 1 is present.

From Eq. (4.8) one derives that the spectrum of the
Coulomb problem is degenerate; it is triply degenerate
provided n � j� 2, j � 1, doubly degenerate for levels
with n � j� 1, j � 1, while the states which have either
n � j or j � 0 remain nondegenerate. This conclusion
agrees with the nonrelativistic expansion, see Eq. (4.3).

Interestingly, one and the same Sommerfeld formula
Eq. (4.8) describes the discrete energy spectrum in the
Coulomb problem for scalar, Dirac, and vector particles.
The only distinction is related to the angular momentum j,
which takes the integer values j � 0; 1 . . . for bosons and
half-integer j � 1=2; 3=2 . . . for fermions.

V. CATASTROPHE WITH CHARGE

Consider the charge density of a vector boson for a state
with j � 0. Equations (2.23) and (4.24) give

�W � 2e
��
"�

Z�
r

�
�v2 � w2� � 2v

dw
dr
��w2

�
;

(5.1)

where w defined by Eqs. (2.18), (4.12), and (4.13) reads

w �
1

"� Z�=r

�
dv
dr
�

2v
r

�
: (5.2)

In the region of small distances r Z�=m Eq. (4.39)
shows that ’ / r��1=2. Consequently, from Eqs. (4.26)
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and (5.2) we find the following estimates for v and w

v� r��3=2; (5.3)

w�
�� 1=2

Z�
r��3=2: (5.4)

From here one derives an estimate for the charge density
(5.1) of the vector boson

�W ��2e
�1� ���1� 2��

Z�
r2��4; r > 0: (5.5)

It diverges at the origin so badly that the total chargeQW �R
�Wd3r localized in any small sphere surrounding the

origin is infinite.
The trouble does not stop here. Remember the density

� � Zjej
�r� of the Coulomb charge, which is located at
the origin. This density results in the �-term defined by
Eq. (2.19)

� �
e�

m2 � �
4�Z�

m2 
�r�: (5.6)

We did not consider it previously because the functions we
dealt with were regular at the origin, allowing one to hope
that their regular behavior makes the �-term irrelevant.
Since the charge density does not follow this pattern, we
need to take the term given by Eq. (5.6) into account. The
contribution of the 
-function in Eq. (5.6) to the boson
charge density is given by the last term in Eq. (5.1), which
reads

��W��-term � e
8�Z�

m2 w2�0�
�r�: (5.7)

Equation (5.4) shows that w�0� � 1, which makes the
density Eq. (5.7) infinite as well.

We see that there are two closely located, though differ-
ent regions, which contribute to an infinite charge of the
W-boson in the j � 0 state. One region is r > 0, where the
density of charge Eq. (5.5) behaves singularly as r! 0.
Another region is located strictly at the origin r � 0, where
an infinite coefficient w2�0� � 1 in front of the 
-function
in Eq. (5.7) makes the charge infinite as well.

The origin of Eq. (5.7) can be traced down to the last
term in Eq. (2.23). It contributes therefore to the charge
density for all states. There is one more state, in which the
coefficient in Eq. (5.7) turns infinite, signaling a cata-
strophic behavior of the charge. This is the �� 3=2 state
with j � 1, see Eqs. (4.20) and (4.21). To justify this
statement, note that Eqs. (4.13), (4.20), and (4.21) imply
that w / r��3=2. For j � 1 the inequality � < 3=2 holds.
Therefore for the state �� 3=2, j � 1 one finds w�0� �
1, which makes the charge of the W-boson located strictly
at the origin infinite. (There is no problem in that case with
the charge in the region r > 0).

The catastrophic behavior of the charge of the W-boson
in j � 0 and j � 1, �� 3=2 states was discovered in [5],
-8
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forcing the authors of this work to conclude that the pure
Coulomb problem for W-bosons is poorly defined.
VI. VACUUM POLARIZATION

Consider the conventional QED vacuum polarization.
The potential energy of the W-boson propagating in the
Coulomb field acquires an additional term, let us call it
S�r�, which describes the polarization

U�r� � ��1� S�r��
Z�
r
: (6.1)

It suffices to consider the polarization effect in the lowest-
order approximation, when it is described by the known
Uehling potential. Its small-distance asymptotic behavior
is given by a simple logarithmic function, see e.g. [21],

S�r� ’ ��� ln�mZr�; r! 0: (6.2)

This function is related to the logarithm responsible for the
scaling of the QED coupling constant

��1��� � ��1��0� � � ln��=�0�: (6.3)

The relation between Eqs. (6.2) and (6.3) is well known,
see e.g. book [21], which presents it for one generation of
leptons. The factor �, which governs the scaling of the
coupling constant and the potential in Eq. (6.2) equals the
lowest coefficient of the Gell-Mann–Low �-function. It is
normalized here in such a way that for one generation of
leptons � � �e � 2=3�.

It is important for us that ���� rises with the mass
parameter �, i.e. � is positive, �> 0; theoretical and
experimental data agree on this fact, for a brief review
see e.g. Ref. [18], the experimental data are provided by
Refs. [24–26]. An estimation of � can be found from two
reliable reference points ��1�m� � 133:498� 0:017 and
��1�mZ� � 127:918� 0:018 provided in Ref. [18]. Using
them and taking the masses m � 1776:99� 0:29�
0:26 MeV and mZ � 91:1876� 0:0021 GeV recom-
mended in [18] one derives from Eq. (6.3) that

� ’ 1:42�1�: (6.4)

A more simple estimation of � can be done if one takes
into account a contribution of all known charged fermions
‘‘naively’’ (neglecting complications, related to the QCD
vacuum as well as possible contribution of scalars). This
estimate yields

�est �
2

3�

X
i

q2
i

e2 �
2

3�

�
1�

5

3

�
3 ’ 1:70: (6.5)

Here summation runs over all charged fermions, qi is the
charge of the fermion, the terms 1 and 3=5 in the bracket
are due to the lepton and quark contribution for one gen-
eration, and the factor 3 after the bracket accounts for three
generations. A discrepancy between ‘‘simple-minded’’
Eq. (6.5) and more solid-based Eq. (6.4) is below 20%.
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The normalization of the logarithmic function on the mass
of the Z-boson mZ adopted in Eq. (6.2) presumes that the
fine-structure constant � is taken at precisely this scale,
� 	 ��mZ� ’ 1=128.

We are interested in high-momenta behavior in
Eqs. (6.2) and (6.3), where �� 1=r� m. An accuracy
of Eqs. (6.4) and (6.5), as well as any other feasible
estimation, is limited in this region by a contribution of
unknown heavy charged fermions and scalars. However,
this uncertainty does not affect our final conclusions. For
our purposes it suffices to stick to a widely accepted
hypothesis that � is a positive constant (or a slow-varying
function up to the grand unification limit).

Substituting Eqs. (6.1) and (6.2) into Eq. (2.19) one
derives

��r� ’
Z�2�

m2r3 ; r! 0; (6.6)

where the lowest term of the �-expansion is retained. It is
vital that for small distances, when r

����
�
p

=m, ��r� is
positive and large,

��r� � jU�r�j � m: (6.7)

Note that the direct contribution of the vacuum polarization
given by the term S�r� in Eq. (6.1) is not pronounced. In
contrast, the �-term Eq. (6.6) becomes dominant at small
distances, making the effects related to the QED vacuum
polarization very important. Since this term plays a crucial
role below, let us verify its sign again. Consider a positive
Coulomb center, Z > 0. Then the vacuum polarization
produces negative charge density, � < 0. Since the charge
of the W� meson is negative, e < 0, we find from
Eq. (2.19) that � � e�=m2 > 0. We see that indeed, the
�-term is positive, in accord with Eq. (6.6).

A. Longitudinal polarization, j � 0

Equation (4.24) shows that a longitudinal state with j �
0 is described by the single radial function v � v�r�.
Equation (2.18) allows one to express the function w via v

w � �"�U����1�v0 � 2v=r�: (6.8)

We need now to write the classical equation of motion for
v, in which the term � is taken into account. The simplest
way is to substituteW andw from Eqs. (4.24) and (6.8) into
Eq. (2.22), which yields

��"�U�2 �m2�v � ��"�U�
d
dr

�
v0 � 2v=r
"�U��

�

�U0
v0 � 2v=r
"�U��

: (6.9)

It is taken into account here that Eq. (4.24) ensures that
r�W � 0. For a purely Coulomb case, when � � 0 for
r > 0, Eq. (6.9) reduces to Eq. (4.25). Equation (6.9) can be
rewritten in a more compact form
-9
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v00 �Gv0 �Hv � 0; (6.10)

where the coefficients G � G�r� and H � H�r� are

G �
2

r
�

U0

"�U
�

U0 ��0

"�U��
; (6.11)

H � �
2

r2 �
2

r

�
U0

"�U
�

U0 ��0

"�U��

�

�
"�U��

"�U
��"�U�2 �m2�: (6.12)

For a qualitative analyses it is convenient to eliminate the
term with the first derivative by scaling the radial function
v! ’ � ’�r�

v �
1

r

�"�U��"�U����1=2’: (6.13)

(This definition reduces to Eq. (4.26) when � � 0). The
classical equation of motion for W-bosons takes a simple
form

�’00 �U’ � 0; (6.14)

U � �H�G2=4�G0=2; (6.15)

where G, H are defined in Eqs. (6.11) and (6.12).
Equation (6.14) can be looked at as a Schrödinger-type
equation, in which U �U�r� plays the role of an effective
potential energy.

According to Eqs. (6.6) and (6.7) the �-term is large and
positive at small distances. This fact makes the effective
potential U�r� in Eq. (6.15) also large and positive when
r! 0

U �r� ’ �H�r� ’ �U�r���r� ’
Z2�3�

m2r4 : (6.16)

Compare this result with the effective potential 
U�r��C for
the pure Coulomb field. The latter one is a part of the
Hamiltonian in Eq. (4.29). For r! 0 one finds from
Eq. (4.28) that


U�r��C ’ ��Z��2=r2: (6.17)

It is taken into account here that the variables x and r in
Eq. (4.29) are proportional, see Eq. (4.27). Equation (6.16)
shows that the vacuum polarization produces a strong
repulsion in the effective potential U�r�, in contrast with
a mild attraction, which exhibits 
U�r��C in Eq. (6.17) for
the pure Coulomb case.

When the estimate equation (6.16) is applicable,
Eq. (6.14) allows an analytical solution

’�r� / r exp
�
�
Z�����1=2

mr

�
: (6.18)

It shows that ’�r� exponentially decreases at small dis-
tances. According to Eqs. (6.8) and (6.13) the functions
v�r�, w�r� also decrease exponentially here; correspond-
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ingly, the charge density of the W-boson Eq. (5.1) de-
creases exponentially at the origin as well

v!
a
m

1

r2 exp
�
�
Z�����1=2

mr

�
; (6.19)

w! �
a

����1=2

1

r
exp

�
�
Z�����1=2

mr

�
; (6.20)

�W ! �
4a2Z�e

m2

1

r5
exp

�
�

2Z�����1=2

mr

�
: (6.21)

Here a constant a depends on the normalization of v,
which is specified in Eq. (7.3) below. Equation (6.21)
shows that for r > 0 in the vicinity of the origin the charge
density is finite and small, which makes the charge located
in this region finite as well. Equation (6.20) shows that
w�0� � 0, which eradicates the contribution of the

-function in Eq. (5.7). Thus, the charge located strictly
at origin r � 0 is zero.

We verified that an account of the QED vacuum polar-
ization erases the infinite charge of a vector boson for j �
0 state.

B. Electrolongitudinal polarizations, j � 1

Equation (6.7) shows that in the region of small dis-
tances r �=m the �-term, which is related to the vac-
uum polarization, is large. This fact makes the function w
in Eq. (2.18) small, jwj  jWj. As a result the asymptotic
form of the equation of motion (2.22) at small distances
reads

�Z��2

r2
W � r� �r�W�: (6.22)

Equation (4.5) ensures that r�W is not zero identically
provided j � 1, which makes Eq. (6.22) meaningful.

Using Eq. (4.5) to represent the electrolongitudinal
modes and identities Eqs. (C3) for the spherical vectors
one rewrites Eq. (6.22) in terms of the radial functions u, v

�Z��2u � �r2u00 � ru0 � u�
�����������������
j�j� 1�

q
v; (6.23)

�Z��2v � �
�����������������
j�j� 1�

q
�ru0 � u�

�����������������
j�j� 1�

q
v�: (6.24)

Their solution is straightforward

u � br�; (6.25)

v � b
�����������������
j�j� 1�

q �� 1

�2 � 1=4
r�: (6.26)

Here b is a constant, and � can take one of the two possible
values,

� � �� �
1

2

j�j� 1� � k

�2 � 1=4
; (6.27)
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FIG. 1. The 2p1 radial function v�r�, which describes the n �
2, j � 0 discrete state of a W-boson in the Coulomb field of a
charge Z � 1. (a) Large distances r� @=mc, v�r� is close to
conventional nonrelativistic wave function 2p;
(b) ultrarelativistic region r @=mc. Solid line—numerical
solution, dashed line—analytical prediction of Eq. (6.19).
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where k satisfies

k2 � j2�j� 1�2 � 4�Z��2��2 � 5
4���

2 � 1
4�; (6.28)

with � defined in Eq. (4.9). The two available values of ��
should be attributed to the two electrolongitudinal modes.

Comparing Eqs. (6.25) and (6.26), which are valid when
the vacuum polarization is taken into account, with
Eqs. (4.17), (4.20), and (4.21), which describe the purely
Coulomb case, we see that the polarization changes dras-
tically the behavior of the wave functions. One finds from
Eqs. (6.27) and (6.28) that �� are positive for all j, j � 1,
provided Z is not very large, Z� � 1=2.

From Eqs. (6.25) and (6.26) one deduces therefore that
u�r�, v�r� ! 0, when r! 0. Equation (2.18) guarantees
then that w�0� � 0. As a result the contribution of the

-function in Eq. (5.7) to the charge density turns zero
for all electrolongitudinal modes. This differs qualitatively
from the pure Coulomb case, which gives an infinite charge
located at the origin for j � 1, “l” � 0 state.

We conclude that the QED vacuum polarization sup-
presses the wave functions of a vector boson at the origin,
eradicating thus the infinite charge of the boson, which
plagues the problem for the pure Coulomb field.

VII. NUMERICAL EXAMPLE

To be more informative on the behavior of vector bosons
in the Coulomb field let us solve the corresponding equa-
tions of motion numerically. Consider the j � 0 state,
describing it with the help of Eqs. (4.24) and (6.9). We
need to specify the factor S�r�, which describes the vacuum
polarization in the potential in Eq. (6.1). For small r, r
Z�=m this factor plays a major role, while for larger it is
less important. Let us construct a simple model, which
gives a correct asymptotic behavior Eq. (6.2) as r! 0,
and is physically reasonable, though not perfect, at larger r.
Take with this purpose the Uehling potential, see e.g. [21],
assuming that only charged leptons and quarks contribute
to it

S�r� �
2�
3�

X
i

q2
i

e2 F�mir�: (7.1)

Here

F�x� �
Z 1

1
exp��2x��

�
1�

1

2�2

� ��������������
�2 � 1

p
�2 d�: (7.2)

Summation in Eq. (7.1) runs over all quarks and charged
leptons, their charges qi and masses mi are taken from
Ref. [18]. The model presented by Eq. (7.1) neglects
complications related to the QCD vacuum, which may be
substantial at large distances, but the role of the polariza-
tion is insignificant in this region anyway. For small dis-
tances r! 0 the model Eq. (7.1) reproduces the correct
asymptotic formula Eq. (6.2), in which the coefficient � is
given by Eq. (6.5). A comparison of Eqs. (6.4) and (6.5)
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shows that at small distances the accuracy of the model
potential can be estimated as�20%, which is sufficient for
us. Using S�r� from Eq. (7.1) one defines the potential U�r�
in Eq. (6.1) and the �-potential in Eq. (2.19). After that the
solution of Eq. (6.9) is straightforward. This solution
should be normalized on the total charge e of the W-boson

e �
Z
�W�r�d3r; (7.3)

where the charge density is defined by Eq. (5.1).
Figure 1 shows the radial function v�r� for the 2p1 state

(n � 2, j � 0) for Z � 1. For large distances mr� 1 the
function v�r� is close to the conventional nonrelativistic
wave function of the 2p state, as it should be, see Sec. III.
In the ultrarelativistic region mr 1 the function v�r�
changes sign, then shows an extremum, and decreases
exponentially when r! 0, in accord with an analytical
estimate Eq. (6.19), which is shown by the dashed line. The
fact that the function v�r� has a node in the relativistic
region produces no controversy since v�r� is not a proper
wave function and the conventional theorem, which counts
-11
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the nodes of the wave functions for discrete levels is not
applicable.

In our discussion we did not try to construct proper wave
functions, being content with a possibility to calculate the
current. As an example, Fig. 2 shows the charge density for
the 2p1 state in the Coulomb field of Z � 1. In the non-
relativistic region mr� 1 it behaves conventionally. For
the ultrarelativistic case mr 1 the density changes sign,
exhibits an extremum, and then decreases exponentially
when r! 0 in agreement with Eq. (6.21). Note that the
‘‘wrong’’ sign of the charge density, i.e. the positive charge
density for the negatively charged W-boson (Fig. 2 shows
�W=e � ��W=jej) produces no contradiction with general
principles. The Pauli’s theorem, see e.g. Ref. [21], implies
that the energy of a boson field is positively defined, but the
sign of the charge density of the boson field remains not
unequivocally determined [27].

The total positive charge located at small distances
proves to be very small; for 2p1, Z � 1 state it is
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FIG. 2. The charge distribution �W�r� for the 2p1 state of a
W-boson in the Coulomb field of a charge Z � 1.
(a) Nonrelativistic region of large distances r� @=mc;
(b) ultrarelativistic region r @=mc. Solid line—numerical
solution, dashed line—analytical prediction of Eq. (6.21),
dashed-dotted line—the pure Coulomb case Eq. (5.5), when
the charge density diverges at the origin (shown with arbitrary
normalization).
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QW
� � 4�

Z r0

0
�W�r�r2dr ’ 0:676� 10�14jej: (7.4)

Here r0 ’ 1:01� 10�3m�1 is a node of �W�r�.
It is instructive to compare the found charge density with

the one in the pure Coulomb problem, which is shown in
Fig. 2(b) by the dashed-dotted line that reproduces
Eq. (5.5). One should be content in this case with an
arbitrary normalization, since for the pure Coulomb field
the normalization integral in Eq. (7.3) is divergent.
Figure 2(b) illustrates the fact that the vacuum polarization
reduces the charge density at the origin.

The energy shift 
" of the level 2p1 (
" is a deviation of
energy from the Sommerfeld formula Eq. (4.8)) due to the
vacuum polarization is found to be 
"=m � �1:90�
10�7. In relative units it is much bigger than the Lamb
shift in atoms 
"LS=me � Z4�5. The reason is obvious.
The Lamb shift in atoms originates mostly from within the
Compton distances r� rc � 1=me, which are smaller than
the Bohr radius for the electron rB � 1=�Z�me�. For
W-bosons the situation is different. Light fermions, which
contribute to Eq. (7.1), allow the polarization potential to
spread to large distances, as far as the Bohr radius of the
W-boson, r� 1=mi � 1=�Z�m�. Therefore the energy
shift due to the vacuum polarization gains substantial con-
tribution from the nonrelativistic region, where the wave
function is large, which makes 
" large as well (large
compared to the Lamb shift in atoms). The accuracy of
the energy shift calculations is limited by an accuracy of
our model at large distances. The contribution of the QCD
vacuum, which could be substantial here, is not described
properly by the model based on Eq. (7.1). Consequently,
the presented above value for the energy shift should be
considered only as an estimate.

Nevertheless, one can derive an important lesson from
this estimate. The found energy shift is small on the
absolute scale, being lower than the nonrelativistic binding
energy by a factor of j
"j � 4=�Z2�2m� � 1:4� 10�2.
Thus, the dramatic variation of the function v�r� at the
origin, which is produced by the vacuum polarization,
makes only a small impact on the spectrum. This is in
contrast to a strong influence, which the vacuum polariza-
tion exercises on the charge distribution of vector bosons.
The fact that the energy shift is small makes the
Sommerfeld formula Eq. (4.8) a good approximation for
discrete energy levels.
VIII. DISCUSSION

We demonstrated that the conventional QED vacuum
polarization plays a very important, defining role in the
Coulomb problem for vector bosons. Let us summarize the
reasons leading to this conclusion. The Uehling potential,
which describes the vacuum polarization in the simplest
approximation is known to be a weakly attractive and
slowly varying function. For spinor particles it produces
-12
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a small enhancement of the fermion wave functions on the
Coulomb center. For vector bosons the situation is different
because the equations of motion for vector particles ex-
plicitly incorporate the external current. As a result, the
density of the polarized charge � comes into the equations
of motion for vector bosons. The corresponding term in the
equations was called the �-potential, � � e�=m2. The
charge density � is negative for an attractive Coulomb
center, � < 0 when Z > 0, being singular on the
Coulomb center, j�j � 1=r3. One derives from this that
the vacuum polarization produces a repulsive �-potential,
� � e�=m2 / 1=r3 > 0 (remember, e < 0). Since the
�-term is singular at the origin, it plays a dominant role
at small distances.

Strong effective repulsion produced by the �-potential
reduces the fields, which describe W-bosons on the
Coulomb center. For j � 0 this reduction is dramatic,
exponential. For j � 1, �� 3=2 the suppression is of a
more moderate power-type nature, but in both cases it is
strong enough to eliminate the infinite charge, which is
located at the origin in the pure Coulomb approximation.

The above comments appeal to a chain of calculations. It
is interesting to look at the obtained result from a more
general perspective. The renormalizabity of the standard
model implies that by renormalizing relevant physical
quantities one is bound to obtain sensible physical results.
The relevant quantity in question is the charge density of a
vector boson. It follows from this that the important physi-
cal quantity, which should be renormalized, is the coupling
constant. Its renormalization is effectively fulfilled when
the vacuum polarization is taken into account. Thus, it
makes sense that the account of the vacuum polarization
results in acceptable physical results.

A proposed approach is very straightforward, which
makes the Coulomb problem for vector bosons as simple
and reliable as it is for scalars and spinors. All discrete
energy levels can be easily evaluated, all relevant fields can
be calculated and normalized properly. Presumably, all
scattering data can also be evaluated, though the scattering
problem was not discussed in detail in the present work.
All these quantities include the Coulomb charge Z accu-
rately, not relying on perturbation theory. Starting from this
base, one can consider all other processes left outside the
scope of the Coulomb problem by treating them as pertur-
bations. This includes the conventional QED processes,
such as the radiative decay, photoionization, and the radia-
tive corrections. This includes also processes related to
possible exchange of Higgs and Z-bosons.

Previous attempts to formulate the Coulomb problem for
vector bosons within the framework of the standard model
have been facing a difficulty related to an infinite charge of
the boson located near an attractive Coulomb center. This
work finds that the polarization of the QED vacuum erad-
icates the problem. Usually the QED radiative corrections
produce only small perturbations. It is interesting that in
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the case discussed the radiative correction plays a major,
defining role.
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APPENDIX A: HOMOGENEOUS MAGNETIC
FIELD

For a static homogeneous magnetic field Eq. (2.10) reads

�"2 �m2�W � ��r� ieA�2W � 2ieB�W: (A1)

Assuming that the magnetic field is directed along the
z-axis and introducing the new variables w	, 	 � 0, �1,
w�1 � �Wx � iWy�=

���
2
p

, w0 � Wz one rewrites Eq. (A1)
in a simple form

�"2 �m2�w	 � ��r� ieA�2w	 � 2eB	w	; (A2)

which looks similar to the nonrelativistic Schrödinger
equation for a particle in the homogeneous magnetic field.
This similarity allows one to write the spectrum Eq. (2.24).

APPENDIX B: RELATIVISTIC CORRECTIONS TO
ENERGY LEVELS

Here we present separate expectation values for four
relativistic corrections in the same order as they appear
in Eq. (3.6). For l � 0


En0j �
m�Z��4

n3

��
3

8n
� 1

�
� 0�

2

3
� 0

�
: (B1)

Here and below we specify the terms having zero expec-
tation values by writing the corresponding zeros explicitly.
For l � 1


Enlj �
m�Z��4

n3

��
3

8n
�

1

2l� 1

�
�

hlsi
l�l� 1��2l� 1�

� 0

�
6hlsi2 � 3hlsi � 4l�l� 1�

l�l� 1��2l� 1��2l� 1��2l� 3�

�
; (B2)

where

hlsi � 1
2
j�j� 1� � l�l� 1� � 2�: (B3)

Both Eq. (B1) and (B2) lead to Eq. (4.2). The total relativ-
istic correction would look very complicated and show no
degeneracy if magnetic dipole or electric quadrupole mo-
ments of a vector particle are different from those values,
which follow from the gauge theory.

APPENDIX C: SPHERICAL VECTORS

The conventional definition of spherical vectors, see e.g.
[21], reads
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Y �e�jm � rnYjm=
�����������������
j�j� 1�

q
; Y�l�jm � nYjm;

Y�m�jm � n� Y
�e�
jm:

(C1)

Here Yjm 	 Yjm��; ’� is the spherical function, Y�e�jm, Y�l�jm,

Y�m�jm are the electric, longitudinal, and magnetic vectors.
The symbolrn in Eq. (C1) indicates the angular part of the
gradient, rF��;�� � rnF��;��=r, and n � r=r is a unit
vector along the radius vector.

Definitions Eqs. (C1) imply the following properties of
the spherical vectors

rn � Y
�e�
jm � �

�����������������
j�j� 1�

q
Yjm; rn � Y

�l�
jm � 2Yjm;

rn � Y
�m�
jm � 0;

(C2)

r� Y�e�jm � Y
�m�
jm ; r� Y�l�jm � �

�����������������
j�j� 1�

q
Y�m�jm ;

r� Y�m�jm � �Y
�e�
jm �

�����������������
j�j� 1�

q
Y�l�jm: (C3)

The formulas for the Laplace operator read

�nY
�e�
jn � �j�j� 1�Y�e�jm � 2

�����������������
j�j� 1�

q
Y�l�jm;

�nY
�l�
jm � 2

�����������������
j�j� 1�

q
Y�e�jm � �j�j� 1� � 2�Y�l�jm;

�nY
�m�
jm � �j�j� 1�Y�m�jm :

(C4)

Here �n describes the angular part of the Laplacian, i.e.
�F��;�� � �nF=r

2. The parity for electric and longitu-
dinal polarizations equals P � ��1�j, for magnetic polar-
ization the parity is P � ��1�j�1. The orbital moment l
takes the value l � j for the magnetic polarization, in
agreement with the parity for this state. The electric and
longitudinal polarizations are constructed as linear combi-
nations of the two states with l � j� 1. For j � 0 there
exists only one spherical vector, which is purely longitu-
dinal and has l � 1.
APPENDIX D: SPECTRUM OF
ELECTROLONGITUDINAL MODES FOR j � 1

Let us verify that for j � 1 the function g introduced in
Eq. (4.22) is nonzero. Consider first the �� 1=2 mode.
Substituting Eq. (4.17) into Eq. (4.22) one finds

g! a
1

Z�
�1=4� �2�r��1=2; (D1)

which indicates that in this mode g is not zero.
Consider now the �� 3=2 mode, which incorporates

both possible polarizations at small distances. We need
here the expressions for u and v at small distances that
are more accurate, then the ones in Eq. (4.20). They can be
derived by using mr 1 as a perturbation in Eqs. (4.15)
and (4.16), and pushing calculations one step beyond the
simplest approximation given by Eqs. (4.20) and (4.21).
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The result reads

u! b
�
1�

2� �Za�2

�� 1=2

"r
Z�

�
r��3=2; (D2)

v!
b�����������������

j�j� 1�
p

�
��

1

2
� Z�"r

�
r��3=2: (D3)

Substituting Eqs. (D2) and (D3) into Eq. (4.22) one finds
that the main term / r��3=2 cancels out in g, but the next
one survives, giving

g! b
"
Z�
�2�� 1� �Z��2�r��1=2: (D4)

We verified that for j � 1 the function g is not an identical
zero for both electrolongitudinal modes.
APPENDIX E: LONGITUDINAL MODE j � 0 AND
MATRIX MECHANICS

In order to find the spectrum of the operator H in
Eq. (4.29) let us employ a method, which finds its inspira-
tion in an elegant approach to quantum mechanics devel-
oped by the Götingen School and often called the matrix
mechanics; the book Ref. [28] gives its systematic presen-
tation. We modify it for our purposes as follows. Assume
that one needs to find discrete spectrum of some Hermitian
operator H (in our case it is the operator H in Eq. (4.29)).
Let us presume that one is able to find the operator �, which
satisfies

H � �y�� �0; (E1)

where �0 is a number. Define then a new operator ~H ,

~H � ��y � �0: (E2)

Let us verify that the two operators H , ~H have very
similar sets of eigenvalues. Consider an eigenfunction ’ of
H , with the eigenvalue �

H ’ � �’: (E3)

Taking

~’ � �’; (E4)

one verifies that

~H ~’ � ���y � �0��’ � ���y�� �0�’ � �H’

� ��’ � �~’: (E5)

This shows that either the function ~’ is an eigenfunction of
~H with the eigenvalue �, or ~’ � 0. The first options

makes � an eigenvalue of both operators H , ~H . The
second one implies that

�’ � 0; (E6)

which indicates that � � �0 is a candidate for an eigen-
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value of H because Eq. (E6) implies H’ � �0’.
Equation (E6) provides a convenient way to derive the
corresponding eigenfunction. There is a subtlety here
though. The one found from Eq. (E6) ’ may, or may not
satisfy the boundary conditions. If it does, then it repre-
sents the eigenfunction and � � �0 is an eigenvalue.
Otherwise, �0 does not belong to the discrete spectrum,
as would be the case in an example discussed. One should
also verify that an action of the operator � in Eq. (E4) (as
well as the operator �y in Eq. (E8) below) does not spoil
the boundary conditions. We presume here that this is the
case, and verify later on that this assumption holds for a
particular example discussed, see Eq. (4.38) and (4.39).

We conclude that any discrete eigenvalue of H is an
eigenvalue of ~H as well, with one possible exception of
�0. By reversing the argument, one derives that if ~’ is an
eigenfunction of ~H with the eigenvalue ~�,

~H ~’ � ~� ~’ (E7)

then

’ � �y ~’ (E8)

satisfies Eq. (E3) with � � ~�. We see that the two sets of
discrete eigenvalues of the two operators H , ~H are the
same, except for �0, which may, or may not be present in
one, or both sets of spectra. The crucial point for us is that
the operator ~H can be more simple for analyses than the
initial operator H .

Taking the operator H from Eq. (4.29), we construct the
operators �, �y in the form

� � �
d
dx
� a�

b
x
�

c
x� 1

; (E9)

�y �
d
dx
� a�

b
x
�

c
x� 1

; (E10)

where a, b, c are real numbers. From Eqs. (E9) and (E10) it
follows that

�y� � �
d2

dx2 � a
2 �

2b�a� c�
x

�
b�b� 1�

x2

�
2c�a� b�
x� 1

�
c�c� 1�

�x� 1�2
: (E11)

There are four x-dependent rational terms in Eq. (E11),
while only three coefficients a, b, c are available for tuning
to make them identical to similar terms present in the
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operator H . However, the coefficients in Eq. (4.29) prove
to be ‘‘user-friendly,’’ making this procedure possible.
Taking

a � b � �� 1=2; c � �1; (E12)

�0 � ���� 1=2�2; (E13)

one satisfies Eq. (E1). Taking �, �y defined in Eqs. (E9),
(E10), and (E12) one constructs ~H Eq. (E5), with the
result given in Eq. (4.33). The ‘‘nasty’’ singular at x � �1

term disappears from ~H . The latter operator describes a
conventional Coulomb-type problem with L � �� 1=2
playing a role of an effective (noninteger) angular momen-
tum. From Eq. (4.32) one finds that the regular at x � 0

solution of the eigenvalue problem ~H ~’ � �ß2 ~’, satis-
fies Eq. (4.34). Equation (4.36), which ensures that this
solution is regular at infinity, completely defines a set of
discrete eigenvalues of ~H .

The set of eigenvalues of ~H gives the eigenvalues of the
original operator H , except for possibly one additional
eigenvalue �0, which is discussed below. The eigenfunc-
tions of H can be found from Eq. (E8). Using Eqs. (E10)
and (E12) one presents them in a form of Eq. (4.31).

In order to verify whether �0 is an eigenvalue of H one
needs to find ’ from Eq. (E6). Equation (E9) gives

�
�
d
dx
� ��� 1=2�

x� 1

x
�

1

x� 1

�
’ � 0; (E14)

which leads to

’ � �x� 1��1x��1=2 exp
��� 1=2�x�: (E15)

Since this function is singular at x � 1, it cannot be an
eigenfunction. Consequently �0 is not an eigenvalue.

The function ’ defined by Eq. (4.31) exhibits regular
behavior at both boundaries Eqs. (4.38) and (4.39). This
ensures that ’ is an eigenfunction. Note that specifying the
operators �, �y one had an additional option. One could
have chosen in Eqs. (E12) and all the following relevant
formulas�� instead of �. In this case, however, instead of
Eq. (4.39) one obtains ’ / x���1=2 for x! 0, which in-
dicates a singular, unacceptable for an eigenfunction
behavior.

We conclude that the full set of all discrete eigenvalues
of H is specified by Eq. (4.36). The corresponding eigen-
functions are given by Eqs. (4.31) and (4.37).
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