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We compute, in the MSSM framework, the total electroweak contributions at one loop for the process
pp! tW � X, initiated by the parton process bg! tW. The supersymmetric effect is analyzed for
various choices of the SUSY benchmark points. Choosing realistic unpolarized and polarized experi-
mental quantities, we show the size of the various effects and discuss their dependence on the MSSM
parameters.
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I. INTRODUCTION

The relevance of the process of associated tW produc-
tion from proton-proton collisions has been exhaustively
stressed in recent dedicated studies [1]. In the standard
model framework, it is well known that accurate measure-
ments of the production rate would provide an excellent
determination of the tbW coupling. For physics beyond the
standard model (SM), one expects that precision tests of
virtual effects might be performed, provided that the ef-
fects were sufficiently large, i.e. at least of the same size as
the overall theoretical and experimental uncertainty. On
the theoretical side, an estimate given in [1] predicts for the
total production cross section an uncertainty of about 15%.
On the experimental side one must recall the fact that the
considered process will be seen, for the first time, at LHC,
simply because of the required pp energy. Therefore an
estimate of the expected experimental uncertainty is in fact
still missing. This might be particularly relevant, if the
estimated effect turned out to be reasonable (e.g. of the
same size as the theoretical one), for the special purpose of
performing a precision test of supersymmetric models, in
particular, of the simplest available one, the minimal super-
symmetric standard model (MSSM). In fact, in a previous
paper [2], the genuinely weak effects of the model were
considered at one loop for all the processes of single top
production (td, t �b, tW and also tH�) at LHC. The treat-
ment was rather preliminary and qualitative, and only
considered the very special case of a light SUSY scenario
and of a production in a large (� 1 TeV) final invariant
mass range, where a simple logarithmic expansion of so
called Sudakov kind could be used. The feature that
emerged was that, for the three processes that will certainly
be seen at LHC (i.e. td, t �b, tW), the electroweak relative
effect in the MSSM is sizable, particularly for large tan�
values where it could reach the 30% size. This appeared to
us a good motivation for performing a complete accurate
estimate, valid for all realistic invariant masses and con-
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taining all the parameters of the model. In this paper, we
present the results of our effort for the tW production
process. It is, to our knowledge, the first complete calcu-
lation of the electroweak MSSM effects at one loop for the
process, that also includes the QED soft photon radiation.
We have checked the validity of our results in three differ-
ent ways, i.e. (a) we have verified the cancellation of all the
(virtual) ultraviolet divergences, (b) we have verified the
cancellation of all the (real and virtual) infrared divergen-
ces and, last but not least, (c) we have verified the exact
reproduction of the asymptotic Sudakov expansions, given
in [2], from the computed Feynman diagrams. After these
three checks we hope that our results should be correct, and
we shall show them in the paper with the following plan: in
Sec. II a brief description of the relevant Feynman dia-
grams is given, and a discussion of the cancellation of the
ultraviolet and infrared divergences is provided. Section III
shows the reproduction of the (essentially academic)
asymptotic Sudakov expansion. In Sec. IV, the realistic
observables are defined, and the related MSSM effect is
shown for various choices of the SUSY benchmark points.
A final discussion that included a review of future calcu-
lations is provided in Sec. V.

II. MSSM bg! tW PRODUCTION AT ONE LOOP

The process that we have considered is the so-called
exclusive associated tW production, whose partonic de-
scription corresponds to the two body final state reaction

bg! tW�; (1)

that is represented, at Born level, in Fig. 1. In this paper we
shall not consider the inclusive process

gg! t �bW�: (2)

As known [3], the collinear �b component of this process is
already enclosed as a QCD NLO correction to the bottom
quark distribution function of the exclusive process Eq. (1)
-1 © 2006 The American Physical Society
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FIG. 1. Born diagrams for the process bg! tW�.
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and our treatment will only consider the one-loop electro-
weak effects.

At the one-loop level, we have to consider different
kinds of Feynman diagrams, several of which will exhibit
an ultraviolet divergence. We shall choose the on-shell
renormalization scheme, and in this framework we shall
define the following classes of Feynman diagrams:

A. Born, self-energies and counterterms

The two Born diagrams represented in Fig. 1(a) and 1(b)
are an s-channel b quark exchange and a u-channel top
quark exchange. With the definitions s � �pb � pg�2 �
�pW � pt�

2, and u � �pb � pW�
2 � �pg � pt�

2 channel,
we have

ABorn�gb! Wt� �
egs
sW

���
2
p �u�t�

�
6�PL�q6 �mb�e6

s�m2
b

�
e6 �q6 0 �mt�6�PL

u�m2
t

�
u�b� (3)
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where

q � pg � pb � pW � pt s � q2

q0 � pt � pg � pb � pW u � q02;
(4)

and e, � are the gluon and W polarization vectors,
respectively.

In the on-shell renormalization scheme, these Born
terms have to be completed with counterterms associated
to the b, t, and W lines. These counterterms are expressed
in terms of quark and gauge bosons self-energy functions
�f
L;R;S�k

2�, �VV0 �k2�. In these self-energies we take into
account SM and SUSY contributions (sfermions, Higgs,
neutralinos and charginos) [4]. The b and t quark propa-
gators are also modified by self-energy functions of s and
u.

In the s-channel, we can use the invariant forms

Is1L;R � 6�q6 e6 PL;R Is2L;R � 6�e6 PL;R; (5)

and write the amplitude as

A �
X
�

fNs
1I
s
1� � N

s
2I
s
2�g; (6)

where
Ns
1 �

egs���
2
p
sW�s�m2

b�

�
1� �ZW1 � �Z

W
2 �

1

2
��W �

1

2
��t �

3

2
�ZbL �

1

2
�ZtL �

s

s�m2
b

��b
L�s� � �Z

b
L�

�
m2
b

s�m2
b

��b
R�s� � �Z

b
R� �

2m2
b

s�m2
b

�
�b
S�s� �

1

2
��ZbL � �Z

b
R� �

�mb

mb

��
(7)

Ns
1 � 0 Ns

2 � 0 (8)

Ns
2 �

egsmb���
2
p
sW�s�m

2
b�

�
1� �ZW1 � �Z

W
2 �

1

2
��W �

1

2
��t �

1

2
�ZbL �

1

2
�ZtL � �Z

b
R

�
s

s�m2
b

��b
R�s� � �Z

b
R � �b

L�s� � �Z
b
L� �

s�m2
b

s�m2
b

�
�b
S�s� �

1

2
��ZbL � �Z

b
R� �

�mb

mb

��
: (9)

In the u-channel, we define

Iu1L;R � e6 q6 06�PL;R Iu2L;R � e6 6�PL;R; (10)

and write

A �
X
�

fNu
1 I

u
1� � N

u
2 I

u
2�g; (11)

with
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Nu
1 �

egs���
2
p
sW�u�m

2
t �

�
1� �ZW1 � �Z

W
2 �

1

2
��W �

1

2
��t �

3

2
�ZtL �

1

2
�ZbL �

u

u�m2
t
��t

L�u� � �Z
t
L�

�
m2
t

u�m2
t
��t

R�u� � �Z
t
R� �

2m2
t

u�m2
t

�
�t
S�u� �

1

2
��ZtL � �Z

t
R� �

�mt

mt

��
(12)

Nu
1 � 0 Nu

2 � 0 (13)

Nu
2 �

egsmt���
2
p
sW�u�m2

t �

�
1� �ZW1 � �Z

W
2 �

1

2
��W �

1

2
��t �

1

2
�ZbL �

1

2
�ZtL � �Z

t
R

�
u

u�m2
t
��t

R�u� � �Z
t
R ��t

L�u� � �Z
t
L� �

u�m2
t

u�m2
t

�
�t
S�u� �

1

2
��ZtL � �Z

t
R� �

�mt

mt

��
: (14)
The various counterterms have the following explicit ex-
pressions in terms of self-energies. First, we have the
divergent quark wave function renormalizations

�ZbL � �ZtL � �ZL

� ��b
L�m

2
b� �m

2
b��

0b
L �m

2
b� � �0bR �m

2
b� � 2�0bS �m

2
b�	

(15)

�ZbR � ��b
R�m

2
b� �m

2
b��

0b
L �m

2
b� ��0bR �m

2
b� � 2�0bS �m

2
b�	

(16)

�ZtR � �ZL � �t
L�m

2
t � ��t

R�m
2
t �: (17)

Then, we have the finite wave function renormalization
required in the on-shell scheme and unavoidable since we
have both up and down type quarks in the process

��t � �f�
t
L�m

2
t � � �ZL �m2

t ��
0t
L�m

2
t � ��0tR�m

2
t �

� 2�0tS�m
2
t �	g: (18)

The similar terms for the W gauge boson are

�ZW1 � �Z
W
2 �

��Z�0�

sWcWM2
Z

; (19)

�ZW2 ���0���0�� 2
cW

sWM2
Z

��Z�0��
c2
W

s2
W

�
�M2

Z

M2
Z

�
�M2

W

M2
W

�
;

(20)

and

��W � ��0WW�M2
W� � �f�

0WW�M2
W� � �Z

W
2 g: (21)

Finally, we list the mass counterterms

�M2
W � Re�WW�M2

W� �M2
Z � Re�ZZ�M2

Z� (22)
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�mb �
mb

2
Re��b

L�m
2
b� � �b

R�m
2
b� � 2�b

S�m
2
b�	 (23)

�mt �
mt

2
Re��t

L�m
2
t � � �t

R�m
2
t � � 2�t

S�m
2
t �	: (24)

B. Vertex corrections and box diagrams

The next two classes of diagrams are trianglelike verti-
ces and box diagrams. A list of the generic diagrams (i.e.
diagrams with virtual particles left unspecified apart from
their spin) is shown in Fig. 2 as produced by FeynArts [5].
Schematically we can further subdivide them as follows (q
stands for b or t quarks, V for �, Z, W, H for neutral or
charged Higgses or Goldstone particles, � for chargino or
neutralino):
(1) I
-3
nitial s-channel triangles connected to the inter-
mediate b quark: (Vqq), (Hqq), ��~q ~q�;
(2) F
inal s-channel triangles connected to the inter-
mediate b quark: (btV), (HHq), �~b~t �� (VVq),
(HVq), (VHq), (btH), ���~q�;
(3) U
p u-channel triangles connected to the intermedi-
ate t quark: (qqV), (qqH), �~q ~q��,
(4) D
own u-channel triangles connected to the inter-
mediate t quark: (tbV), (tbH), ���~q�, (VVq),
(VHq), (HVq), (HHq), �~t ~b��;
(5) D
irect boxes: �~b ~b~t �0�, (bbtV), (bbtH);

(6) C
rossed boxes: (qqVV), (qqVH), (qqHV),

(qqHH), �~q ~q���;

(7) T
wisted boxes: (ttVb), (ttHb), �~t~t �0 ~b�.

The notation corresponds to the clockwise ordering of

the internal particles inside the diagrams.
An essential step consists then in checking the cancella-

tion of UV divergences. They appear in the self-energy
functions ��k2�, in the various counterterms, and in the
various triangles. Box contributions are convergent. We
have checked the cancellation when summing all of these
terms. This cancellation occurs in several independent
sectors (gauge, Higgs, SM, SUSY).

Having completed the first important check (cancella-
tion of UV divergences) we now move to the forthcoming
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FIG. 2. Generic diagrams for the process bg! tW�. We list only the vertex corrections and the box diagrams. The labels S, F, and
V denote generic particles with spin 0, 1=2, and 1.
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issue of cancellation of IR divergences that will be treated
in the forthcoming discussion.

C. Cancellation of IR divergences

QED radiation effects are usually split into a soft part
containing the potential IR singular terms, and a hard part
including the emission of photons with energy not small
compared to the process energy scale. In this brief section,
we discuss the soft emission and the detailed cancellation
of IR divergences that occurs when it is combined with
virtual photon exchanges.

Let us denote by ABorn and A1 loop any invariant he-
licity scattering amplitude evaluated at Born or one loop
093001
level. Let us also denote by � the photon mass acting as an
IR regulator. The IR cancellation between (soft) real ra-
diation and virtual photon exchange holds in every helicity
channel separately and we have checked it numerically.

It reads

�ABorn�2
�
1�

�
2	

�s

�
� 2ABornA1 loop � finite as �! 0;

(25)

where, in the above expressions, �S is the correction factor
taking into account the emission of soft real photons with
-4
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energy from � up to Emax
� 


���
s
p

. The explicit expression
for �S can be found, for instance, in [6].

In practice the above relation follows from the eikonal
factorization

A 1 loop � �ABorn �
4	

�s � regular terms as �! 0:

(26)

It is possible to split further the above factorization prop-
erty. Indeed, the singular part of the radiation factor has the
form

�S � log
�
Emax
�

X
i;j

�i;jS � regular terms as �! 0; (27)

where i and j runs over the initial/final charged particles,
i.e. (bt), (bW), and (tW). There are two types of contribu-
tions: the diagonal ones with i � j and the off-diagonal
ones with i � j [6].

Now, the matching between the singular log� in the left-
hand side and right-hand side of Eq. (26) can be checked in
several independent steps as follows
(1) th
e diagonal radiation terms i � j match the IR
divergence in the counterterms associated to the
i-th external line [7].
(2) th
e off-diagonal radiation terms i � j match the IR
divergence in the diagrams which are obtained con-
necting in all ways the i-th and j-th external lines
with a virtual photon. This operation produces both
triangle and box diagrams.
As a final comment, we remark that gauge invariance is
crucial to cancel all nonfactoring contributions associated
to the final W line as discussed in [8].

The next step in the treatment of QED effect is the
calculation of hard photon emission. We have left this
subject to a dedicated study which shall be discussed
separately [9].
III. SUDAKOV EXPANSION OF THE SCATTERING
AMPLITUDES

Let us now consider the high energy behavior of the
bg! tW helicity amplitudes F�
�0
0 , where �, 
, �0, 
0

refer to the helicities �b, �g, �t, �W respectively. Several
simplifications appear in the Born and in the one-loop
contributions. When s� m2

i (mi being the internal or
external involved masses), ignoring m2

i =s contributions,
the nonsuppressed Born amplitudes reduce to F����,
F���� for transverse W and F���0 for longitudinal W.

The leading high energy Born helicity amplitudes are

FBorn
���� !

egs
sW

���
2
p

�
�l

2

�
2

cos�2
(28)
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FBorn
���� !

egs
sW

���
2
p

�
�l

2

�
2 cos

�
2

(29)

FBorn
���0 !

egs
sW

�
�l

2

�
mt

MW
cos

�
2

�
1� cos�
1� cos�

�
: (30)

Note that F���0 is controlled by the top Yukawa cou-
pling factor �mt=MW . In fact the amplitude F���0 also
occurs but at a much weaker level as it is controlled by the
bottom Yukawa coupling factor �mb=MW .

At one loop, these amplitudes receive logarithmic en-
hancements as discussed in several papers, called Sudakov
terms. These terms are separated into universal and into
angular dependent components. From the rules established
in [10], one expects the following expressions (there are
misprints in the paper [2]; The correct equations are the
following Eqs. (31)–(46)).

For transverse W amplitudes:

FUniv
�;
;�;
 � FBorn

�;
;�;


�
1

2
�cew�b �b�L � c

ew�t�t�L�

� cew�WT�

�
(31)

cew�q �q�L � cew�~q ~�q�L � c�q �q; gauge�L � c�q �q; yuk�L
(32)

c�d �d; gauge�L � c�u �u; gauge�L

�
��1� 26c2

W�

144	s2
Wc

2
W

�
n log

s

m2
W

� log2 s

m2
W

�

(33)

c�d �d; gauge�R �
�

36	c2
W

�
n log

s

m2
W

� log2 s

m2
W

�
(34)

c�u �u; gauge�R �
�

9	c2
W

�
n log

s

m2
W

� log2 s

m2
W

�
; (35)

where n � 3, 2 in SM and MSSM, respectively.

c�b �b; yuk�L � c�t�t; yuk�L

� �
�

16	s2
W

�
log

s

m2
W

��
m2
t

m2
W

yt �
m2
b

m2
W

yb

�

(36)

c�b �b; yuk�R � �
�

8	s2
W

�
log

s

m2
W

��
m2
b

m2
W

yb

�
(37)

c�t�t; yuk�R � �
�

8	s2
W

�
log

s

m2
W

��
m2
t

m2
W

yt

�
; (38)

where yt � 1, 2�1� cot2�� and yb � 1, 2�1� tan2�� in
SM and MSSM, respectively.
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cew�WT� �
�

4	s2
W

�
�log2 s

M2
W

�
; (39)

and for the longitudinal W�0 amplitude:

FUniv
�;�;�;0 � FBorn

�;�;�;0

�
1

2
�cew�b �b�L � cew�t�t�R� � cew�W0�

�
;

(40)

with, in SM:

cew�W0� �
�

4	

��
�

1� 2c2
W

8s2
Wc

2
W

log2 s

M2
W

�
�

�
log

s

M2
W

�

�

�
�

15� 42c2
W

72s2
Wc

2
W

�
3�m2

t �m2
b�

8s2
WM

2
W

��
; (41)

such that

FUniv
�;�;�;0 � FBorn

�;�;�;0

�
�

4	

���
�log2 s

M2
W

��
13� 14c2

W

36s2
Wc

2
W

�

�

�
1� 2c2

W

2s2
Wc

2
W

�
m2
b

2s2
Wc

2
W

��
log

s

M2
W

��
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whereas in MSSM:
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such that

FUniv
�;�;�;0 � FBorn

�;�;�;0

�
�

4	

���
�log2 s

M2
W

��
13� 14c2

W

36s2
Wc

2
W

��
;

(44)

(in which all single logs cancel).
For the electroweak angular terms we find:
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Note that the longitudinal W amplitudes satisfy the
equivalence theorem which states that, neglecting m2

i =s
contributions, they should coincide with the amplitudes
for the process bg! tG�, G� being the charged
Goldstone boson.
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We have checked that our full one-loop result reprodu-
ces the logarithmic contributions predicted by the above
rules. This check is straightforward and can be performed
by expanding the various B, C, D Passarino-Veltman func-
tions appearing in the self-energy, triangle, and box-type
amplitudes.

These resulting asymptotic expressions deserve several
comments. In the case of transverse W production, one
checks that at Born and one-loop level and at next-to-
leading logarithmic accuracy in addition to trivial fermion
chirality constraint �t � �b � �1=2 gauge boson helicity
conservation [11] is preserved, both in SM and MSSM
cases, i.e. only 
 � 
0 amplitudes survive. One then
sees that the MSSM differs from the SM in the single
logarithm contributions, n � 2 instead of n � 3 for gauge
terms and 2�1� cot2�� or 2�1� tan2�� Yukawa enhance-
ments, especially large for large tan�.

In the case of longitudinal W production, the Born
amplitude is controlled by the Yukawa mt=MW factor
associated to fermion chirality violation �t � ��b �
1=2 and satisfies also the rule �g � �b � �t which is an
extension of the GBHC rule [11]. An additional remark-
able feature appears for the single log contribution,
namely, it totally cancels in the MSSM case.

Having successfully performed the ultraviolet, infrared
and Sudakov tests, we hope that our complete expressions
will be correct. In this respect, we should add the following
comment: We do not expect that, at lower energies and for
higher SUSY masses, the simple features that we met in the
light SUSY Sudakov description given in [2] retain their
full validity. Still, we would expect that at least some of the
main features could survive. For instance, for what con-
cerns the slope of the invariant mass distribution, we could
hope that a simple modification at lower energies, or at
lower energy/SUSY masses ratios, might be the addition of
a (possibly large) constant term at least in a moderate
energy region not too far from the asymptotic one, so
that a smooth connection between the two regions is
achieved. In the following section we shall return on this
point, but first we shall define and examine those quantities
that will be the realistic experimental observables.
IV. PHYSICAL PREDICTIONS

We are now able to provide numerical predictions for the
complete electroweak effect of the MSSM at one loop on
the realistic observables of the considered tW production
process. The numerical evaluation of the scattering ampli-
tude has been performed with the help of the LoopTools
library [12]. We shall divide our presentation in two parts
that correspond, respectively, to the consideration of
unpolarized and of polarized quantities. Following a prag-
matic attitude i.e. assuming that only unpolarized observ-
ables will be measured in a first stage of the experiments,
we shall start our analysis with the former ones.
-6
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The first quantity that we shall consider is the invariant
mass distribution, conventionally defined as

d��PP! tW� � X�
ds

�
1

S

Z cos�max

cos�min

d cos�
�
Lbg�
; cos��

�
d�bg!tW�

d cos�
�s�
�
; (47)

where 
 � s
S , and Lbg is the parton process luminosity.

Lbg�
; cos�� �
Z �ymax

�ymin

d �y
�
b�x�g

�


x

�
� g�x�b

�


x

��
; (48)

where S is the total pp c.m. energy, and i�x� the distribu-
tions of the parton i inside the proton with a momentum
fraction, x �

��s
S

p
e �y, related to the rapidity �y of the tY

system [13]. The parton distribution functions are the latest
LO MRST (Martin, Roberts, Stirling, Thorne) set available
on [14]. The limits of integrations for �y depends on the
cuts. We have chosen a maximal rapidity Y � 2 and a
minimum pT which we shall specify later.

Note that we are at this stage considering as kinematical
observable the initial partons c.m. energy

���
s
p

, and not the
realistic final state invariant massMtW . The transition from
the first quantity to the second one can be performed using
the available suitable event generators, like for instance
PYTHIA [15], as we did in a previous paper on top-antitop
production [16]. We expect from that experience a small
(few percent) modification in the transition from

���
s
p

to
MtW . This correction can be considered as a QCD effect,
and as such it will be consistently treated in a forthcoming
paper [17] where this type of nonelectroweak effects will
be included. For what concerns the complete one-loop
electroweak amplitude, we can compute it for any choice
of the MSSM parameters, but before doing this we want to
show some features of the simple Born approximation of
the partonic amplitude that we consider particularly rele-
vant for an understanding of our following results. More
precisely, the point that we want to stress is that the
partonic invariant scattering amplitude for the process,
that represents the starting block of our calculations, turns
out to be the sum of 12 different helicity amplitudes, that
have been defined already in Sec. III. For large values of���
s
p

, i.e. for
���
s
p

sufficiently larger than the masses of all the
particles and sparticles involved in the one-loop descrip-
tion of the process, we expect that only three helicity
amplitudes remain dominant, more precisely those that
have been defined in Sec. III as F����, F����, F���0

(the third and fourth index specifies the top and W helic-
ity). The remaining helicity amplitudes vanish asymptoti-
cally i.e. for s! 1 like 1=s with possible logarithmic
corrections at one loop, and in our preliminary paper [2]
they were systematically neglected in the region of that
was considered, corresponding to a) energies in the 1 TeV
range and b) light SUSY masses scenario. For the realistic
analysis that we can now carry on, both assumptions will
be abandoned. In particular:
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(a) T
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he possibility of identifying the final �t;W� signal
must face the serious competition of a background,
mostly due to events coming from the copious top-
antitop and WWj production. This problem has been
already exhaustively discussed in a previous paper
[3], where it has been shown that the introduction of
suitable b-tagging cuts will allow to extract the
signal at reasonable (20 fb�1) luminosities. A priori,
one would expect that the background contamina-
tion should be under control for c.m. energies below
a qualitative background threshold of approxi-
mately, say, 400–500 GeV, and increase in the
higher energies region. Keeping this limitation in
mind, we have nonetheless analyzed in this paper
the full energy region from threshold to 1 TeV,
although at this final energy value the identification
of the signal might be difficult. The reason of this
(optimistic) choice is that we do not have yet at
disposal a rigorous experimental analysis of the
realistically expected size of the signal at variable
energies, as we had in the preliminary top-antitop
paper [16]. This analysis is being already per-
formed, and will be included in the already men-
tioned forthcoming work.
(b) T
he SUSY scenario that we shall investigate is the
conventional mSUGRA one. In particular, we shall
consider a number of benchmark points that are
nowadays available, trying to choose those that
show a definite difference in the values of the vari-
ous SUSY masses, and of tan�. We insist on the
fact that we could perform its calculation for any
choice of the parameters, but for obvious reasons
we have limited the presentation of figures in this
paper.
After these preliminary remarks, we now show in Fig. 3
the comparison (treated in Born approximation) of quan-
tities that we consider particularly worth of being consid-
ered, i.e. the parton c.m. angular dependences of the
differential cross section in various helicity channels. We
have chosen four c.m. energy values,

���
s
p
� 300, 500, 1000,

and (academically) 2000 GeV and retained for sake of
comparison the full angular range �1 
 cos� 
 1 (pos-
sible angular cuts will be considered separately). We have
only retained those terms that are numerically meaningful,
leaving aside the invisible ones. In the Figure, for simplic-
ity, we show only the 5 amplitudes which are leading at
high energy. These are the three asymptotic ones generated
by the helicity amplitudes previously defined and two extra
ones, corresponding to F���0 and F����. The important
points to be noticed are the following ones:
(1) T
he relative relevance of the different helicity
differential cross sections changes drastically with
the scattering angle for the two lower energy points.
As one sees, the scattering in the nearly backward
region is totally dominated for

���
s
p
� 300–500 GeV

by the two nonasymptotic quantities; the weight of
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FIG. 3. We show the energy and angular dependence of the 5
helicity amplitudes which are leading at high energy. Of course,
these include the three amplitudes which are not mass sup-
pressed. In addition, we show the next relevant amplitudes which
are the mass suppressed ones F���0 and F����. An inspection
of the Figure shows that below 1 TeV the mass suppression is not
effective, especially in the backward region.
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the asymptotic differential cross sections becomes
dominant when � moves to the forward direction,
where the overall numerical size is, though, smaller
than that of the backward region.
(2) A
lthough less evidently, these features survive also
at the next energy point

���
s
p
� 1 TeV. More pre-

cisely, the size of the F���0 distribution remains
essential in the backward region.
(3) O
ne might start doubting about the validity of our
asymptotic assumptions. To show that this is not the
case, we have plotted the distributions in the last
subfigure, for the (academic) point

���
s
p
� 2 TeV. As

one sees, the features at this energy are those that
would expect at (sufficiently!) high energies: the
largely dominant contribution is that of two of the
asymptotic quantities, more precisely F���0 and
F����.
In conclusion, we see that the contribution of the non-
asymptotic helicity amplitudes, for which no Sudakov
expansion has to be expected, is essential for realistic
(i.e., qualitatively <1 TeV) energies. A proper asymptotic
behavior seems to eventually set in, but only at higher
energies (say, �2 TeV), where the possibility of detecting
the signal appears, least to say, debatable. Although these
features were derived by an analysis performed in Born
approximation, we expect that the complete results that
will follow will be consistent with these preliminary
impressions.

V. RESULTS

The successful results of our previous tests have encour-
aged us to prepare with a reasonable amount of confidence
093001
a numerical C�� code that contains the complete tested
one-loop expression of all the components of the consid-
ered process. This program has been called MINSTREL
and is nowadays working and available. Thanks to this
code we are now able to provide numerical predictions
for the complete electroweak effect of the MSSM at one
loop on the realistic observables of the associated tW�

production.
With this aim, we have returned to Eq. (47) and have

considered a set of SUSY benchmark points that appeared
to us suited for our analysis. More precisely, we have
retained representative points whose SUSY masses values
are not light (but not even dramatically large) and also
points whose masses are, conversely, light (in our lan-
guage, lighter than, say, 400–500 GeV). Also, we have
used points whose only essential difference is the value of
tan�, that is allowed to become definitely large (50) in one
of the two cases and still appreciable (10) in the second
one. In this way, we should be able to compare the com-
plete results with those that we found in the light SUSY
Sudakov approximation. For practical reasons, we will
only show the results of our analysis for a choice of four
representative points. Two of them are the ATLAS DC2
SU1 and SU6 points [18]; the remaining two are two points
whose spectrum has been evaluated by the code SUSPECT
[19] and that we have called LS1, LS2 where LS stands for
Light SUSY. To make the reasons of our choice evident, we
have given in Table I the values of the various SUSY
masses, and of tan�, that correspond to the four choices.
One sees that the first two points correspond to a not light
choice, with two different values of tan�; for the last two
points, a light SUSY scenario is assumed, with, again, two
different tan� values. Two final technical points have to be
now added:
(a) O
-8
ur calculations have been performed with a value
of pT;min � 15 GeV.
(b) I
n the calculations, we have included a QED soft
photon contribution, computed assuming an upper
value of the soft photon energy �E � 0:1 GeV. As
we anticipated, the full treatment of the essentially
standard model hard photon emission will be con-
tained in a dedicated paper [9].
A. Unpolarized observables

1. Effects in the distribution d�=ds

We can now show the first results of our calculations. In
Fig. 4 we have drawn the relative effect at one loop of the
MSSM, and also of the SM alone, for the four choices of
benchmark points. The calculation stops at

���
s
p
� 1 TeV as

we announced. From a glance at the different figures, a
number of (preliminary) conclusions can already be drawn.
In particular:
(a) T
he genuine SUSY effect, i.e. the difference be-
tween the MSSM and the SM, remains systemati-
cally small (a relative few percent) for all choices of
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FIG. 4. MSSM and SM one-loop effect in the distribution
d�=ds in the four considered scenarios SU1, SU6, LS1, LS2.

TABLE I. Table of spectra for the various benchmark points.
All entries with the dimension of a mass are expressed in GeV.
The spectra have been computed with the code SUSPECT [19].

SU1 SU6 LS1 LS2

m0 70 320 300 300
m1=2 350 375 150 150
A0 0 0 �500 �500
tan� 10 50 10 50

=j
j 1 1 1 1
� �0:110 �0:0212 �0:109 �0:015
M1 144.2 155.8 60.1 60.6
M2 270.1 291.3 114.8 115.9

 474.4 496.6 329.7 309.3
H� 534.3 401.7 450.4 228.9
H0 528.3 392.5 442.5 211.1
h0 114.6 115.7 111.4 110.8
A0 527.9 392.5 443.4 212.0
��1 262.8 289.3 108.0 111.1
��2 495.3 514.8 350.1 329.4
�0

1 140.1 153.0 57.38 58.92
�0

2 263.1 289.4 108.5 111.3
�0

3 479.2 501.0 335.3 315.8
�0

4 495.4 514.0 348.7 326.5

SU1 SU6 LS1 LS2

~lL 253.3 412.3 321.0 321.2
~lR 157.6 353.4 308.7 308.7
~�e 241.0 404.8 311.3 311.3
~
L 149.6 195.8 297.1 078.1
~
R 256.1 399.2 323.8 282.5
~�
 240.3 362.5 308.4 243.6
~uL 762.9 870.5 459.8 460.2
~uR 732.9 840.7 451.9 452.3
~dL 766.9 874.0 466.4 467.0
~dR 730.2 837.8 452.8 453.2
~tL 562.5 631.5 213.3 223.6
~tR 755.8 796.9 462.9 431.3
~bL 701.0 713.7 380.6 304.0
~bR 730.2 787.6 449.1 401.7
�
 1.366 1.133 1.091 1.117
�b 0.3619 0.7837 0.184 0.653
�t 1.070 1.050 1.016 0.9313
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the benchmark points in the considered (realistic)
energy region. In this sense, a measurement of the
invariant mass distribution of the process does not
appear to be a promising way of detecting genuine
SUSYeffects in the MSSM with mSUGRA symme-
try breaking (this conclusion could be not valid for
different supersymmetric models or symmetry
breaking scenarios).
(b) T
he overall SM plus SUSYone-loop effect, which in
the considered case of the MSSM is practically
093001-9
entirely due to the standard model component, is
not, though, negligible. As one sees, it varies from
positive to negative values in the lowest part of the
region, remaining systematically negative for larger
energies and reaching a common value of approxi-
mately 10% around 1 TeV. This large energy nega-
tive shift from the Born level calculation appears a
characteristic property of the considered MSSM
model, independent of the values of the parameters
that were assumed in our analysis. In practice, the
fact that the effect is largely dominated by the
standard model component of the model is a con-
sequence of the strong decoupling of the genuine
SUSYeffects that arises in a complete calculation as
soon as the sparticle masses assume not specially
light values, contrary to the assumption made in the
preliminary analysis of [2]. It might be that for
different supersymmetric scenarios this unlucky
cancellation disappears, or becomes less drastic.
This possibility, which still remains open at this
stage, would deserve in our opinion a further general
investigation.
(c) I
n our work, we did not consider QCD corrections as
well as their supersymmetric partner corrections
involving gluino exchanges. Concerning standard
model QCD effects, to our knowledge, they have
been recently computed at NLO both for the
Tevatron and for the LHC production [20]. At
LHC, the effect on the cross section is relatively
mild, of the 10% size, i.e. comparable with that of
the electroweak corrections. About the genuine
SUSY QCD effects, in [2] we computed them in
the Sudakov approximation where they contribute
additional single logarithms. At full one loop, i.e.
including terms not growing with energy, they have
not been computed. In principle they are not negli-
gible as indicated by the analysis of the similar
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process bg! tH� described in [21] and should be
included in the complete analysis of standard model
and SUSY strong effects which however is beyond
the purposes of this paper.
2. Ratios of partially integrated cross sections: A proposal

Since there is a wide energy region where the one-loop
effects are appreciable, i.e.

���
s
p

* 500 GeV, we can split it
in two parts, compute the associated integrated cross sec-
tion, and evaluate the ratio R of the two partial cross
sections. This investigation is motivated by the following
remarks concerning general properties of R:
(a) I
t should be free of several systematic experimental
errors;
(b) I
t should be free of several QCD effects (same pdfs,
same virtual corrections);
(c) I
t should be essentially unaffected by photon radia-
tion effects.
To give an explicit numerical example, we have consid-
ered the scenario SU6, and have split the high energy
region in two parts:

Ethreshold � mt �mW <
���
s
p

< 400 GeV;���
s
p

> 400 GeV:
(49)

We call �� and �� the integrated cross section
R
�d�=ds�

ds in the two regions, and define R � ��=��.
We denote by "� the relative MSSM effect on the two

cross sections. We also denote by N� the expected number
of events associated to the two regions. Of course, N� �
L��, where L is the luminosity. If we call �MSSMR and
�statR the MSSM and statistical shifts on R we have

�MSSMR � R�"� � "��; �statR � R
�

1�������
N�
p �

1�������
N�
p

�
:

(50)

In our test case, the Born value is R ’ 0:58 and the differ-
ence "� � "� gives a shift of about 3.5%. The purely
statistical error computed with a luminosity L � 10 fb�1

gives �statR ’ 0:002, i.e. a shift about 10 times smaller
than the MSSM effect.

We conclude that radiative effects in ratios like R are
beyond the statistical noise. Of course, systematic errors
are expected to dominate over statistical ones. Thus, a
detailed dedicated experimental study of the process re-
construction will be crucial to assess R as a realistic
observable and a potential precision test of the electroweak
sector of the considered MSSM.

3. Sudakov-like parametrizations

To conclude the unpolarized session, we have tried to
give an effective parametrization of the full one-loop effect
in the spirit of the logarithmic Sudakov expansion. As we
remarked, a straightforward comparison with the results
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described in Sec. III is hampered by a variety of problems,
that we now emphasize:
(a) B
-10
ox diagrams are functions of the Mandelstam in-
variants t, u beside s. At small or large angles, these
can be small (compared to the internal squared
masses and s) and spoil the validity of the
Sudakov approximation.
(b) A
t high but moderate energies (below 1 TeV) there
are several subleading helicity channels which are
relevant and non-negligible. These channels cer-
tainly admit a Sudakov expansion. However this is
not as simple as that of the leading channels. The
coefficients of the expansion for these amplitudes
have not been investigated before and could or could
not turn out to be simple combination of quantum
numbers and couplings as in the leading case.
(c) I
n the MSSM, we have sparticles with masses
around 300–400 GeV, even in the lightest consid-
ered scenario LS2. The extent to which they can be
regarded as small can only be determined by an
explicit numerical comparison of the two calcula-
tions. Indeed, by a careful inspection of the various
involved diagrams one sees that box diagrams can
display a rather delayed asymptotic behavior. In
practice, if the typical virtual masses are of order
m, there are box diagrams with asymptotic behavior
� log�

���
s
p
=m0� where m0 can be 4–5 times larger

than m, depending, in particular, on the scattering
angle. This large effective scale contributes a large
energy independent constant shift in the difference
between the Sudakov and the one-loop calculations.
Also, since we always require

���
s
p
� m0, it pushes

forward the energy range where the expansion is
accurate.
As a consequence of these remarks, the difference be-
tween the full one-loop MSSM effect and the Sudakov
approximation is expected to be a small, slowly varying
function of the energy, at least in the considered energy
range. On the contrary, in the standard model, all masses
are quite light compared to the typical 500–1000 GeV
parton energy and we can hope to observe a better accuracy
of the Sudakov expansion.

All these expectations are confirmed by actual calcula-
tions. As an illustration, we show in Fig. 5 the comparison
between the full one-loop and the Sudakov calculations of
the effect in the distribution d�=ds. The left panel shows
the standard model case. The right panel shows the LS2
MSSM scenario, which is the lightest considered. For
purpose of comparison, we have switched off QED radia-
tion and setM� � MZ. We have computed the effects up to
unrealistic values (2 TeV) of the energy, just to emphasize
the convergence at high energy. The Sudakov approxima-
tion is evaluated with a common scale ~M in the double and
single logarithms. The best value of ~M is an important
issue and will be discussed below. The main features of the
figure are the following.
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(a) I
n the standard model, we choose ~M � MW . We
observe a remarkable agreement. The expansion is
rather accurate down to energies

���
s
p
’ 500 GeV.

The relevant scale is the electroweak breaking one
’ MW and there are no large constant (energy inde-
pendent) contributions.
(b) I
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LS1, LS2. The cross sections entering ALR are integrated from
threshold up to

���
s
p

.

In principle, these features could be useful if one were
interested in preparing a complete NLO parametrization of
the process, that includes QCD effects and decay simula-
tion by Monte Carlo. The expected smoothness of the
radiative effects beyond thresholds can be exploited to
replace the full calculation by simple (model dependent)
interpolating expressions. This is particularly relevant in
the SM case where the Sudakov-like parametrization of the
process is fixed and does not depend on any model pa-
rameter, but only on the kinematical cuts.

This remark concludes our presentation of the unpolar-
ized effects. We move now to the discussion of the possible
polarized observables of the process.
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B. Polarized observables

1. Final top asymmetry: One-loop effects in ALR
A special property of the tW� production process is the

fact that, in principle, the polarization of the final top quark
and/or W boson can be measured. This fact, that was first
considered in a previous reference [22], leads to the in-
troduction of new observables, that we shall try to list and
to discuss in what follows. The first possibility is that of
measuring the final top polarization. In the process that we
are considering, the final top can have in principle both
helicities, as one can see from the expressions of the
helicity amplitudes given in Sec. III. In correspondence
to the two possible choices, we shall define two different
differential cross sections, that we shall define as
d�L;R=ds, that are the analogues of Eq. (47) where only
the contributions from the two types of final top have been
retained. Plotting these quantities at variable

���
s
p

, as we did
for the total unpolarized cross section, would lead to con-
clusions that do not much differ from those already given
in the previous part of this Section: the genuine SUSY
effect is still rather modest. Again, the overall MSSM
effect is, though, not small. This could be seen in the plots
of the two distributions, but from our previous discussion
we believe that it might be preferable to consider, again,
ratios of cross sections. With this aim, we have defined the
ratio of the integrated cross sections asymmetries, i.e. the
quantity

ALR�s� �
�L�s� � �R�s�
�L�s� � �R�s�

; with

�L;R�s� �
Z s

E2
threshold

d�L;R
ds0

ds0:
(51)

Figures 6 and 7 show the values of ALR at variable
���
s
p

. One
sees that, considering a realistic value e.g.

���
s
p
� 500 GeV,
-11
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FIG. 9. Percentual MSSM and SM one-loop effect in the
asymmetry ATL in the four considered scenarios SU1, SU6,
LS1, LS2. The cross sections entering ATL are integrated from
threshold up to
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s
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the one-loop effect on the asymmetry reaches in all con-
sidered SUSY scenarios an absolute value of slightly less
than 1%. This number should be compared to the realistic
overall uncertainty. For the reasons that we have discussed
previously, we expect essentially a dominance of the
purely statistical experimental error, whose size will de-
pend on the available integrated luminosity. Lacking a
dedicated experimental analysis (in preparation), we can
use as a guidance the preliminary quoted value (for a
different single top production process, the t-channel
one) of [22], that is a (mainly statistical) 4%.

2. Final W asymmetry: One-loop effects in ATL
In the tW� production process, the final W� is real.

Therefore one can, in principle, measure the primary W
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FIG. 8. Born value and MSSM/SM one-loop effect in the
asymmetry ATL in the four considered scenarios SU1, SU6,
LS1, LS2. The cross sections entering ATL are integrated from
threshold up to

���
s
p

.
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polarization. Assuming that this is the case, we have de-
fined two quantities that are the analogues of Eq. (51) and,
starting from them we have introduced the transverse-
longitudinal asymmetry, defined as

ATL�s� �
�WT
�s� � �WL

�s�

�WT
�s� � �WL

�s�
; with

�WT;L
�s� �

Z s

E2
threshold

d�WT;L

ds0
ds0:

(52)

The numerical values of ATL are shown in Figs. 8 and 9. In
all cases the one-loop effect at the point

���
s
p
� 500 GeV

has an absolute value of about 0.5%. We do not have yet at
disposal a suitable experimental analysis for this asymme-
try, that is in fact being carried on [17].

VI. CONCLUSIONS

In this paper, we have performed the first complete
electroweak one-loop analysis of the associated tW pro-
duction process in the MSSM with mSUGRA mechanism
of SUSY symmetry breaking. This has been done using a
numerical program, MINSTREL, that satisfies the three
constraints of cancellation of ultraviolet and infrared di-
vergences and of reproduction of asymptotic Sudakov ex-
pansions. We have considered various experimental
potential observables, both for unpolarized and for polar-
ized production. We have found a relatively small genuine
SUSY effect for the representative SUSY benchmark
points that we have selected, and a possibly appreciable,
mostly of SM origin, overall one-loop effect. We have
proposed a number of new observables, in general ratios
of experimentally measurable quantities, that would be
essentially free of disturbing theoretical QCD and experi-
mental systematic uncertainties. For these quantities, the
predictions of the MSSM would be rather precise, making
-12
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them appear as possible precision tests of the involved
genuine electroweak content of the model. The extension
of our results to a different MSSM scenario or to different
SUSY models would be straightforward. The still missing
corresponding experimental analysis of the various pro-
posed observables of the process is being carried on, and
will appear in a more complete forthcoming paper [17].
093001
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