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Modified dispersion relations and black hole physics
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A modified formulation of the energy-momentum relation is proposed in the context of doubly special
relativity. We investigate its impact on black hole physics. It turns out that such a modification will give
corrections to both the temperature and the entropy of black holes. In particular, this modified dispersion
relation also changes the picture of Hawking radiation greatly when the size of black holes approaches the
Planck scale. It can prevent black holes from total evaporation, as a result providing a plausible
mechanism to treat the remnant of black holes as a candidate for dark matter.
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I. INTRODUCTION

One generally believed feature of quantum gravity is the
existence of a minimal observable length [1,2]. Recent
development of loop quantum gravity has also greatly
strengthened such beliefs by manifestly showing the dis-
creteness of area and volume spectra [3]. At the same time,
such effects have also invoked many investigations and
debates on the fate of Lorentz symmetry at Planck scale
[4]. One reason is that such effects seemingly lead to a
paradox due to the apparent confliction between the exis-
tence of a minimum length and Lorentz symmetry, which
in principle may contract any object to arbitrarily small
size by Lorentz boost. Nowadays, one intriguing approach
dubbed as doubly special relativity (DSR) is proposed to
solve this paradox (for details see the recent review [5] and
references therein). In particular, a general formalism of
modifying special relativity has been proposed in [6] to
preserve the relativity of inertial frames, while at the same
time keeping a physical energy such as Planck energy as an
invariant. This is accomplished by a nonlinear action of the
Lorentz transformation in momentum space. This formal-
ism also points to the possibility that the usual relation
between the energy and momentum in special relativity
may be modified at Planck scale, conventionally named as
modified dispersion relations (MDR). Such relations can
also be derived in the study of the semiclassical limit of
loop quantum gravity [7,8].

The modification of energy-momentum relations and its
implications have been greatly investigated by many the-
orists [9–13]. It may be responsible for some peculiar
phenomena in experiments and astronomic observations,
such as the threshold anomalies of ultrahigh energy cosmic
ray and gamma ray burst. Such modifications may further
lead to some predictions which can be falsified in planned
experiments. Among these are the energy dependence of
the speed of light and the helicity independence of disper-
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sion relations, observable in the coming AUGER and
GLAST experiments [8]. Moreover, a modified dispersion
relation may present alternatives to inflationary cosmology
[14], and this is testable in the future measurement of CMB
spectrum.

In this paper we intend to study the impact of modified
dispersion relations on black hole physics. We first present
a modified dispersion relation advocated by doubly special
relativity, and then show that this modified relation may
contribute corrections to the temperature of black holes as
well as the entropy. We find the entropy has a logarithmic
correction while the temperature is bounded with a finite
value as the mass of black holes approaches to the Planck
scale such that black holes will finally stop radiating, in
contrast to the ordinary picture where the temperature can
be arbitrarily high as the mass approaches to zero and
finally divergent when black holes fully evaporate. A com-
parison with effects due to the generalized uncertainty
principle is also discussed.

II. MODIFIED DISPERSION RELATIONS

As pointed out in [6], in a DSR framework the modified
dispersion relation may be written as

E2f2
1�E;�� � P2f2

2�E;�� � m2
0; (1)

where f1 and f2 are two functions of energy from which a
specific formulation of boost generator can be defined. In
this paper we adopt a modified dispersion relation (MDR)
by taking f2

1 � �1� ��lpE�
n� and f2

2 � 1, such that

E2 �
p2 �m2

0

�1� ��lpE�
n�
; (2)

where Planck length lp �
����������
8�G
p

� 1=Mp and � is a
dimensionless parameter. If lpE	 1, this modified dis-
persion relation goes back to the ordinary one,

E2 � p2 �m2
0 � ��lpE�

n�p2 �m2
0 � 
 
 
�: (3)

However, when lpE� 1 the relation changes greatly and
we need to treat it nonperturbatively. For convenience, we
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take n � 2 and � � 1,

l2pE4 � E2 � �p2 �m2
0� � 0: (4)

This gives a relation as

E2 �
1

2l2p
�1�

�������������������������������������
1� 4l2p�p2 �m2

0�
q

�: (5)

Because of the appearance of square root in the above
equation, we notice that both the momentum and the static
mass of a single particle are bounded by m0 � Mp=2 and
p2 � �M2

p=4�m2
0�; in particular, for massless particles

the limiting momentum is Mp=2. The existence of a maxi-
mum momentum reflects the feature that there is a minimal
observable length in quantum gravity, and more delicate
analysis can be found in [1,2,15], where the generalized
uncertainty principle is employed, while in the context of
DSR our argument here can be considered as a result of the
nonlinear Lorentz transformation in momentum space
[5,6]. From (5) it is also easy to see that a single particle
has a maximum energy Emax � Mp=

���
2
p

.

III. LINKING MODIFIED DISPERSION
RELATIONS TO BLACK HOLE PHYSICS

Now we consider the impact of this MDR on
Schwarzschild black holes. The effect that the existence
of a minimum length can prevent black holes from total
evaporation has been investigated in [15], where the gen-
eralized uncertainty principle (GUP) plays an essential
role. Here we will consider a modified dispersion relation
rather than GUP. First, we identify above quantities E and
p as the energy and momentum of photons emitted from
the black hole, respectively, of course for photons m0 is set
to zero. Then we adopt the argument presented in [15] that
the characteristic temperature of this black hole is sup-
posed to be proportional to the photon energy E, namely
E � T. On the other hand, we apply the ordinary uncer-
tainty relation to photons in the vicinity of black hole
horizons. As pointed out in [15,16], for these photons there
is an intrinsic uncertainty about the Schwarzschild radius
R:

p� �p�
1

�x
�

1

4�R
; (6)

where a ‘‘calibration factor’’ 4� is introduced. Using the
fact that R � 2MG�M=4�M2

p [17], we obtain the tem-
perature of Schwarzschild black holes has the form

T �
�M2

p

2

�
1�

�������������������
1�

4M2
p

M2

s ��
1=2
: (7)

This requires that the mass of black holes M 
 2Mp,
and correspondingly the temperature T � Mp=

���
2
p

[18].
For large black holes with M� 2Mp, it goes back to the
ordinary form T � M2

p=M.
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Next we consider the possible correction to the entropy
of black holes due to the modification of the temperature,
assuming the first thermodynamical law still exactly holds
even for small black holes where the quantum effect of
gravity may play an essential role [19]. Plugging the
temperature into dM � TdS, we have

dM �
�M2

p

2

�
1�

�������������������
1�

4M2
p

M2

s ��
1=2
dS: (8)

Thus, the entropy can be calculated from the integration,

S �
1

2
����
G
p

Z A

Amin

�A�
����������������������
A2 � 8GA

p
��1=2dA; (9)

where Amin � 8G� l2p=� is the cutoff corresponding to a

black hole with minimum mass M � 2Mp. Define t �����������������������
1� 8G=A

p
, (9) can be integrated out,

S �
1���
2
p

�
2�1� t��1=2jttmin

�

�����������
1� t
p

1� t

��������t

tmin

�
1���
2
p ln

�
1� t
1� t

���������
������
1�t
p

=
��
2
p

�����������
1�tmin

p
=
��
2
p

�
� Smin; (10)

where Smin � Amin=4G is a constant term such that for
minimum black holes the familiar Bekenstein-Hawking
entropy formula still holds. When A� 8G, it becomes

S �
1���
2
p

�
A

8G
�1� t�3=2 �

1���
2
p ln

�
A

8G
�1� t�

��
: (11)

It is obvious that for large black holes, namely t! 1, this
gives the familiar formula

S �
A

4G
�

1

2
ln
A

4G
� 
 
 
 : (12)

Therefore, in this case we find modified dispersion rela-
tions contribute a logarithmic correction to black hole
entropy [20].

The entropy correction can also be evaluated using the
scheme proposed in [21], where the Bekenstein entropy
assumption is applied to determine the minimum increase
of horizon area when a black hole absorbs a classical
particle with energy � and size �x. Explicitly, the assump-
tion is

�Amin

4G

 2���x: (13)

On the other hand, from (5) we may obtain a uncertainty
relation between the energy and momentum of a single
particle as

�E�
�p

�1� 2l2pp2�
: (14)

Identifying �� �E and �p� 1=�x� 1=�4�R�, we may
have

�Amin � 16�G ln2��x �
4G ln2

1� l2p=2�A
; (15)
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where a calibration factor 2 ln2 is introduced. Thus

dS
dA
�

�S
�Amin

�
1

4G

�
1�

l2p
2�A

�
; (16)

and consequently

S �
A

4G
� ln

�
A

4G

�
: (17)

Comparing with (12) we find the answer is almost the same
but the factor in logarithmic term is different, which results
from the fact that some approximations for large black
holes have been taken into account during the derivation
of (17), for instance in (14). In this sense we argue that we
find a more precise way to obtain corrections to black hole
entropy. This can also be understood from the fact that in
our case the exact expression for entropy corresponding to
the temperature (7) can be obtained, as shown in (10), in
contrast to [21] where such exact expressions are not
available. Moreover, it is worthwhile to point out that in
those papers the entropy is obtained approximately at first,
and then the temperature is derived with the use of the first
thermodynamical law. With no surprise, such a logic gives
rise to a different result for temperature from (7), but
approximately equal at the large black hole limit. From
this point of view, our results are more general. It is also
this advantage that makes them applicable to investigate
the fate of black holes at the late stage of radiation. We
briefly present our analysis below, as a similar discussion
has appeared in [15].

Thanks to the Stefan-Boltzmann law [22], the evapora-
tion rate of black holes can be estimated by

dx
dt
�
�1

tf
�x�

��������������
x2 � 4

p
�2; (18)

where x � M=Mp and tf � 16�=��Mp�. The solution to
this equation reads as

t � tc �
tf
24
�x3 � �x2 � 4�3=2 � 6x�; (19)

where tc is an integral constant. From the above equation,
we find that dx=dt � �4=tf is a finite number at the end
x � 2 rather than infinity in the ordinary case. As a matter
of fact when the size of black holes approaches the Planck
scale, they will cease radiation although the temperature
reaches a maximum. This can be seen from the behavior of
the heat capacity. From Eq. (7), we obtain

C �
dM
dT
� �

M3T

M4
p

�
1�

4M2
p

M2

�
1=2
: (20)

It is interesting that the heat capacity becomes vanishing
when the black hole mass approaches a nonzero scale,
M � 2Mp. This maybe implies the ground state of the
black hole. As an analogy, let us look at a system consisting
of the harmonic oscillators, the heat capacity is vanishing
when the system is in the ground state. This is because the
zero energy is independent of the temperature, @E0=@T �
087702
0. This phenomenon provides a mechanism to take black
hole remnants as a natural candidate for cold dark matter
due to their weakly interacting features [23].

At the end of this section we point out that the effect of
generalized uncertainty principle will not change our con-
clusions but provide modifications. The well-known un-
certainty relation can be generalized as

�x�p 
 1� l2p�p
2: (21)

Thus

�p �
�x

2l2p
�1�

��������������������������
1� 4l2p=�x2

q
�: (22)

Set p� �p and plug it into Eq. (5); we obtain

T �
�M2

p

2
�1�

��������������������������������������������
5� 2x�x�

��������������
x2 � 4

p
�

q
�

�
1=2
; (23)

where x � M=Mp 
 5=2. Thus the black hole ceases ra-
diation as it reaches this minimum value at Planck scale.

IV. CONCLUDING REMARKS

In this paper we have shown that the modified dispersion
relations have important impacts on black hole physics at
the high energy level. First, MDR contributes a correction
to the temperature of black holes and provides an effective
cutoff such that a upper limit will be reached as the area of
black hole horizon takes the minimum value.
Correspondingly, the black hole entropy is corrected with
a logarithmic term. Second, MDR provides a plausible
mechanism to prevent black holes from fully evaporating
and the remnant can be treated as a candidate for cold dark
matter.

Through the paper we only investigate a special case in
doubly special relativity with specified functions of
f1�E;�� and f2�E;��, but it is obviously possible to extend
our discussion to other general cases. For instance, we may
take n � 1 such that f2

1 � �1� ��lpE��, a parallel analysis
can be done and the entropy of black holes is expected to
receive a correction proportional to the square root of the
area. Among all the possible modified dispersion relations,
which is the proper one should await further tests in
experiments.

It is interesting to notice that both generalized uncer-
tainty relations and modified dispersion relations may be
rooted at the algebraic structure of commutators among
position and momentum variables. More deep relations
between them and implications to quantum gravity phe-
nomenology are under investigation.
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