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Cosmological solutions of low-energy heterotic M theory
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We derive a set of exact cosmological solutions to the D � 4, N � 1 supergravity description of
heterotic M theory. Having identified a new and exact SU�3� Toda model solution, we then apply
symmetry transformations to both this solution and to a previously known SU�2� Toda model, in order to
derive two further sets of new cosmological solutions. In the symmetry-transformed SU�3� Toda case we
find an unusual bouncing motion for the M5 brane, such that this brane can be made to reverse direction
part way through its evolution. This bounce occurs purely through the interaction of nonstandard kinetic
terms, as there are no explicit potentials in the action. We also present a perturbation calculation which
demonstrates that, in a simple static limit, heterotic M theory possesses a scale-invariant isocurvature
mode. This mode persists in certain asymptotic limits of all the solutions we have derived, including the
bouncing solution.
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I. INTRODUCTION

In the past ten years, heterotic M theory has provided an
exciting arena in which to analyze the cosmology and
particle physics of our universe [1–6]. Representing the
low-energy limit of the strongly coupled heterotic E8 � E8

string, this theory not only combines gravitational, particle
and braneworld physics into one unified description, but
also possesses a detailed and constrained field content that
cannot be arbitrarily adjusted. Therefore, it retains a de-
finitive and unambiguous relationship to M theory itself.
However, in the D � 4, N � 1 supergravity description
of heterotic M theory, a number of important questions still
remain unanswered. Consider, for example, the simple
cosmological situation that occurs when we retain only
the dilaton S, the universal T modulus, and the field Z
describing a single M5 brane. Despite the fact that this
leads to vanishing superpotential in four dimensions, the
resulting cosmology is highly nonlinear and demonstrates
quite unexpected behavior. In Ref. [7] the S, T, Z cosmol-
ogy was analyzed in a truncated limit with all axion fields
removed. It was then shown that the scalar corresponding
to the M5 brane position must be included in the set of
cosmologically significant fields, and this leads to a forcing
effect whereby the ambient dimensions change size as the
brane moves. Moreover, the frictional forces acting back
on the brane are such that it accelerates and then deceler-
ates back to rest, mimicking a time-dependent force of
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finite duration. This illustrates the unconventional effect
of nonstandard kinetic terms in the theory, and the means
by which the brane can undergo a single displacement by
exchanging energy with its environment. In the special
situation presented in Ref. [7] this effect can be described
exactly using the Toda formalism [8,9], and the model of
Ref. [7] is an SU�2� Toda model.

Given this behavior, it is interesting to consider whether
more complicated trajectories for the M5 brane are pos-
sible. For example, not all of the scalar fields were consid-
ered in the SU�2� Toda model of Ref. [7], since the axionic
fields were consistently truncated away. This means that
only a portion of the full solution space was explored, and
that the SU�2� behavior is liable to be only an approxima-
tion once the axions are restored. Therefore, continuing on
from the work of Ref. [7], we wish to analyze situations in
which additional axionic fields are evolving in conjunction
with the brane, and determine whether interesting new
behaviors for the M5 brane can occur. In particular, we
wish to determine whether an M5 brane can undergo
multiple displacements, and even reverse direction in the
absence of explicit potentials.

Before embarking on the detailed calculations, we first
summarize our results. We uncover a new and exact SU�3�
Toda model, in which the M5 brane can undergo two
successive displacements in the same direction. That is,
the brane spontaneously accelerates twice in response to
the other moduli fields to which it is coupled. Applying the
symmetries derived in our companion paper, Ref. [10], to
this model, as well as to the known SU�2� model of
Ref. [7], we obtain two additional sets of new solutions.
In the symmetry-transformed SU�3� case the brane can
-1 © 2006 The American Physical Society
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undergo two successive displacements in opposite direc-
tions, and so it can reverse direction and ‘‘bounce’’ without
the presence of any explicit potentials in the action. This
effect occurs purely through the interaction of nonstandard
kinetic terms, via the cross couplings of the various fields,
and constitutes an exact supergravity solution that has been
rigorously deduced from M theory. Finally we investigate
the generation of density perturbations in these models,
and show that heterotic M theory possesses a scale-
invariant isocurvature mode in some of the axion fields.
This last result is consistent with the original findings of
the pre big bang (PBB) scenario [11,12] and in agreement
with the result obtained in Ref. [13] where it was first
shown that the moving brane itself could not generate a
scale-invariant perturbation spectrum. Following a conclu-
sion, in an appendix we present the technical details of the
SU�3� Toda model derivation.
II. THE FOUR-DIMENSIONAL ACTION

We now review the D � 4, N � 1 supergravity action
presented in Ref. [7]. Recall that this was derived via a
compactification of 11D supergravity on the orbifold
S1=Z2 � CY3, where CY3 denotes a Calabi-Yau three-
fold. This leads to two four-dimensional boundary planes
separated along a fifth dimension. If the fifth dimension is
labeled by a normalized coordinate z 2 �0; 1�, then the
boundaries reside at z � 0, 1, respectively, and have the
charges q0, q1. A single M5 brane is also included in the
space, by wrapping it on a holomorphic 2-cycle of the CY3.
The brane then appears as a three-brane of charge q that
lies parallel to the boundaries, and which can move along
the interval. Importantly, the interaction between the
boundaries and the brane leads to the existence of a static,
triple domain-wall Bogomol’nyi-Prasad-Sommerfield
(BPS) solution. One can then consider dimensionally re-
ducing on this solution, so as to find a supergravity theory
describing slowly varying fluctuations about the static BPS
vacuum. This contains the six scalar fields �, �, �, �, z, �
with the following nonstandard kinetic terms:
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1

2�2
4
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M4

d4x
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e�2��@�� 4qz@��2

�
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qe����@z�2 � 2qe�����@�� �@z�2

�
: (1)

Each of these scalars has an underlying significance in
terms of the D � 5 parent theory from which it descends.
The scalar � is the zero mode of the g55 component in the
D � 5 metric, and measures the separation between the
boundaries. Specifically, the separation is given by ��e�

in terms of some dimensionful reference size ��. The field
� represents the orbifold-averaged Calabi-Yau volume,
such that the physical size is given by ve� in terms of a
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dimensionful reference volume v. The scalars �, � origi-
nate from the bulk three-form and graviphoton field, re-
spectively. The field z measures the position of the bulk
brane between the boundaries, with the points z � 0, 1
corresponding to the boundaries. Lastly, the field � arises
from the self-dual two-form on the brane world volume.

This reduction on a BPS solution guarantees that the
scalars must group into supersymmetric multiplets de-
scribed by a supersymmetric action. One can verify that
they naturally fall into the pairs ��;��, ��;��, �z; ��, which
are the bosonic components of chiral superfields S, T, Z as
follows,

S � e� � qz2e� � i��� 2qz2��; T � e� � 2i�;

Z � e�z� 2i���� z��: (2)

This naturally leads to a Kähler manifold expression for the
scalar part of the action
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(3)

where the superfields are grouped into a coordinate vector
� � �S; T; Z�, with the complex conjugate coordinates
denoted by ��. The Kähler metric Ki �j is given by

Ki �j �
@2K

@�i@ ��
�j

(4)

in terms of the Kähler potential

K � � ln
�
S� �S� q

�Z� �Z�2

T � �T

�
� 3 ln�T � �T�: (5)

This Kähler potential is computed only to linear order in
the two parameters 
k (k � 1; 2) defined by


k �
Xk�1

i�0

�
�
�

4�

�
2=3 2��

v2=3
qie���:

Here � is the 11-dimensional Newton constant, and ��, v
are the dimensionful scales mentioned above. The two
conditions 
k 	 1 then restrict the accessible regions of
moduli space in which we can trust the four-dimensional
effective theory. In addition, the supergravity action Eq. (1)
can only be trusted in the limit where stringy �0 corrections
are suitably small, as these corrections introduce higher-
derivative terms that we have disregarded.

III. EQUATIONS OF MOTION

We now turn to the equations of the motion arising from
the action Eq. (1). If we assume a spatially flat Friedmann
Robertson Walker (FRW) cosmology for the four-
dimensional spacetime, then the metric takes the form

ds2
4 � �e

2n���d�2 � e2����ijdx
idxj (6)

where i; j � 1; . . . ; 3, the scale-factor is ����, and n���
represents a gauge freedom in the choice of time coordi-
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nate. Denoting a � derivative by an overdot, and assuming
all fields are purely functions of �, one obtains the Einstein
field equations

�3 _�2 � 1
4

_�2 � 3
4

_�2 � 1
2qe

��� _z2 � 3e�2� _�2

� 1
4e
�2�� _�� 4qz _��2 � 2qe����� _�� � _z�2 � 0; (7)

2 ��� �3 _�� 2 _n� _�� 1
4

_�2 � 3
4

_�2 � 1
2qe

��� _z2 � 3e�2� _�2

� 1
4e
�2�� _�� 4qz _��2 � 2qe����� _�� � _z�2 � 0; (8)

the �, �, z equations of motion

��� �3 _�� _n� _�� qe��� _z2 � � _�� 4qz _��2e�2�

� 4q� _�� � _z�2e���� � 0; (9)

3 ��� 3�3 _�� _n� _�� qe��� _z2 � 12 _�2e�2�

� 4q� _�� � _z�2e���� � 0; (10)

d
d�
f�e��� _z� 4�� _�� � _z�e�����e3��ngen�3�

� 2 _�� _�� 4qz _��e�2� � 0; (11)

and the �, �, � equations of motion

d
d�
f�� _�� 4qz _��e�2��e3��ng � 0; (12)

d
d�
f�z� _�� 4qz _��e�2� � 2� _�� � _z�e�����e3��ng � 0;

(13)

d
d�
��3e�2� _��e3��n�en�3� � 2q _z� _�� � _z�e���� � 0:

(14)

As we cannot exactly solve these equations of motion,
we will utilize the following two solution methods. First,
we search for specialized solutions that occur when the
equations are truncated, usually by setting certain combi-
nations of fields to zero. This will allow us to recover the
known SU�2� Toda model of Ref. [7], as well as a pre-
viously undiscovered SU�3� Toda model. Second, we will
utilize the scalar-field symmetry transformations that were
derived in our recent companion paper, Ref. [10]. That is,
we will apply these symmetry transformations to the fields
of the SU�2� and SU�3� Toda models in turn, and so derive
two new solutions to the equations of motion. We will find
that in these new solutions the M5 brane can evolve in far
more complicated ways than has previously been seen.
IV. REVIEW OF THE SU�2� TODA MODEL

We now briefly recall the behavior of the SU�2� Toda
model found in Ref. [7]. This will prove useful because the
SU�2� model exhibits features that persist in all the solu-
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tions we will present, and so will illuminate the discussions
to come. In addition, it is worthwhile studying this model
in order to understand how symmetry transformations will
affect it.

A. The SU�2� Toda model solutions

The SU�2�model can be derived by choosing the axions
to satisfy �; � � constant, � � 0. The remaining fields �,
�,�, z can then be solved for exactly, essentially due to the
fact that the field z satisfies the conservation law

e����3��n _z � constant: (15)

Namely, inserting this result back into the remaining equa-
tions of motion yields a closed set of equations in �, � �
which can be solved in isolation. In particular, these equa-
tions can be reformulated in terms of the motion of a
‘‘particle’’ with coordinates � � ��;�;�� which roams
over a three-dimensional space and experiences an expo-
nential potential U. These equations take the form

d
d�
�EG _�� � E�1 @U

@�
� 0;

1

2
E _�TG _�� E�1U � 0;

(16)

which can be derived by variation of �, E from the simpler
particle Lagrangian

L � 1
2E _�TG _�� E�1U: (17)

Here we have defined a moduli-space metric G �
diag��3; 3

4 ;
1
4� of Minkowski signature, and a particle

world-line metric E � e�n�d
� where d � �3; 0; 0� is a
dimension vector that gives the number of spatial dimen-
sions associated with the scale factor �. The function E
thus encodes the arbitrary choice of time parametrization
of the world line, with its variation in the Lagrangian
naturally producing an energy conservation constraint.
Finally, the moduli-space potential U � U1 is given by

U1 �
1
2u

2
1 exp�q1 
��; q1 � �0;�1; 1�; (18)

where u2
1 is a positive constant. Up to a constant length

rescaling, the vector q1 defines the single, simple root
vector of the Lie algebra SU�2�, and so the Lagrangian
Eq. (17) defines an SU�2� Toda model. This is an exactly
integrable system, and in the proper-time gauge n � 0 one
finds the general solution

���0�pi ln
��������t� t0T

����������pf�pi� ln
�
1�

��������t� t0T

���������
�
�1=

;

(19)

z� z0 � d
�
1�

��������t� t0T

��������
�
�1
; (20)
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p�Gp��0; p� 
d�1; q1 
�0� ln
�
qd2hq1;q1i

8

�
;

��q1 
pi; pf�pi�
2G�1q1

hq1;q1i
:

(21)

Here the subscript � takes the values � � i, f, and the
scalar product h
; 
i is defined by ha;bi � aTG�1b. Note
that the constraints in Eq. (21) must be enforced so that
Eqs. (19) and (20) are indeed the correct field solutions.
Once this is done, the solution describes a transition be-
tween two asymptotically free-field states. That is, the
initial field velocities are equal to the ‘‘expansion power’’
constants pi � �1=3; p�;i; p�;i�, the final field velocities are
equal to the constants pf � �1=3; p�;f; p�;f�, and the non-
supersymmetric second term in Eq. (19) forces a smooth
acceleration between these ‘‘rolling-radii’’ (rr) regimes. In
fact, the underlying reason for this pi ! pf interpolation is
the motion of the brane itself, which according to Eq. (20)
is at rest in the extreme limits, but borrows kinetic energy
from �,� and moves significantly at the intermediate time
t� t0 � T. For the sake of concreteness, we now present
the explicit form of the solutions by inserting the various
vector quantities. This gives

�� �0 �
1

3
ln

��������t� t0T

��������;
�� �0 � p�;i ln

��������t� t0T

����������p�;f � p�;i�
� ln

�
1�

��������t� t0T

���������
�
�1=

;

���0 � p�;i ln

��������t� t0T

����������p�;f � p�;i�
� ln

�
1�

��������t� t0T

���������
�
�1=

:

These are subject to the relations

 � p�;i � p�;i; �0 ��0 � ln
�

3

2qd2

�
;

p�;f
p�;f

� �
�

1

2

1 1
3 �1

� �
p�;i
p�;i

� �
;

as well as the ‘‘ellipse’’ constraint

3p2
�;i � p

2
�;i �

4
3: (22)

Notice, in fact, that if we enforce the constraint that fixes
�p�;f; p�;f� in terms of �p�;i; p�;i� then the final expansion
powers �p�;f; p�;f� are automatically guaranteed to lie on
the same ellipse. The interpretation of this ellipse condition
is relatively simple, and can be illustrated in a phase-plane
diagram as follows. Consider drawing a 2D plot where the
horizontal axis corresponds to d�=du (with u � 3�) and
the vertical axis to d�=du. Then the constants �p�;�; p�;��,
where � � i, f, are the asymptotic values of d�=du and
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d�=du. Thus, they correspond to the values attained in the
plane at the extreme end points of the phase-plane trajec-
tory. Hence, according to Eq. (22) and the constraints, the
trajectory traced out in the phase plane must begin and end
at two different points on a single, fixed ellipse drawn in
that plane. These phase-plane plots, or ‘‘ellipse diagrams’’
as we shall call them, will prove to be extremely useful in
exhibiting the behavior of the system diagrammatically.
This is because the shape and curves of the trajectories in
these diagrams tell us very graphically about the brane
motion and changes to the axions.

B. Analysis and validity of the SU�2� Toda model

To exhibit the behavior of the fields, we now plot an
ellipse diagram. This proves to be far more intuitive and
useful than following the behavior of all fields individually.
Before doing this, we must recognize that the solutions in
Eq. (19) are valid over two disconnected time ranges given
by

t 2
�
��1; t0� ��� branch;
�t0;�1� ��� branch;

(23)

where the time t � t0 corresponds to a curvature singular-
ity. Consequently, there are two different notions of
‘‘early’’ and ‘‘late’’ built into the solutions, depending on
the choice of branch. For example, although t � t0 corre-
sponds to a past singularity in the ��� branch, it corre-
sponds to a future singularity from the perspective of the
��� branch. The ��� branch is, in fact, an example of a
PBB era, which is automatically undergoing superluminal
deflation.

Therefore, to avoid confusion we must always pick a
particular branch, and take care with what constitutes early
and late behavior. In particular, the pi constants only
correspond to an ‘‘initial’’ set of expansion powers as
implied by the subscript if they satisfy

 � p�;i � p�;i

�
>0 ��� branch;
<0 ��� branch:

(24)

That is, only those powers satisfying this condition can
ever be early-time states of the system. In Fig. 1 we have
plotted some representative trajectories on the ��� branch.
Note that the fields �, � start at a single point on the
ellipse, with their initial powers corresponding to that
sector with  > 0. On the negative branch this early-time
state corresponds to the infinitely negative past t� t0 !
�1. The fields then evolve such that the effective trajec-
tory in the plane is a straight line. This linear behavior is a
consequence of the relation 3d�=du� d�=du / constant,
and this in turn is possible because all the axions have been
truncated away. The trajectory then ends on the opposite
sector of the ellipse, ending up in a late-time state as t�
t0 ! 0 from below. This directed evolution between parts
of the ellipse cannot be reversed unless we switch the
branch from ��� to ���, so the accessible early-time states
-4
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FIG. 1 (color online). The linear mapping across the ellipse,
with the direction fixed by the choice of time branch. If we pick a
candidate set of expansion powers satisfying  > 0, then these
are indeed available early-time states on the ��� branch. States
satisfying  < 0 are not available at early time; instead, they are
the late-time states that the system evolves into. This is all
reversed on the ��� branch.
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of the system are fixed by the choice of the branch. Thus,
interesting physical results will sometimes necessitate
choosing one branch over another.

To complete this section, we now comment on the
validity of these SU�2� Toda solutions. Recall that the
four-dimensional action Eq. (1) is known only as a power
series, with five-dimensional gravitational corrections
measured in powers of the 
k (k � 1; 2). In the above
model one finds that


k 
�
jt� t0j� ! 1 early time;
jt� t0j� ! 1 late time:

(25)

This divergence is due to the fact that the coupling of the
bulk brane to �, � is itself proportional to the 
k, so that
when the brane moves the system is necessarily driven to a
five-dimensional limit in both asymptotic regimes. This
will cause the four-dimensional theory to break down, and
with it the solution Eq. (19). This divergence is, in fact,
familiar from PBB cosmology where the addition of the
dilatonic axion to the dilaton-moduli system causes the
same problem. A more insidious problem, however, is that
even at intermediate times one cannot make 
k 	 1 while
simultaneously fitting the entire z displacement profile
within the physical orbifold extent z 2 �0; 1�. Say, for
example, that we search for the minimum value of the 
k
parameters. One can verify that this occurs at precisely the
time t� t0 � T, and at this time the ellipse trajectory
intersects the line  � 0. The magnitude at the minimum
is then


kjmin 
1

d2 :

Evidently, d� 1 is now required in order to make this
small. Having made this choice, there will be a finite period
of time, depending on the value of d, where the 
k are small
and our solutions, Eq. (19), are valid. This period ends with
the rapid collision of the brane with the boundary which, of
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course, also invalidates the above analytical solutions. (For
a discussion of the evolution after the collision see
Ref. [14]). The limitations on the validity of these solu-
tions, both due to the 
k constraint and brane-boundary
collision, may be viewed as a disadvantage and one may
ask whether other solutions with a larger range of validity
exist. We will show that this is indeed the case for some of
the new solutions to be discussed below.

V. THE SU�3� TODA MODEL

After reviewing the SU�2�model at some length, we will
now present an entirely new SU�3� solution. This proves to
be significantly more complicated than the SU�2� Toda
model, as we might expect from the fact that the Lie group
SU�3� is more complicated in structure than SU�2�. We
will find that the SU�3� solutions are fundamentally con-
trolled by two influences, one due to the motion of the M5
brane and the other due to changes in �. This leads to new,
characteristic trajectories in the ellipse diagrams. In par-
ticular, the coupling between z and � allows the M5 brane
to undergo two successive displacements in the same di-
rection. This generalizes the behavior of the old SU�2�
case, and demonstrates that the brane can undergo repeti-
tious displacement behavior.

A. The SU�3� Toda model solutions

To derive the SU�3� Toda model, one chooses the axions
to satisfy

_�� � _z � _�� 4qz _� � 0: (26)

This effectively sets two of the terms in the action to zero
for all time, without forcing any of the fields or their
derivatives to be individually zero. To see that this corre-
sponds to an SU�3� Toda model we impose Eq. (26), and
note that the z and � equations are now total derivatives,

d
d�
�e����3��n _z� �

d
d�
�e�2��3��n _�� � 0:

These can be immediately integrated to give constants of
the motion. Inserting these conservation laws back into the
remaining equations of motion then yields a closed set of
equations in �, �, � that can again be derived from the
particle Lagrangian

L � 1
2E _�TG _�� E�1U: (27)

The quantities �, G, E remain unchanged from the SU�2�
Toda model, but the potential is modified toU � U1 �U2,
with

U1 �
1
2u

2
1 exp�q1 
 ��; q1 � �0;�1; 1�

U2 �
1
2u

2
2 exp�q2 
 ��; q2 � �0; 2; 0�:

This means that the effective particle motion of � is now
subjected to two exponential forces. To be a Toda model, a
precise relationship must exist between the orientations
-5
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and lengths of the vectors defined by the qi. Consider the
following matrix,

hqi;qji �
8

3



2 �1
�1 2

� �
(28)

where the scalar product is once again defined by ha;bi �
aTG�1b. The right-hand side of Eq. (28) happens to be a
constant multiple of the Cartan matrix of the SU�3� Lie
algebra, so that up to a constant length rescaling the vectors
q1, q2 are identical to the two simple root vectors of SU�3�.
Thus, the model is an exactly integrable SU�3� Toda
model. In particular, an exact, analytical description of
the behavior is now accessible if we choose a basis for
the moduli space that is adapted to the SU�3� root vectors.
This decouples the equations of motion and allows them to
be readily solved, the complicated details of which are
reserved for the Appendix. The proper-time solutions for
the fields in the gauge n � 0 are then given by

���0�pi ln
��������t� t0T

����������pf�pi� ln
�

1�

��������t� t0T

���������
�

�
1��2

z

��������t� t0T�

����������
��
�1=
��p���f �pi�

� ln
�

1�

��������t� t0T�

����������
�
1��2

�

��������t� t0T

���������
��
�1=�

(29)

z� z0 � d
�

1�

��������t� t0T

��������
��2

z

��������t� t0T�

����������
�
�1




�
1� �z

��������t� t0T�

����������
�
; (30)

�� �0 � d�

�
1�

��������t� t0T�

���������
��2

�

��������t� t0T

���������
�
�1




�
1� ��

��������t� t0T

���������
�
: (31)

The constants are subject to the following two sets of
‘‘SU�2�-like’’ constraints:

p �Gp� � 0; p� 
 d � 1;  � �q1 
 pi;

q1 
 �0 � ln
�
qd2hq1;q1i

8

�
;

(32)

p���f Gp���f � 0; p���f 
 d � 1; � � �q2 
 pi;

q2 


�
�0 � pi ln

�������� T
T�

��������
�
� ln

�
3d2

�hq2;q2i

4

�
; (33)

where � � i, f, and the scalar product h
; 
i is again defined
by ha;bi � aTG�1b. Moreover, pf, p���f , and pi are related
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by the two SU�2� maps

p f � pi � 
2G�1q1

hq1;q1i
; p���f � pi � �

2G�1q2

hq2;q2i
:

(34)

Finally, the fractional quantities �z, �� are fixed accord-
ing to

�z �
q1 
 pi

�q1 � q2� 
 pi
; �� �

q2 
 pi
�q1 � q2� 
 pi

: (35)

These satisfy 0 � �z, �� � 1, and �z � �� � 1. For
clarity, we now present the solutions and constraints for
� in component fields. These read

�� �0 �
1

3
ln

��������t� t0T

��������; (36)

���0�p�;i ln
��������t� t0T

����������p�;f�p�;i� ln
�

1�

��������t� t0T

���������
�

�
1��2

z

��������t� t0T�

����������
��
�1=
��p����;f�p�;i�

� ln
�

1�

��������t� t0T�

����������
�
1��2

�

��������t� t0T

���������
��
�1=�

(37)

���0 � p�;i ln

��������t� t0T

����������p�;f � p�;i�
� ln

�
1�

��������t� t0T

���������
�

�
1� �2

z

��������t� t0T�

����������
��
�1=

; (38)

� �p����;f � p�;i� ln
�

1�

��������t� t0T�

����������
�

�
1� �2

�

��������t� t0T

���������
��
�1=�

: (39)

The constants , p�;i, t0, T, d, z0 all occurred in the
previous SU�2� solutions and so are familiar. The three
new constants are given by T�, �0, d� with the remainder
constrained according to

� � �2p�;i; �z � 1� �� �


� �
;

�0 � ln�2d�� � p�;i ln

�������� T
T�

��������;
�0 ��0 � ln

�
3

2qd2

�
;

p�;f
p�;f

� �
�

1

2
1 1
3 �1

� �
p�;i
p�;i

� �
;

p����;f
p����;f

0@ 1A � �1 0
0 1

� �
p�;i
p�;i

� �
:
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FIG. 2 (color online). A typical set of SU�3� trajectories.
Curve A has two horizontal lines and one diagonal line, and
so contains two � displacements and one z displacement.
Curve B represents a special, degenerate case for which both z
and � evolve at once and mimic a single field. Curve C has two
diagonal lines and one horizontal line, and so contains two z
motions separated by a � displacement. All intermediate cases
between these curves are possible.
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Before discussing these SU�3� solutions in more detail,
we should also comment on the solutions for the additional
fields �, � satisfying Eq. (26). It transpires that the �
solution involves a nonelementary integral, and so cannot
be presented analytically. However, its behavior can al-
ways be computed numerically. On the other hand, the field
� takes the simple form

�� �0 � d�

�
1�

��������t� t0T

��������
��2

z

��������t� t0T�

����������
�
�1




�
�� � �z

��������t� t0T�

����������
�

(40)

subject to the conditions

d� � d��0 � d��; �� � �0��0 � d���1: (41)

Interestingly, the field � can reverse field velocity mid-
way through its evolution, and so ‘‘turn around’’ or bounce.
This peculiar effect will have important ramifications when
we transform the SU�3� solutions later on, for it will allow
the brane field z to bounce as well.

B. Analysis and validity of the SU�3� Toda model

There are two distinct SU�2� models embedded non-
trivially in these solutions. If we take the limit T� � T
then the early-time behavior of the fields is formally iden-
tical to the solutions Eq. (19) of the previous section. If
instead we reverse the temporal sequence by choosing
T� 	 T then the early-time behavior is another three-field
SU�2� model involving � as the axion. These two models
are not decoupled as they would be in the SU�2� � SU�2�
Toda case, but instead are nontrivially mixed inside the
SU�3� model. Only in extreme cases can we discern the
underlying SU�2� components, and so at a general, inter-
mediate time there will not be a clean separation of the
effects of the z and �motions. Indeed, these two embedded
behaviors couple and compete with one another, and at-
tempt to drive the expansion powers according to the two
conflicting processes

p i ! pf; pi ! p���f :

In general, this means that neither pf nor p���f individually
succeeds in becoming the actual expansion powers that the
system adopts at late time. However, the system may spend
some part of its evolution at intermediate rolling-radii
states where it adopts these powers temporarily. The true
late-time rolling-radii states p0f are in fact determined from
a ‘‘combined’’ relation given by

p 0f � pi � �� ��
2G�1q
hq;qi

; q � q1 � q2: (42)

Notice that the final states are computed as if the system
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followed an ordinary SU�2� model with a combined pa-
rameter � �. However, the intermediate behavior
strongly deviates from any such simple SU�2� evolution,
and we should treat Eq. (42) merely as a formal tool for
deducing the rolling-radii end points of the trajectory.

To see this clearly, we plot the field behavior on the
ellipse as we did in Sec. IV (see Fig. 2). Again, the
solutions break in ��� branches, with pi corresponding to
the early-time expansion powers only if they simulta-
neously satisfy the two inequalities

; � > 0 on ���; ; � < 0 on ���: (43)

The additional � condition restricts the accessible early-
time powers to a narrower range of states compared to the
SU�2� model. In Fig. 3 we also plot the displacements of z
and the � axion. This illustrates the important fact that the
fields z, � can undergo two successive displacements, since
each is coupled to the time development of the other.

To complete this section, we now comment on the
validity of these SU�3� Toda solutions. One can show that

e��� �
3

2qd2

��������t� t0T

��������




�
1�

��������t�t0
T

���������
�
1� �2

z

��������t�t0
T�

����������
��

2

1�

��������t�t0
T�

����������
�
1� �2

�

��������t�t0
T

���������
� : (44)

Using this, one can easily verify that in the asymptotic
-7
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FIG. 3 (color online). An interesting example of the field evolution. The left-hand plot shows the fields � and �. The kinks in these
curves are caused by the displacements of z and �, which are shown in the right-hand plot. Notice that z moves twice in succession.
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limits


k 
��������t� t0T

���������! 1 at early time;


k 
��������t� t0T�

����������! 1 at late time:

Notice that this follows only because , � are both
positive (negative) on the negative (positive) time branch.
Consequently, the SU�3� solutions cannot be trusted
asymptotically, as with the previous SU�2� solutions of
Sec. IV. Further investigation of Eq. (44) also reveals that
it can never be made smaller than the leading coefficient,
which is of order 1=qd2. This demonstrates that the small-
est attainable value of the 
k is given by


kjmin 
1

d2 : (45)

Hence, to achieve 
k 	 1 the solutions require us to take
d� 1 and allow the brane to leave the orbifold interval.
As such, the SU�3� model has similar problems to the
SU�2� model. Of course, as long as we are interested in
relatively short time scales, and always concentrate on the
brane behavior inside of the interval but away from the
boundaries (and the collision), then no particular problem
is posed. Away from the boundaries the SU�3� solutions
with d� 1 are reliable for a short time, and the fact that
the brane must eventually leave the interval does not
change this fact. Hence, there are always regions where
all fields are evolving in an 
k 	 1 regime with the brane
inside the interval.
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However, it would obviously be valuable if these regions
could be extended to cover the entire displacement profile
of the brane, such that the brane moves and comes to rest
while remaining inside the interval with 
k 	 1 through-
out. Although this is impossible with the SU�3� solutions
themselves, when we come to symmetry transform the
SU�3� solutions we will find circumstances under which
d < 1 and 
k 	 1 simultaneously.
VI. APPLICATION OF THE SYMMETRIES

We now apply the symmetries presented in our compan-
ion paper, Ref. [10], to the SU�2� and SU�3� models in
turn. (For previous work in this area, also see Ref. [15].)
These symmetries mix the scalar fields together in new
combinations, and yet leave the action Eq. (1) invariant.
Consequently, the new time-dependent combinations for
the fields that emerge, no matter how complicated, still
solve the equations of motion. The seven-dimensional
symmetry group G is a maximal parabolic subgroup of
Sp�4;R� given by

G � SL�2;R� 32 SU�1; 2�=U�2� (46)

where 32 denotes a semidirect product. The scalar-field
space is then the group manifold M � Sp�4;R�=U�2�, but
equipped with a nonhomogeneous Riemannian metric such
that the total symmetry group fills out only G and not the
whole of Sp�4;R�. There are seven, distinct types of trans-
formations Li that can be applied to the scalar fields, each
one controlled by a continuously adjustable real constant
ci. These are given by

L1: �! �� c1; �! �ec1 ; z! ze�c1=2; �! �ec1=2; L2: e� !
e�

�1� c2��
2 � 1

4 c
2
2e

2� ;

�!
��1� c2�� �

1
4 c2e2�

�1� c2��2 �
1
4 c

2
2e

2� ; �! �� c2 
 2q�2; z! z� c2�; L3: �! �� c3; �! �� c3 
 2qz2;

�! �� c3z; L4: �! �� c4; �! �ec4 ; z! zec4=2; �! �ec4=2; L5: �! �� 4q� 
 c5;

z! z� c5; L6: �! �� 4qc6; L7: �! �� c7: (47)
-8
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Some of these transformations will simply amount to
reparametrizations of the existing integration constants in
the solutions they are applied to. Some, however, change
the solutions into new functional forms, which will in turn
be completely new solutions to the equations of motion. In
particular, note that L1, L2, L3 represent the SL�2;R� group
of transformations, which act on S, T, Z as follows:
T0 �
aT� ib
icT�d

; Z0 �
Z

icT�d
;

S0 �S�
icqZ2

icT�1
with a;b;c;d2R; ad�bc�1:

(48)
Here the four constants a, b, c, d (subject to one constraint)
are proportional to c1, c2, c3, and are better adapted to the
SL�2;R� symmetry. In particular, they can be considered
the four entries of a 2� 2 SL�2;R� matrix. Having now
rewritten the SL�2;R� transformations in this compact
form, note the crucial fact that Eq. (48) does not represent
ordinary T-duality, for the complex coordinates S and Z
must also be transformed. Nonetheless, the action on T
alone is indistinguishable from conventional T-duality, and
so all-told we will dub this a ‘‘generalized’’ T-duality.
These generalized T-duality transformations can produce
exceedingly complicated new behaviors, and can signifi-
cantly affect any existing time-dependent solutions that
they are applied to. Consequently, we can expect to derive
new solutions to the equations of motion by transforming
the SU�2� and SU�3� models using these symmetries.
While it was shown in Ref. [10] that the symmetries do
not form a transitive group on M, so that we cannot use
them to build the general solution to the equations of
motion, we can nonetheless make significant progress in
this direction.
VII. TRANSFORMING THE SU�2� MODEL

We now apply the finite symmetries Li to the SU�2�
model. Only L2, L3 have a nontrivial effect, and they
modify the system such that it is no longer a simple Toda
model that can be solved using the Toda methodology.
This, of course, is the crucial reason why we use the
symmetries in the first place, as they allow us access to
complicated new solutions that we cannot otherwise un-
cover using standard methods. Although the brane only
undergoes one displacement, we will find that the 
k
parameters can have significantly different development
in these transformed solutions. Specifically, in certain
cases the 
k are naturally decreasing into the past or future.

A. Transformed-SU�2� solutions

One can verify that the symmetries transform the SU�2�
solutions into the following form:
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���0�pi ln
��������t� t0T

����������~pf�pi� ln
�
1�

��������t� t0T

���������
~
�
�1= ~

��p���f �pi� ln
���������t� t0T�

�����������
�

1�

��������t� t0T�

���������s�
�

�
1�

��������t� t0T

���������
~
���

�1=�
; (49)

z� z0 � d
�
1�

��������t� t0T

��������
~
�
�1
; (50)

���0�d�

�
1�

��������t� t0T�

��������s�
�
1�

��������t� t0T

���������
~
�
�1
�
�1
;

(51)

�� �0 � �2q�0

�
z0 � d

�
1�

��������t� t0T

��������
~
�
�1
�

2
; (52)

�� �0 � 0: (53)

Here we have defined the combinations

s � �1; 2� � 1� s; ~ � � ��:

We are, however, not free to pick s in an arbitrary fashion,
as the choice of sign crucially depends on the choice of
initial expansion powers. The permissible choices are
listed in Table I.

The remaining constants are then subject to the same
constraints as in the SU�3� model, namely

p �Gp� � 0; p� 
 d � 1;  � �q1 
 pi;

q1 
�0 � ln
�
qd2hq1;q1i

8

�
;

(54)

p���f Gp���f � 0; p���f 
 d � 1; � � �q2 
 pi;

q2 


�
�0 � pi ln

�������� T
T�

��������
�
� ln

�
3d2

�hq2;q2i

4

�
; (55)

where � � i, f and ~pf, p���f , and pi are related by the two
SU�2� maps

p���f � pi � �
2G�1q2

hq2;q2i
; ~pf � pi � ~

2G�1~q
h~q; ~qi

;

~q � q1 � �q2:

(56)

Notice the crucial fact that the system does not neces-
sarily have the same asymptotic behavior as the SU�2�
model. To see this, we note that the early-time powers pi
can now be taken from anywhere in the region

� �; � < 0 on ���; � �; � > 0 on ���:

Most of this region was unavailable in the original SU�2�
model, and so the permissible asymptotic behaviors have
-9



TABLE I. This table shows which of the values s � �1 are valid choices given a set of initial
expansion powers. Note that s � �1 is not a valid choice in the second row of the table.

Expansion power range ; � < 0 on ���
; � > 0 on ���

� � < 0; � < 0;  > 0 on ���
� � > 0; � > 0;  < 0 on ���

Allowed choices s � �1 s � �1

Τβ >> Τ
Τβ << Τ

Τβ ∼ Τ

Ρβ

Ρφ
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FIG. 4 (color online). Transformed SU�2� ellipse behavior for
T� � T, T�  T, T� 	 T, plotted on the ��� branch. The
trajectories begin at the lower left as t� t0 ! �1, and evolve
to the upper right as t� t0 ! 0.
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expanded into completely new regions. This is very differ-
ent from the SU�3� model, which consistently narrowed
the range of powers compared to the old SU�2� case, but
did not expand the allowed range of powers at all. These
newly accessible regions are entirely a consequence of the
symmetry transformations, whose effects were entirely
absent in the original SU�2� and SU�3� cases. Therefore,
we can anticipate entirely different behavior for the 
k
parameters in the asymptotic limits.

For clarity, we now present the component field repre-
sentation of �:

�� �0 �
1

3
ln

��������t� t0T

��������; (57)

���0�p�;i ln
��������t� t0T

����������p�;f�p�;i�
� ln

�
1�

��������t� t0T

���������
~
�
�1=~

��p����;f�p�;i�ln
���������t� t0T�

���������~
�

1�

��������t� t0T�

����������
�

�
1�

��������t� t0T

���������
~
���

�1=�
; (58)

���0 � p�;i ln

��������t� t0T

����������p�;f � p�;i�
� ln

�
1�

��������t� t0T

���������
~
�
�1=~

; (59)

subject to the constraints

 � p�;i � p�;i; � � �2p�;i;

�0 � ln�2d�� � p�;i ln

�������� T
T�

��������;
�0 ��0 � ln

�
3

2qd2

�
;

~p�;f
~p�;f

� �
�

1

2
1 s
3s �1

� �
p�;i
p�;i

� �
;

p����;f
p����;f

0
@

1
A � �1 0

0 1

� �
p�;i
p�;i

� �
:

As in all the cases considered, the expansion powers
�p�;i; p�;i� are constrained to the ellipse as defined in
Eq. (22). In combination with the constraints above, this
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automatically forces � and � to be in rolling-radii regimes
at late time that are also on the ellipse.

B. Analysis and validity of the transformed-SU�2�
model

As in the previous section, we plot a particular example
of the �, � evolution across the ellipse on the ��� branch
(see Fig. 4). The behavior breaks down into three generic
cases based on the relative magnitudes of the time scales T
and T�. Notice that, irrespective of these magnitudes, the
field z can only ever undergo one displacement, and so
behaves in a manner identical to the old SU�2� case.
However, the crucial thing is that we can now achieve
the same SU�2� behavior for z inside a set of solutions
that have completely different development for the 
k. In
the particular example given, the originally diverging val-
ues of 
k at late time are now decreasing to arbitrarily small
values into the future. Thus, the solutions become more
and more reliable into the future. This is in stark contrast to
the SU�2� model from which they originated, and demon-
strates that the new � behavior is crucial in suppressing
gravitational corrections to the four-dimensional theory.

Moreover, in Fig. 5 we plot the T� 	 T field behavior of
z, �, such that the z displacement occurs in the reliable

k 	 1 regime after the change in �. Crucially, this means
that the brane motion can occur in a 
k 	 1 region without
-10
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FIG. 5 (color online). In the left hand plot we see � and the SU�2�-transformed solution for �, with the remaining curve
corresponding to the original untransformed SU�2� solution for �. In the right-hand plot we see the distinct z and � displacements,
with the motion of the bulk brane z occurring second. This allows the brane to displace with d < 1 and yet still be in a 
k 	 1 regime.
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requiring d > 1. Such behavior could never have occurred
in the original SU�2� model, and is a consequence of the
manner in which the fields z and � are incorporated to-
gether into a new, global structure for the overall solutions.

The fact that the displacement of z can be made to
entirely occur in a 
k 	 1 regime, without requiring d�
1, constitutes a significant improvement over the original
SU�2�model. This proves that a reliable solution for z does
not necessarily require it to eventually leave the compact
space. However, there are obviously other possible ex-
amples beyond those shown in Figs. 4 and 5, and we should
now clarify the precise circumstances in which the 
k can
be made to decrease. Once again we consider the func-
tional form of exp�����:

e����
3

2qd2

��������t� t0T

��������




�
1�

��������t�t0
T

���������
~
�

2

��������t�t0
T�

���������~
�

1�

��������t�t0
T�

���������
�
1�

��������t�t0
T

���������
~
��: (60)

By choosing signs appropriately, either the early-time or
the late-time limit can become ‘‘weakly coupled’’ with

k 	 1. However, only one of the asymptotic limits can
be weakly coupled, with the other still becoming ‘‘strongly
coupled’’ with 
k � 1. There are, of course, still solutions
where 
k � 1 is attained in both limits. The full state of
affairs is summarized in Table II.

Thus, there are three distinct types of solutions: weak-
strong (WS), strong-weak (SW), and strong-strong (SS). In
TABLE II. This table shows the asymptotic val
on the sign of s. The notation is as follows: stron
strong (WS), where the first word corresponds to
second refers to their values in the late-time limi

s � �1 s � �1

; � < 0 on ���
; � > 0 on ���

; � < 0 on ���
; � > 0 on ���

SW SS
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all three cases we can arrange for the zmotion to occur in a

k 	 1 region with d < 1. To do this, we simply recognize
that at t� t0 � T we can always take T� 	 T, and this
will decrease the values of the 
k below 1 without requiring
d� 1. Consequently, there is a tremendous degree of
flexibility in the solutions, and cases with 
k 	 1 and d <
1 are quite generic.

Before leaving this section, we should also comment on
stringy �0 corrections. These become strong as we probe
small length scales at � 0, and so encounter new physics
not accounted for in the effective supergravity description.
As such, one must always ensure that �� 0 to trust any
supergravity solution. We note that this is always possible
for certain periods of time by an appropriate choice of
integration constants, and so there is no obstruction to
finding regimes where 
k 	 1 and �0 corrections are ex-
tremely small. The transformed SU�2� solutions thus in-
corporate all of the z behavior from the SU�2� model, but
now allow it to be compressed inside of the orbifold
interval while simultaneously suppressing all unwanted
corrections.
VIII. TRANSFORMING THE SU�3� TODA MODEL

We now apply the symmetries Li to the SU�3� solutions,
and so find a further class of new solutions. One finds in
this case that only the action of the L2 transformation can
ever lead to new behavior. This can be easily understood by
noting that all the other transformations leave the SU�3�
truncation conditions Eq. (26) invariant, while L2 allows
_�� � _z to become nonzero. The ‘‘activation’’ of this com-
ues of the coupling parameters 
k, depending
g-strong (SS), strong-weak (SW), and weak-
the 
k values in the early-time limit, and the

t.

s � �1

� � < 0; � < 0;  > 0 on ���
� � > 0; � > 0;  < 0 on ���

WS
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FIG. 6 (color online). Here we show some examples of the
transformed-SU�3� solutions. Curve A is the original SU�3�
solution, and this can be progressively shifted toward curve B
and into curve C as we change the integration constants.
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bination takes us outside of the original SU�3� Toda model,
and into a new situation that is not itself solvable by Toda
methods. Nonetheless, the symmetries allow us to access
an exact, analytical description of the behavior when this
combination is nonzero. We will find that the brane can
undergo two displacements in opposite directions, and so
reverse direction without the presence of any explicit po-
tentials. We will often call this a ‘‘bouncing’’ solution.

A. Transformed-SU�3� solutions

These new solutions, although exact, are complicated
and difficult to present in an elegant fashion. One means of
presentation is to utilize two time-dependent functions p, r
that are implicitly defined via the relations

4r�4� p2��1 � e�jSU�3�; pr�4� p2��1 � �jSU�3�:

(61)

These are built out of the �, � solutions from the old
(untransformed) SU�3� model. The new
transformed-SU�3� solutions can then be written in the
form

� � �jSU�3�; � � �jSU�3�; � � �jSU�3�;

� � lnf4r�4� �p� c2r�2��1g;

� � r�p� c2r��4� �p� c2r�
2��1;

z � zjSU�3� � c2�jSU�3�:

(62)

Here c2 is the real constant associated with the L2 symme-
try, and so corresponds to a new integration constant that
can be varied at will. The remaining constants, it should be
emphasized, are taken from the original SU�3� model, and
we should treat their values as determining an embedding
of the old SU�3� behavior inside the newly transformed
solutions. Indeed, the fields �, �, � are unaffected by the
transformations, and evolve as in the old SU�3� case in any
event.

Notice as well that we cannot present � analytically, due
to the fact that the corresponding SU�3� solution can only
be computed numerically. As such, the transformed �
solution must also be computed numerically. However,
we emphasize that these numerical computations can be
readily carried out with no obstruction, and that the sym-
metry transformations induce perfectly sensible behavior
for � in all cases. In addition, � can have no bearing on the
time development of the other fields, as the condition _��
4qz _� � 0 is preserved under the symmetry group Eq. (46).
This means that � never appears in the equations of motion
of the other fields, and so can never induce any changes to
the brane or remaining axions. Consequently, we will not
particularly concern ourselves with � from this point on.

Having derived these new solutions by applying the
symmetries, we must now consider the ramifications for
the various fields involved. In particular, we are most
interested in the field z and the issue of whether we can
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now achieve a sensible displacement at weak coupling. In
the original SU�3� model the field z could undergo two
successive displacements in the same direction, but it could
not do so while entirely within a 
k 	 1 regime. In the
above case, however, the new field z is an additive mixture
of the old SU�3� behaviors for z, �. This creates a signifi-
cant new level of flexibility, and in the next section we will
investigate the consequences for the brane and its
displacements.

B. Analysis and validity of the transformed-SU�3�
model

Because of the complexity of the solutions, the field
behavior is somewhat difficult to determine by mere in-
spection. However, one can verify that the symmetry trans-
formation does not affect the asymptotic development, and
so the same set of states are accessed on the ellipse at early
and late times as in the SU�3� model. However, the inter-
mediate evolution is substantially, and interestingly, differ-
ent. In Fig. 6 we plot some examples on the ellipse.

The particularly interesting feature of these new solu-
tions is the motion of the brane. Specifically, for certain
special choices of constants, the brane can bounce and
spontaneously reverse direction midway through its evolu-
tion. Moreover, a thorough investigation of the parameter
space reveals that it is possible to make 
k 	 1 while z is
undergoing this bounce strictly inside the orbifold interval.
This is shown in Fig. 7.

To see that this behavior is indeed a consequence of the
solutions in Eq. (62), one can proceed in the following
qualitative fashion. First, we recognize that the effect of the
symmetry transformation is to switch-on the combination
_�� � _z to a nonzero value. This then acts as a driving force

that modifies the original SU�3� evolution of z. Second, we
recognize that this ‘‘modification,’’ at a practical level,
-12
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FIG. 7 (color online). The plot shows the transformed evolu-
tion of the brane z, and the parameters 
k / exp�����. Notice
that the latter satisfy 
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interval.
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amounts to additively mixing the SU�3� behaviors of z and
� together [see Eq. (47)]. So not only is z affected, but it is
affected by a nontrivial mixing together with the behavior
of �. Third, the original SU�3� field � can already be made
to reverse direction for particular choices of constants [see
Eq. (40)]. Hence, once mixed, the transformed z solution
also inherits this bouncing behavior.

As before, this behavior is subject to �0 corrections.
However, the strength of these corrections can always be
adjusted such that, when the brane is bouncing, the cor-
rections are extremely small and so are under control. Of
course, the corrections cannot be made arbitrarily small for
all time, but they can always be made arbitrarily small over
significant periods of time when the brane is moving. To
achieve this one simply tunes c2 	 1, which has the effect
of setting �� 0 in the vicinity of the bounce.

These bouncing solutions richly extend the results of the
previous sections. We now see that the effective supergrav-
ity action Eq. (1) admits exact solutions where the brane
evolves in a regime with 
k 	 1, has small �0 corrections,
is strictly between the boundaries, and can also reverse
direction midcourse. These effects were not at all obvious
from the exactly integrable SU�2� and SU�3� Toda models,
and yet can be generated by judiciously applying symme-
tries of the equations of motion. We also reiterate that no
explicit potential was required to induce these effects; the
reversal is a natural outcome of the nonlinearly coupled
cosmology.
IX. PERTURBATIONS

In the previous section we presented several new classes
of cosmological solutions to heterotic M theory, and found
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that the four-dimensional scale factor a � exp��� always
satisfies a jt� t0j1=3. Switching to conformal time �
defined by d� � a�1dt, this translates into a j��
�0j

1=2. This means that on the ��� branch we always
have an expanding, decelerating universe, while on the
��� branch we always have a contracting, inflationary
universe. This behavior is to be expected, for the cosmol-
ogy we are studying has no explicit potentials and so a
remains unaffected by the other fields. We will now con-
sider in more detail the inflationary epoch and the genera-
tion of perturbations on the ��� branch.

As with the familiar PBB scenarios, the inflationary
period on the ��� branch is characterized by a comoving
Hubble length jd�lna�=d�j�1 � 2j�� �0j that decreases
as we take �! �0 and approach the big bang singularity
from below. Consequently, a given comoving scale starting
inside the Hubble radius as �! �1 automatically be-
comes larger than the Hubble radius as�! �0. Therefore,
on the ��� branch one can produce superhorizon scale
perturbations merely from kinetic-driven inflation, without
the use of any potentials. This is considered an interesting
alternative to conventional inflation on the ��� branch,
since PBB scenarios do not require special choices of
potential or slow-roll conditions. Given this, it is interest-
ing to consider the perturbation spectra of our fields on the
��� branch, and see whether there are any useful scale-
invariant modes. Not surprisingly, we will be able to utilize
the techniques developed in PBB cosmology to aid our
calculations. We will also see that the factor of 3 in the
kinetic terms for � and �, which complicated the classifi-
cation of the scalar-field manifold (see Ref. [10]), has
interesting consequences for the spectral indices of the
fields.

We will begin by considering perturbations around a
special background where the axions �, �, � have been
set to constants, and where the conserved quantity in
Eq. (15) has been set to zero. In this case the brane z
remains static for all time, and entirely decouples from
the equations of motion of � and �. The fields �, � then
exhibit standard rolling-radii behavior with unrestricted
parameters, and no transitions on the ellipse occur.
Although this special ‘‘vacuum’’ situation does not incor-
porate any interesting brane displacements in the back-
ground, it proves to be a much simpler situation that can
be solved analytically. Later, we will comment on pertur-
bations around more general backgrounds, including the
various Toda models and their symmetry transforms. In the
meantime, we note that in the simple vacuum case the �
and � perturbations remain coupled to the metric pertur-
bations, and produce adiabatic perturbations with the same
steep n � 4 blue spectra that occurs in PBB cosmology
[16,17]. In contrast, the fields z, �, �, � with constant
background values are decoupled from the metric pertur-
bations, and produce isocurvature perturbations z, �,
�, � with different spectra.
-13
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The first-order, gauge-invariant perturbation equations
for z, �, �, � in conformal time are given by

z00 � �2�0 � �0 ��0�z0 � k2z � 0;

�00 � 2��0 ��0��0 � k2�

� �4qz��0 ��0��0 � 8qz��0z0;

(63)

�00 � 2��0 � �0��0 � k2� � 0;

�00 � �2�0 � �0 ��0��0 � k2� � �2��0z0:
(64)

Here a 0 denotes a derivative with respect to �, and k is the
comoving wave number of the perturbation. In order to
solve for these four isocurvature perturbations we will use
techniques familiar from the PBB literature, with z replac-
ing an axion. This involves making an appropriate confor-
mal transformation on the metric into each axion’s frame
so as to eliminate the coupling to�,�, and then solving the
resulting perturbation equations in the usual manner (see
Refs. [11,12,16]). However, before we do this we need to
deal with the awkward source terms on the right-hand sides
of Eqs. (63) and (64). The presence of the bulk-brane field z
on the right-hand side of Eq. (63), rather than a true axion,
slightly complicates the situation as we cannot simply set
z � 0 as we can with � in Eq. (64). Recall that our theory is
only valid when z 2 �0; 1�. Instead, we must deal with the
source terms by choosing appropriate combinations of
perturbations: A � �� 4qz� and B � �� �z.1

Following the calculations of Ref. [12], we can now
define a new metric for each field’s frame by making a
conformal transformation on the Einstein metric: �gj	� �
�2
jg	�. Our conformal factors �j are explicitly given by

�2
z � e���; �2

A � e�2�;

�2
� � e�2�; �2

B � e����:
(65)

These conformal transformations lead to a different scale
factor �aj � �ja in each frame, depending on each field’s
coupling to �, �. As we are considering static axions and
bulk brane, �, � behave as simple rolling-radii fields with
fixed parameters that lie at one point on the ellipse,
Eq. (22), for all time.2 Explicitly, in conformal time they
satisfy

a � a�j�j
1=2; � � 3

2p� lnj�j � �0;

� � 3
2p� lnj�j ��0;

(66)

where a� is a constant, and we have conveniently set �0 �
1Unlike z, we are always free to set � � 0. As such, we can
choose B � �.

2Consequently, we will now drop the subscripts i, f that label
the initial and final rolling-radii powers, as the fields �,� remain
in the same rolling-radii states for all time. Also, note that we can
pick �p�; p�� from anywhere on the ellipse, irrespective of the
time branch.
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0. Using these background solutions one can show that

�a j � �a�jj�j�1=2��rj with rz �
3
4�p� � p��;

rA � �
3
2p�; r� � �

3
2p�; rB � �

3
4�p� � p��;

(67)

where the �a�j are a set of constants. In these new frames we
then find that the perturbation equations can be recast in the
form

x00j � 2 ��0jx
0
j � k

2xj � 0

where xj � �z; A; �; B� and ��0j � �a0j= �aj is the
Hubble rate in each conformal frame. The solution for
our isocurvature perturbations, after normalizing at early
time, is then given by (see Ref. [12])

xj � �

���������
�
mjk

s
exp

�
i�
4
�1� 2jrjj�

�
��k��1=2

�aj
H�1�
jrjj
��k��:

Here the mj are given by mz � 2q, mA � 4, m� � 12,

mB � 8q, and H�1�J is the Hankel function of the first
kind and order J. Defining the power spectrum Px and
its spectral index nx for a general perturbation x as

Px �
k3

2�2 jxj
2 and nx � 1 �

d lnPx
d lnk

;

we find the spectral index for each of the isocurvature
perturbations is given by

nxj � 4� 2jrjj:

Looking at the definitions of the jrjj given in Eq. (67),
we see how the spectral indices are dependent on the
coupling of z and the axions to �, � and consequently
their expansion powers, p� and p�. Inserting the specific
couplings for each field and considering the range of
background solutions yields

nA � 4� 3jp�j: 2 �4� 2
���
3
p
; 4�  �0:54; 4�;

nz � 4� 3
2j�p� � p��j; n� � 4� 3jp�j;

nB � 4� 3
2j�p� � p��j: 2 �2; 4�:

Thus we find that our perturbation A has the classic axion
perturbation spectrum familiar from PBB calculations, and
can provide a scale-invariant spectrum. In contrast, the
bulk brane and other axion perturbations cannot provide
a scale-invariant spectrum, a result similar to the one
obtained in Ref. [13].

One can also write the spectral indices as a function of a
single variable by using the ellipse constraint, Eq. (22).
This reveals
-14
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nz � 4�

���������
������������������
4� 3p2

�

q
� 3p�

��������;
nA � 4� 3jp�j; n� � 4�

������������������
4� 3p2

�

q
;

nB � 4�

���������
������������������
4� 3p2

�

q
� 3p�

��������;
where p� 2 ��2=

���
3
p
; 2=

���
3
p
� for the vacuum case. One

should remember that the choice of � sign must be con-
sistently applied across all the spectral indices, and that
both signs are always valid choices (as we do not have to
satisfy p� � p� > 0 in the vacuum case).

If one is familiar with PBB calculations the above result
may be surprising, as axion perturbations derived from
actions very similar to ours will usually all have spectral
indices in the range �4� 2

���
3
p
; 4�. (See, for example, the

variety of dilaton-moduli-axion systems discussed in
Refs. [11,12,16,18].) This change is a direct consequence
of the coupling of our fields to �, which unlike in PBB
cosmology has a factor of 3 in its kinetic term. This then
affects the range of p� through the ellipse condition. One
cannot change this result by rescaling �’s kinetic term as
this rescales �’s coupling to the fields and moves the effect
into the rj definitions. This then leaves A as the single
perturbation capable of producing a scale-invariant
spectrum.

So far we have only been considering the vacuum solu-
tions where z and the axions remain constant. However,
generalizing these solutions to the case with moving brane
and axions remains an open question, due to the sheer
complexity of the solutions considered. One can begin by
truncating off the axions and considering the perturbations
of the �, �, z SU�2� action of Sec. IV. In this case one can
use an SL�2;R� symmetry of the truncated action3 to solve
for the perturbation z around a moving-brane SU�2�
background, by applying the SL�2;R� symmetry to pertur-
bations �, �, z around a static-brane SU�2� back-
ground. One then finds that this ‘‘rotated’’ z
isocurvature perturbation retains the spectrum n 2 �2; 4�
(see Ref. [13]). However, the effect of this rotation on the
remaining axionic equations leaves a nontrivial
calculation.

As a result, we can only conjecture that a scale-invariant
mode persists in perturbations around the Toda model
backgrounds and their symmetry transforms. However, it
is certainly true that all of the solutions we have considered
will asymptotically approach the vacuum scenario.
Moreover, when one applies the constraints on p� in the
various classes of solutions one finds that, in at least one of
the asymptotic limits, the rolling-radii regime which leads
to A producing a scale-invariant spectrum is accessible.
3This symmetry is not related to the SL�2;R� generalized
T-duality we have discussed in this paper, and does not remain
when considering the full, untruncated action.
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Hence, we can always generate a scale-invariant mode in
one of the asymptotic limits, even if we cannot determine
whether such a mode can also be generated at intermediate
times.

X. CONCLUSION

We have presented several new classes of cosmological
solutions to the four-dimensional effective supergravity
description of heterotic M theory. This theory contain
seven fields: the four-dimensional scale-factor �, the
modulus�measuring the separation of the orbifold planes,
the axion � related to the graviphoton field, the dilaton �
measuring the average Calabi-Yau volume, the axion �
related to the bulk three-form, the field z locating the
position of the M5 brane, and the axion � representing
the self-dual two-form on the brane world volume. To
linear order in the moduli-dependent parameters 
k (k �
1; 2), all fields except � can be described by the following
scalar-field Lagrangian:

L � 3
4�@��

2 � 3e�2��@��2 � 1
4�@��

2

� 1
4e
�2��@�� 4qz@��2 � 1

2qe
����@z�2

� 2qe�����@�� �@z�2:

We have attempted to identify as many exact solutions to
this system as possible, by identifying special constraints
on the fields that simplify the analysis. The only previously
known solution to this Lagrangian, as described in Ref. [7],
is found when L is consistently truncated to the form

L SU�2� �
3
4�@��

2 � 1
4�@��

2 � 1
2qe

����@z�2:

The fields �, �, z then form an exactly solvable SU�2�
Toda model, with the brane z undergoing single displace-
ments. In this paper we have identified three new solutions
in addition to this SU�2� Toda solution. The first new
solution was found by consistently truncating L to the
different form

L SU�3� �
3
4�@��

2 � 3e�2��@��2 � 1
4�@��

2 � 1
2qe

����@z�2

using the conditions @�� �@z � @�� 4qz@� � 0. By
switching off these two terms, one finds that the reduced
set of fields �, �, �, z spans an integrable SU�3� Toda
model, and can be solved for exactly. This SU�3� model
allows for double displacements of the brane z, and the
SU�3� solutions can always be made reliable with 
k 	 1
over a certain period of time during this double displace-
ment. However, the brane must leave the compact space in
any solution that has a reliable 
k 	 1 regime at some
point.

Next, we applied to the SU�2� and SU�3� models the
symmetry transformations derived and discussed in our
companion paper, Ref. [10]. This enabled us to derive
two new and distinct cosmological solutions. The proper-
ties of these new solutions were then discussed at length,
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and it was found that the reliability of the solutions had
been radically affected. This is ultimately due to the
SL�2;R� subgroup of symmetries, which acts as a gener-
alized set of T-duality transformations given by

T0 �
aT� ib
icT�d

; Z0 �
Z

icT�d
;

S0 �S�
icqZ2

icT�1
with a;b;c;d2R; ad�bc�1:

(68)

This is not ordinary T-duality, as all three complex fields
T, S, Z are affected. Using these symmetries, it was then
found in the SU�2�-transformed solutions that the brane
can undergo a single displacement entirely within the
orbifold interval with 
k 	 1 throughout. It was also found
in the SU�3�-transformed solutions that the brane field z
can undergo two successive displacements of opposite sign
and so reverse direction. The specific conditions under
which this reversal occurs are as follows. First, set @��
4qz@� � 0 so that the axion � is decoupled from the other
fields. Then the scalar-field Lagrangian L reduces to the
simpler form

L 0 � 3
4�@��

2 � 3e�2��@��2 � 1
4�@��

2 � 1
2qe

����@z�2

� 2qe�����@�� �@z�2:

One then proceeds by setting @�� �@z � 0 and solving
the system as an SU�3� Toda model, but then restoring the
@�� �@z term to a general, nonzero value by applying an
SL�2;R� symmetry. In particular, the fields z, � transform
as a doublet under SL�2;R�, and so we can solve the
system with general @�� �@z by ‘‘rotating’’ from a solu-
tion where it is zero. As a consequence, the equations of
motion arising from the reduced Lagrangian L0 have been
completely solved in this paper. Further, by tuning the sign
and magnitude of the ��@z contribution generated by the
symmetry application, one can modify the overall velocity
of the brane so that it comes to rest and reverses direction.
This is a particularly interesting feature arising from the
coupling with �, whose presence in the kinetic term @��
�@z is due to the need for a gauge-covariant derivative in
five dimensions. This reversing behavior, which we have
occasionally called a bouncing solution, can also be made
to occur entirely within the orbifold interval with 
k 	 1
throughout.

As such, all of the transformed solutions demonstrate a
rich new variety of M5 brane behaviors, and new, trust-
worthy regions of solution space emerge that had not
previously been identified. In particular, we conjecture
that reversing brane solutions will exist in other corners
of string theory beyond heterotic M theory. One can pin
down reasonably clear ‘‘minimum conditions’’ for this
reversal to occur, as follows. First, at least one modulus
should be active, such as the dilaton �, whose coupling to
the brane kinetic term will induce the brane z to undergo a
single displacement. Second, there should also be an active
086009
combination proportional to a cross coupling between an
axion field and @z. This second combination can then be
adjusted so that the brane turns around at some point
during its motion.

As an interesting corollary, we then considered the iso-
curvature perturbation spectra produced by the model in an
inflationary contracting (PBB) phase. In the vacuum case
we found that one of the isocurvature modes—the one
associated with the axions � and �—is able to produce a
scale-invariant spectrum. Furthermore, we found that all of
the solutions considered will asymptotically approach this
vacuum case in at least one asymptotic limit, and so a
scale-invariant perturbation spectrum can always be gen-
erated asymptotically when perturbing around any of the
solutions we have studied. However, the detailed structure
of the perturbation spectrum at intermediate times has not
yet been computed in its full generality, and it would be
interesting to study this problem in greater depth, perhaps
in a manner analogous to the numerical approach devel-
oped in Refs. [19,20].

Finally, we note that the methodologies employed in this
paper have much wider applicability. For example, the
Toda model solution method, as extensively detailed in
Refs. [8,9], is not restricted to scalar-field systems arising
from heterotic M theory, and could be readily utilized in
other areas of string theory. Likewise, it is equally plau-
sible that other braneworld Kähler metrics may possess
useful symmetry groups, which can be used to transform
subsystems of fields into new patterns of behavior. In light
of this, it would be interesting to clarify the origin of the
special SL�2;R� symmetry group that we have found, and
understand the general conditions under which reversing
brane behavior occurs in string and M theory.
APPENDIX

In this appendix we present certain additional details of
the SU�3� Toda model derivation. We do this because the
derivation is rather complicated, particularly the manner in
which one must change time gauges and judiciously re-
define constants.

To begin with, we know that the vectors q1, q2 are
proportional to the two simple root vectors of SU�3�.
Utilizing this fact, we can choose a basis for the space
��;�;�� that is adapted to the underlying SU�3� symme-
try, and so consists of vectors e0, e1, e2 satisfying

he0; e0i � �1; he0; e1i � he0; e2i � 0;

e1 �
3
8q1; e2 �

3
8q2:

(A1)

A choice of basis compatible with these conditions is given
by

e 0 � �
���
3
p
; 0; 0�; e1 �

3
8�0;�1; 1�;

e2 �
3
8�0; 2; 0�:

(A2)
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We now write the covariant vector G� as the following
sum,

G� �
X2

i�0

�i���ei; (A3)

and insert this time-dependent expansion into the equations
of motion to find the evolution of the ‘‘modes’’ �i.
Choosing the convenient gauge n � 3� (or E � 1) one
finds

�� 0 � 0; (A4)

�� 1 �
4

3
u2

1e
2�1��2 � 0; (A5)

�� 2 �
4
3u

2
2e

2�2��1 � 0; (A6)

� _�2
0 �

3
4� _�2

1 � _�1 _�2 � _�2
2� � 2U � 0: (A7)

The general solution to these equations is now easy to
come by, and takes the form

�0 � �k0��� �0�; (A8)

�1 � � lng1���; (A9)

�2 � � lng2���; (A10)

where k0, �0 are constants. The functions g1, g2 are given
by a sum over the collection of weight vectors �1 �
f�0;�1�; ��1; 1�; �1; 0�g, �2 � f��1; 0�; �1;�1�; �0; 1�g of
the fundamental 3 and �3 representations of SU�3�.
Concretely, if we define the matrix of vectors

� ij �
�1
�2

� �
�
�0;�1� ��1; 1� �1; 0�
��1; 0� �1;�1� �0; 1�

� �
(A11)

then for i � 1, 2 the functions gi are given by

gi �
X3

j�1

aij exp��ij 
 �k�� ��� (A12)
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where the positive constants aij are

a11 �
4u2

2

3

�
2k1 � k2

P

�
; a21 �

4u2
2

3

�
2k2 � k1

P

�
;

a12 �
4u2

1

3

�
k1 � k2

P

�
; a22 �

4u2
2

3

�
k1 � k2

P

�
;

a13 �
4u2

1

3

�
2k2 � k1

P

�
; a23 �

4u2
1

3

�
2k1 � k2

P

�
;

and P � �2k1 � k2��2k2 � k1��k1 � k2�. The constant vec-
tor � � ��1; �2� is a set of arbitrary time shifts. The con-
stant vector k � �k1; k2� is restricted to the open Weyl
chamber, which means it is forced to have a positive scalar
product with the two simple root vectors as follows:

�k1; k2� 
 �2;�1� � 2k1 � k2 > 0;

�k1; k2� 
 ��1; 2� � 2k2 � k1 > 0:
(A13)

These two conditions guarantee that g1, g2 > 0 so that the
logarithms in �1, �2 are always well defined. Lastly, we
must also impose the Friedmann constraint

�k2
0 �

3

4
�k2

1 � k1k2 � k2
2� � 0: (A14)

Using the information above, one can arrive at an ex-
plicit solution for the fields �, �, � and the two additional
fields z, � that were integrated out. Recall that

� �
�
�
�

0
@

1
A �X2

i�0

�iG
�1ei �

� 1��
3
p �0

�2 �
1
2�1

3
2�1

0
B@

1
CA (A15)

and that

g1��� � a11e�k2���2 � a12e�k2�k1�����2��1� � a13ek1���1 ;

g2��� � a21e�k1���1 � a22e�k1�k2�����1��2� � a23ek2���2 :

(A16)

Then we find
� �
1���
3
p k0��� �0�;

� �
1

2
ln�a11e�k2���2 � a12e�k2�k1�����2��1� � a13ek1���1� � ln�a21e�k1���1 � a22e�k1�k2�����1��2� � a23ek2���2�;

� � �
3

2
ln�a11e

�k2���2 � a12e
�k2�k1�����2��1� � a13e

k1���1�;

z� z0 � Cz
_g1

g1
� Cz

�
�k2a11e�k2���2 � �k2 � k1�a12e�k2�k1�����2��1� � k1a13ek1���1

a11e
�k2���2 � a12e

�k2�k1�����2��1� � a13e
k1���1

�
;

�� �0 � C�
_g2

g2
� C�

�
�k1a21e

�k1���1 � �k1 � k2�a22e
�k1�k2�����1��2�k2a23e

k2���2

a21e�k1���1 � a22e�k1�k2�����1��2� � a23ek2���2

�
; (A17)

where z0, �0 are constants of integration, and
-17
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Cz �
�

9

8qu2
1

�
1=2
; C� �

�
3

16u2
2

�
1=2
:

We can then deduce the forms of �, � that are compatible with the ancillary conditions Eq. (26)

�� �0 � �0�z� z0� � CzC�

�
k2�2k1 � k2�a13ek1���1 � k1�2k2 � k1�a23e�k2���2

a11e
�k2���2 � a12e

�k2�k1�����2��1� � a13e
k1���1

�
;

�� �0 � �2q
�

2z0�� �0�z� z0�
2 �

Z
��z� z0�

2�
��� �0�d�
�
;

where �0, �0 are two further constants of integration.
Notice that the integral in the � solution is not elementary,
and so cannot be written as a finite (potentially nested)
sequence of logs, exponentials, and rational functions of �.
However, it can sometimes be analytically integrated for
fixed choices of the arbitrary constants and, in any event,
has a sensible definite integral between fixed � limits. In
particular, one can compute the � behavior numerically for
any given set of starting conditions.

It is useful to understand the asymptotic limits, in order
to transform these solutions to the proper time gauge n �
0. One finds that

e�  e�2k1�k2��=2 and e�  e3k2�=2 as �! �1;

e�  e�k1�2k2��=2 and e�  e�3k1�=2 as �! �1:

Since 2k1 � k2 > 0 and k1 � 2k2 < 0 we see that the
orbifold radius � always goes from a state of expansion at
early time to a state of contraction at late time. The same is
true of the modulus � that measures the orbifold-averaged
Calabi-Yau volume. These two fields will then have some
complicated intermediate transition(s) that smoothly links
these extreme limits. On the other hand, the fields z and �
always asymptote to constants in the limits, although these
constants are generally different. They too will undergo
some intermediate ‘‘displacement’’ consistent with the
different constant field values at early and late times.

We now change from logarithmic time � to proper time
t. Since the logarithmic-time gauge is given by n � 3�, we
can find the relation to proper time by integrating the
defining relation

dt � en���d� � e3����d� � e
��
3
p
k0����0�d�: (A18)

This gives

� �
1

3
ln�

���
3
p
k0�t� t0�� �

1

3
ln

��������t� t0T0

�������� (A19)

where t0 is a finite integration constant. This leads to two
disconnected time branches corresponding to the choices
t� t0 > 0, T0 > 0 and t� t0 < 0, T0 < 0, both of which
lead to a well-defined positive argument for the logarithm.
The regime t� t0 > 0, T0 > 0 will be referred to as the ‘‘-
positive-time’’ or simply ��� branch, while the sector t�
t0 < 0, T0 < 0 will be dubbed the ‘‘negative-time’’ or
simply ��� branch. The physics in the time interval � 2
086009
��1;�1� is mapped to these two regions in the following
way. The early-time �! �1 regime with expanding �,�
corresponds to t� t0 ! 0 on the ��� branch and t� t0 !
�1 on the ��� branch, while the late-time regime �! 1
corresponds to t� t0 ! 1 on the ��� branch and t� t0 !
0 on the ��� branch. It should be noted that these two time
branches in t are physically separated by an unavoidable
curvature singularity at t � t0, despite the fact that in the �
gauge we had only one physical region. After this gauge
change, typical terms in �1, �2 will then scale as

��������t� t0T0

���������0i
;

��������t� t0T0

����������
0
i
;

respectively, where �0i � �k
0
1; k
0
2 � k

0
1;�k

0
2� and

k01 � k1T0; k02 � k2T0:

Note that k01, k02 can be of either sign depending upon the
sign of T0 and so the choice of branch. On the positive
branch we have k01, k02 > 0 so that k01 � jk

0
1j, k

0
2 � jk

0
2j. In

this gauge the fields�,� scale asymptotically at early time
as

� p�;i lnjt� t0j; � p�;i lnjt� t0j;

where we have defined the two constants

p�;i �
1
2�2jk

0
1j � jk

0
2j�; p�;i �

3
2jk
0
2j:

The Friedmann constraint Eq. (A14) then reduces to the
familiar ellipse condition

p2
�;i � 3p2

�;i �
4
3:

Moreover, the Weyl chamber constraints 2jk01j � jk
0
2j> 0,

2jk02j � jk
0
1j> 0 translate into p�;i > 0,  < 0. So the

positive branch is associated with  < 0 with the further
additional constraint that � � �2p�;i < 0. Conversely,
on the negative time branch we find the opposite results,
since we follow the ellipse trajectories backward. Hence,
we find that , � > 0.

Since all the fields involved are scalars, we are now free
to substitute � in terms of t in all the solutions. These will
then be the n � 0 forms for the solutions. To make these
-18
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solutions look ‘‘nice,’’ however, one must carefully rede-
fine certain constants. If one defines new time scales T, T�
via

��������TT0

��������
�
a12

a11
exp���k1 � 2k2��0 � ��1 � 2�2��;��������T�T0

���������
�
a22

a21
exp��2k1 � k2��0 � �2�1 � �2��;

then the resulting solutions look relatively simple. They
can be made even simpler by defining the ubiquitous frac-
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tional combinations

�z �
a13a21

a12a22
; �� �

a23a11

a12a22
:

Finally, we have decided to write the solution for � so
that it scales with respect to T at early time rather than the
natural choice T�, and so the ratio T=T� has been absorbed
into the additive offset�0. This brings the� solution closer
to the old SU�2� form and simplifies the vector notation,
but at the expense of introducing the ratio T=T� into the
constraints.
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