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An S matrix satisfying the Yang-Baxter equation with symmetries relevant to the AdS5 � S5 super-
string recently has been determined up to an unknown scalar factor. Such scalar factors are typically fixed
using crossing relations; however, due to the lack of conventional relativistic invariance, in this case its
determination remained an open problem. In this paper we propose an algebraic way to implement
crossing relations for the AdS5 � S

5 superstring worldsheet Smatrix. We base our construction on a Hopf-
algebraic formulation of crossing in terms of the antipode and introduce generalized rapidities living on
the universal cover of the parameter space which is constructed through an auxillary, coupling-constant
dependent, elliptic curve. We determine the crossing transformation and write functional equations for the
scalar factor of the S matrix in the generalized rapidity plane.
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I. INTRODUCTION

One of the most fascinating discoveries in recent years
was the unravelling of integrable structures in planar N �
4 supersymmetric Yang-Mills (SYM) theory [1–4] and in
superstring theory on AdS5 � S5 space [5–11]. In view of
the AdS/CFT correspondence [12] which links the two
theories and identifies anomalous dimensions of the gauge
theory with energies of string excitations in AdS5 � S5,
these discoveries have thus opened up the possibility of
detailed testing of the proposed correspondence. Even
more interestingly, the techniques of integrability allow
in principle for an exact quantization of the superstring
in AdS5 � S5 and/or the determination of anomalous di-
mensions in the N � 4 SYM.

However it turned out that at three loop order there is a
set of discrepancies between gauge-theory calculations and
string theory results [13–16]. This does not signify a con-
tradiction since the domains of applicability are nonover-
lapping and in order to perform a comparison an
extrapolation is needed—in fact an order of limits problem
was suggested to be a possible explanation. One source of
the discrepancy, the so-called ‘‘wrapping interactions‘‘
have apparently been ruled out [17,18] so the problem
remains open. A key ingredient which enters the calcula-
tion of the anomalous dimensions or string energies is the S
matrix. ‘‘Phenomenologically’’ one can quantify the dis-
agreement by a scalar dressing factor between the ‘‘string’’
Smatrix and the asymptotic ‘‘gauge-theory’’ Smatrix [19].
Initially this has been proposed to hold in subsectors of the
full theory [20], but subsequently it has been extended to
the whole S matrix. The structure of the dressing factor on
the string theory side appears to be quite complicated with
1=

����
�
p

deviations [21–23] from the strong coupling expres-
sion [20].

In fact, in a remarkable series of papers, [24,25], the S
matrix in various sectors was uncovered. This culminated
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with [26] where the S matrix with su�2j2� � su�2j2� �
psu�2; 2j4� symmetry was determined up to an unknown
scalar function S0�p1; p2�:

S�p1; p2� � S0�p1; p2� � �Ŝsu�2j2��p1; p2�

� Ŝsu�2j2��p1; p2�	; (1)

with Ŝsu�2j2��p1; p2� being the S matrix determined
uniquely by su�2j2� symmetry in [26]. A key remaining
problem is the determination of the scalar ‘‘dressing fac-
tor‘‘ S0�p1; p2�. The aim of this paper is to propose func-
tional equations which S0�p1; p2� has to satisfy.

A similar situation exists in relativistic integrable quan-
tum field theories, where symmetries (including the non-
local Yangian or affine quantum algebra) determine
completely the matrix form of the Smatrix up to an overall
scalar factor. This scalar factor is in turn determined by
requiring unitarity and crossing symmetry of the S matrix.
Only these two conditions together determine uniquely a
scalar factor with the minimal number of poles/zeroes in
the physical region. The only remaining ambiguities are
the Castillejo-Dalitz-Dyson factors which serve to intro-
duce further poles, if needed on physical grounds, but
generically the minimal solution suffices (see [27]).

It is important to emphasize that the two conditions—
unitarity and crossing—have quite a different status.
Unitarity is, as is the Yang-Baxter equation, a consistency
condition for the Faddeev-Zamolodchikov algebra and
does not involve any dynamical assumptions about the
theory in question. The matrix form of the S matrix from
[26] indeed directly satisfies the unitarity condition. On the
other hand the crossing condition involves a link between
the scattering of particles and the same process with a
particle changed into an antiparticle. The definite form of
the resulting equation involves in an essential way explicit
relativistic kinematics as formulated in the rapidity plane.
In this form it depends crucially on the relativistic invari-
ance of the theory.
-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.73.086006


ROMUALD A. JANIK PHYSICAL REVIEW D 73, 086006 (2006)
It is this last property which makes it very difficult to
adopt a similar strategy in the case of the worldsheet theory
of the AdS5 � S5 superstring. There the light-cone quan-
tization of the worldsheet theory, which seems necessary in
order to deal only with physical excitations, is inconsistent
with Minkowski metric on the worldsheet [9,13,15,28].
Therefore, the guiding principle of relativistic invariance
is lost, making it unclear not only how to implement cross-
ing but even whether such a property should hold at all.

The aim of this paper is to propose how to implement
crossing properties directly in the context of the S matrix
(1). We believe that on general grounds it is very probable
that some form of crossing symmetry should hold for the
AdS5 � S5 superstring. First, if one would attempt quanti-
zation without using light-cone gauge, but at the cost of
introducing ghosts, it is probable that one could get an
explicitly relativistic quantum field theory (QFT), which
would thus have to obey crossing conditions. Second, there
are subsectors of the full AdS5 � S5 worldsheet theory,
which can be formulated in an explicitly relativistic man-
ner [29]. There one also expects crossing to hold. For these
reasons we believe that a form of the crossing condition
should exist for (1). In order to find its concrete form we
will use an algebraic formulation of this condition which
appears in the language of Hopf algebras, the natural
mathematical framework for incorporating nonlocal sym-
metries in integrable quantum field theories and which
includes as notable examples the Yangian and quantum
affine algebras (see e.g. [30–32]). Applying this procedure
in the context of the S matrix (1) we find that the form of
crossing transformation is uniquely fixed. We then find an
analog of the rapidity parametrization in relativistic QFT
involving a coupling-constant dependent elliptic curve and
use this to derive equations for the scalar factor S0�z1; z2�,
where zi are the ‘‘generalized’’ rapidities.

The plan of this paper is as follows: In Sec. II we recall
the status of crossing symmetry in relativistic integrable
quantum field theories, and we emphasize its Hopf-
algebraic reformulation which will be the basis of our
construction. In Sec. III we describe in some detail the
construction of the su�2j2� S matrix of [26] in the form
which will be convenient for our purposes. In Sec. IV we
derive the form of the crossing transformation and exhibit
crossing properties of the Smatrix. In Sec. V we proceed to
derive a generalized rapidity parametrization in the context
of (1) which directly generalizes the rapidity variable � of a
relativistic QFT. We use that to write, in Sec. VI, the
unitarity and crossing equations for the scalar factor
S0�z1; z2� in the generalized rapidity plane. We close the
paper with some conclusions and two appendices.
II. CROSSING SYMMETRY IN RELATIVISTIC
INTEGRABLE QFT

In a relativistic integrable QFT with some symmetry
group the S matrix has the form
086006
S��1; �2� � S0��1 
 �2� � Ŝ��1 
 �2�; (2)

where the �i are the rapidities which parametrize the
energies and momenta of the particles through

Ei � m cosh�i; pi � m sinh�i: (3)

Relativistic invariance ensures that the S matrix is a func-
tion only of the difference � � �1 
 �2. The matrix Ŝ��� is
typically uniquely fixed, up to multiplication by a scalar
function S0���, using either the Yang-Baxter equation or
nonlocal symmetries from Yangian or quantum affine
algebras.

Subsequently the scalar factor is fixed by requiring
unitarity

Snmij ���S
kl
nm�
�� � �ki �

l
j (4)

and crossing invariance of the S matrix

Sl�i�kj�i�
 �� � Sklij���; (5)

where the bars over indices indicate a change from a
particle to an antiparticle and may typically involve some
nontrivial action of a charge conjugation matrix.

For the case of the su�2j2� � su�2j2� symmetric S ma-
trix relevant for the AdS5 � S

5 superstring it is unclear
how to generalize the crossing relation written in the form
(5). First, the S matrix depends nontrivially on two varia-
bles and cannot be written as a function of a single variable.
Second, one does not know how to implement charge
conjugation and even more importantly what is the ana-
logue of the i�
 � in (5). In order to overcome these
difficulties we use a reformulation of the crossing condi-
tion in terms of an underlying symmetry algebra which is a
Hopf algebra. This is in fact a natural setting for the
symmetry algebras of integrable relativistic QFT as non-
local symmetry charges are naturally incorporated in this
framework through a nontrivial coproduct (i.e. a prescrip-
tion of how the nonlocal charge acts on a two-particle
state). The relativistic crossing symmetry requirement
has been translated already into this framework (see [33–
35] for the supersymmetric case) using another ingredient
of a Hopf algebra—the antipode.

In order to motivate this formulation let us rewrite the
relation (5) reintroducing two separate rapidities, �1 and
�2, and keeping in mind that crossing involves changing
the first particle into an antiparticle. Equation (5) can then
be rewritten as

S�i�
 �1 � �2�
cross � S��1 
 �2�; (6)

where the superscript cross stands for the relevant trans-
formation of the indices. Now we reverse the signs of �1

and �2 to get

S��1 � i�
 �2�
cross � S�
��1 
 �2�� � S��1 
 �2�


1;

(7)

where in the last equality we used unitarity. We see that the
-2
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particle to antiparticle transformation involves a shift of the
rapidity �! �� i�which reverses the signs of the energy
and momentum.

It is this last form which has a direct Hopf-algebraic
interpretation. To see that let us introduce the R matrix
R��1; �2� related to the S matrix through a (graded) permu-
tation P:

S��1; �2� � PR��1; �2�: (8)

The R matrix in a Hopf algebra satisfies the direct counter-
part of (7) (see e.g. proposition 4.2.7 in [30])

�S � id�R � R
1; �id � S
1�R � R
1; (9)

where S is the antipode mapping which has the physical
interpretation of a particle to antiparticle transformation.
Directly from the Yangian or quantum affine algebra view-
point one shows that the antipode involves a shift of �
(since in this framework the rapidity labels the representa-
tions of the Yangian) and also possibly some charge con-
jugation matrices when the above equations are considered
in some definite representation of a Lie (super) algebra.

We would like to emphasize that (9) does not involve
any assumptions on the underlying relativistic invariance
of the theory. The action of the antipode follows just purely
algebraically from the relevant Hopf algebra. Because of
this property, we propose to use (9) as a basis for general-
izing crossing to the case of the worldsheet AdS5 � S5

theory. We will perform this construction in Sec. IV.
Before we end this section let us discuss the rapidity

parametrization (3). It was introduced in order for the S
matrix to be a meromorphic (single-valued) function with-
out any cuts which would appear if the S matrix was
considered as a function of physical momenta. Since we
do not have much intuition about the analytical structure of
the S matrix for the nonstandard dispersion relations char-
acteristic of the AdS5 � S5 worldsheet theory, we would
like to abstract the above mentioned characteristic of the
rapidity parametrization and use it as a guiding principle in
our case.

The physical relativistic energies and momenta are
linked by the mass-shell condition

E2 
 p2 � m2: (10)

The rapidity parametrization can be thought of as a uni-
formization of the above curve (roughly as a universal
covering space1)—namely, a mapping by single-valued
functions from the rapidity plane of complex �

E � m cosh�; p � m sinh�: (11)

The particle-antiparticle interchange �E;p� ! �
E;
p�
1Note, however, that the universal cover here is the sphere and
the rapidity parametrization can be considered as a mapping onto
that sphere from the plane (albeit with an essential singularity at
infinity).
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then becomes a translation �! �� i� which is no longer
an involution, a fact that will be important for us later. We
propose to implement the crossing conditions (9) for the
AdS5 � S5 worldsheet S matrix on the appropriate univer-
sal covering space which would play the role of the space
of generalized rapidities, and by its very definition would
avoid the appearance of cuts. We will construct the uni-
versal covering space in this context in Sec. Vand write the
resulting crossing equations for the scalar factor in Sec. VI.

III. THE su�2j2� S MATRIX

In [26] the S matrix has been considered mainly with
explicit (centrally extended) su�2j2� symmetry. This was at
the cost of introducing explicit length-changing operators
which have nontrivial braiding (commutation) relations
with the excitations. A consequence of that was the fact
that these braiding factors had to be incorporated when
verifying the Yang-Baxter equation. This nonstandard
modification of the Yang-Baxter equation would make
the Hopf-algebraic interpretation advocated in the present
paper quite problematic. However, as pointed out in
Appendix B of [26], one can formulate the scattering
matrix with only a manifest su�1j2� symmetry, but with
the length-changing operators eliminated. Then the Yang-
Baxter equation is just the ordinary Yang-Baxter equation
without any braiding factors. For these reasons we will
adopt here the su�1j2� symmetric formulation. For com-
pleteness, we will now recapitulate in some detail the
derivation of the su�2j2� symmetric S matrix in this for-
mulation as we will use some of the explicit constructions
presented here in the derivation of the crossing relations.

A word of caution is necessary here concerning the
identification of the su�2j2� � su�2j2� S matrix of [26]
with the Smatrix of the worldsheet AdS5 � S

5 superstring.
In the latter paper the S matrix was formulated from the
spin-chain point of view, but in fact all arguments could be
recast as implementing the symmetries in a
Zamolodchikov-Faddeev algebra for the worldsheet theory
extended by the length-changing operators. One cannot be
completely certain that this is the only way of implement-
ing these symmetries but the high degree of uniqueness of
the resulting S matrix makes it quite probable that this is
indeed so. In this paper we will therefore adopt this hy-
pothesis for the S matrix of the worldsheet theory.

We will denote, as in [26], the basis states as j�i � j�1i,
j�i � j�2Z�i and the fermionic j 1;2i. The operators
which will form the su�1j2� subalgebra have the bosonic
index restricted to 1. For completeness let us quote the
action of the generators of su�1j2� on this basis states. The
bosonic rotation generators are canonical:

R � 1
2j�ih�j 


1
2j�ih�j; (12)

L �
� � �	�j 

�ih 	j 
 1
2�

�
�j 

	ih 	j: (13)

The fermionic supercharges act on the basis states as
-3
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follows:

Q 1 � aj 1ih�j � bj�ih 2j;

Q2 � aj 2ih�j 
 bj�ih 1j;
(14)

S 1 � cj 2ih�j � dj�ih 1j;

S2 � 
cj 
1ih�j � dj�ih 2j:

(15)

The (complex) parameters a, b, c, d parametrize the al-
lowed representations and encode the energy and momenta
of the states. They are not completely unconstrained. The
commutation relation

fQ�;S�g � L�
� � �

�
�R
 ���H; (16)

leads to the relation

ad
 bc � 1; (17)

while the central charge H is fixed to be

H � �12� bc� � id: (18)

From the point of view of the full psu�2; 2j4� symmetry of
the AdS5 � S5 superstring, H is related to the anomalous
dimension � through

H � 1
2��
 J�: (19)

Moreover, a can be absorbed into relative normalization of
the fermionic and bosonic states. We will set it usually to 1.

A. The su�1j2� invariant S matrix

The su�1j2� invariant S matrix acts in the tensor product
of two representations as

S:V1 � V2 ! V2 � V1: (20)

It will turn out to be more convenient to consider the R
matrix acting as

R:V1 � V2 ! V1 � V2; (21)

related to the S matrix through the graded permutation
operator P:

S � PR: (22)

From su�1j2� invariance the R matrix is then a linear
combination of projectors onto the three irreducible
su�1j2� representations appearing in the tensor product
V1 � V2:

R � S1 � proj1 � S2 � proj2 � S3 � proj3: (23)

For our purposes we will need an explicit construction of
these projectors. To this end we may first construct the
su�1j2� invariant Casimir operator in V1 � V2:

C 12 �
1
2�Q

�S� 
S�Q�� � �R�H�2 � 1
2L

�
�L�

�: (24)

This operator has three distinct eigenvalues in V1 � V2
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corresponding to the three irreducible representations.
These are

�1 � �2� b1c1 � b2c2�
2 
 �b1c1 � b2c2� 
 2; (25)

�2 � �1� b1c1 � b2c2�
2 
 1; (26)

�3 � �b1c1 � b2c2��1� b1c1 � b2c2�: (27)

The projectors can then be constructed explicitly as e.g.

proj 1 �
�C12 
 �2��C12 
 �3�

��1 
 �2���1 
 �3�
(28)

and similar formulas for proj2 and proj3.

B. Implementation of the su�2j2� symmetry

It turns out [26] that it is necessary to extend su�2j2� by
additional central charges which, however, act in such a
way that they vanish on states with vanishing total mo-
mentum i.e. exactly the states that satisfy ‘‘level matching’’
for the closed string (or cyclic traces on the gauge-theory/
spin-chain side). The two conditions which arise link the a,
b, c, d parameters with the physical momentum p:

ab � ��e
ip 
 1�; cd � ��eip 
 1�; (29)

where � and � are constants common for all excitations.
Let us note that the above two equations lead to an addi-
tional constraint linking a, b, c, d. Namely, calculating eip

from one of these equations and inserting into the other one
leads to a quartic constraint

abcd� �ab� �cd � 0: (30)

The coupling constant is linked to � and � through �� �
g2=2. This condition restricts further the allowed parame-
ters labeling the explicit su�1j2� representations.

Let us also quote a convenient parametrization of a, b, c,
d in terms of the x
 parameters [26] (with a � 1):

a � 1; b � 
�
�

1

x


x�

�
; c �

i�
x

;

d � 
i�x� 
 x
�;

(31)

where the parameters x
 satisfy

x� �
��
x�

 x
 


��
x

� i: (32)

The inverse mapping is given by

x
 �
i�
c
; x� �

�x


�� b
: (33)

In order to completely determine the scalar coefficients
Si in (23) it is enough to assume symmetry under one of the
other su�2j2� supercharges (see [26]). In the explicit
su�1j2� setup these supercharges add the length-changing
operators Z or Z� to all states in the multiplet. Therefore
invoking these symmetries will necessarily involve braid-
-4
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ing factors. Explicitly the S matrix has to satisfy

�B1
~Q2 � id� �
1�F � ~Q1� � S
 S � �B2

~Q1

� id� �
1�F � ~Q2� � 0; (34)

where Bi are braiding factors coming from the commuta-
tion of length-changing operators. It turns out that the
above equation for just one of the supercharges

~Q i � aij 
1ih�j 
 bij�ih 

2j (35)

fixes uniquely both the braiding factors Bi and the Smatrix
coefficients Si up to a common scalar factor. In terms of the
a, b, c, d the expressions are quite lengthy but become
rather simple in terms of x
. We recover thus the result of
Appendix B of [26]:

S1 �
x�2 
 x



1

x
2 
 x
�
1

; (36)

S2 � 1; (37)

S3 �
x
2
x�2

x�1
x
1

x�2 
 x


1

x
2 
 x
�
1

; (38)

Bi �
x
i
x�i
; (39)

where S2 � 1 was chosen as in [26] to normalize the S
matrix to the gauge-theory asymptotic S matrix.

C. The full su�2j2� � su�2j2� S matrix

The full su�2j2� � su�2j2� S matrix is uniquely fixed by
imposing su�2j2� symmetry in each factor. The two alge-
bras are linked by sharing the same H operator. Therefore,
one is led to use the same parameters x
 (or a, b, c, d) for
both factors. One thus has essentially

S�p1; p2� � S0�p1; p2� � �Ŝsu�2j2��p1; p2�

� Ŝsu�2j2��p1; p2�	: (40)

However, care has to be taken to implement correctly all
anticommutation relations which necessitates the introduc-
tion of various factors of �
1�F—therefore, the tensor
product notation used above has to be understood some-
what symbolically. Let us note that one may also use a
different explicit algebra for one of the su�2j2� factors
which would also eliminate length-changing processes
i.e. su�2j1� instead of su�1j2�. We checked that this does
not modify the crossing properties derived in the following
section apart from a trivial ‘‘braiding factor‘‘ so we will not
consider this possibility further.

IV. THE ANTIPODE AND CROSSING PROPERTIES

In this section we will implement the formulation of the
crossing property of the R matrix using the Hopf-algebraic
086006
conditions

�S � id�R � R
1; �id � S
1�R � R
1; (41)

where S is the antipode. It is an antihomomorphism of the
Hopf (super) algebra i.e.

S �AB� � �
1�d�A�d�B�S�B�S�A�: (42)

The above equations descend to equations in specific rep-
resentations V1 � V2 through the introduction of a charge
conjugation matrix C:

��S�A�� � C
1 ���A�stC; (43)

where �� is the representation for the antiparticles which
can be distinct from �, and st stands for the supertranspose
defined as

Mst
ij � �
1�d�i�d�j��d�j�Mji: (44)

In order to apply the above framework to the case of the
su�2j2� (and consequently the full su�2j2� � su�2j2�) S
matrix we encounter some difficulties. First we do not
have a complete description of the Hopf algebra of (non-
local) symmetries of the S matrix. There are strong indi-
cations that it is not in fact a Yangian. However, we will
assume that the explicit su�1j2� algebra is part of the full
Hopf algebra, and implementing (43) for A 2 su�1j2� will
determine C and partially the representation ��. Then we
will find that in order for (41) to have any chance of having
a solution will uniquely determine the remaining freedom
in �� and give equations for the scalar factor S0.

For algebra elements belonging to a Lie superalgebra the
antipode acts very simply as S�A� � 
A. Then the
Eq. (43) takes the form

C � ��A� � ���A�stC � 0: (45)

Let us assume that the representation � is defined through
the parameters a1, b1, c1, and d1. Inserting the generators
of su�1j2� into (45), we obtain one constraint on the
representation ��

�c � 

1� b1c1

�b
: (46)

The charge conjugation matrix C is then seen to act as
follows on the basis states

C j�i �
a1b1

�a �b
j�i; Cj�i � j�i; (47)

C j 1i � 

b1

�a
j 2i; Cj 2i �

b1

�a
j 1i; (48)

where an overall factor is arbitrary but in any case it
cancels out from all subsequent equations. The Eq. (45)
does not lead to any constraints on �b (as �a is again just an
arbitrary normalization). We believe that if we would know
the full Hopf algebra and therefore the action of the anti-
pode on the nonlocal generators, we could also determine �b
-5
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directly from (43). We will determine it, however, using
other reasoning.

Let us consider the first equation in (41) rewritten using
(43) and denoting the Rmatrix with the proper scalar factor
by Rfinal:

�C
1 � id�Rfinal��1; 2�
st1�C � id�Rfinal�1; 2� � id; (49)

where the superscript st1 denotes the supertranspose in the
first entry of Rfinal��1; 2� defined explicitly as

�Rst1�
b1b2
a1a2
� �
1�d�a1�d�b1��d�a1�Ra1b2

b1a2
: (50)

Typically, given a solution of the Yang-Baxter equation
R�1; 2� which is invariant under all relevant symmetries
fixes Rfinal�1; 2� up to scalar multiplication by a function
S0�1; 2�:

Rfinal�1; 2� � S0�1; 2�R�1; 2�: (51)

In our case R�1; 2� is the solution (23). Inserting (51) into
(49) we find that in order for the S matrix to be crossing
symmetric the expression

�C
1 � id�R��1; 2�st1�C � id�R�1; 2� (52)

has to be a multiple of the identity. This is a very nontrivial
equation which a priori does not need to hold at all.

In order to analyze it in detail we first determine how do
the individual representations transform under crossing:

�C
1 � id�proji��1; 2�
st1�C � id� � Mikprojk�1; 2�: (53)

It turns out that the matrix Mik is quite nontrivial and does
not have any vanishing entries (see the explicit formulas in
Appendix B). Now the requirement that (52) equals2

1=f�1; 2� � id is equivalent to the system of three scalar
equations:

Si��1; 2�Mi1S1�1; 2� � 1=f�1; 2�; (54)

Si��1; 2�Mi2S2�1; 2� � 1=f�1; 2�; (55)

Si��1; 2�Mi3S3�1; 2� � 1=f�1; 2�: (56)

Equating the left-hand sides of the first two equations gives
two solutions for �b. Equating subsequently the left-hand
side of the third equation picks a unique choice for �b:

�b �
a2b1b2�a1c2�1� b2c2� 
 a2c1�1� b1c1�

�ac2�a1b1 
 a2b2��1� b2c2�
: (57)

Now this expression should be a function only of a1, b1, c1

and should not depend on the second particle. Quite re-
markably, one can show using (30) that the dependence on
the second particle cancels out and �b becomes
2We write the scalar function in this form for later
convenience.
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�b �

�a1b1

�a��� a1b1�
; (58)

which fixes uniquely (up to a trivial rescaling of �a which
we will set to 1) the representation ��. We believe that the
fact that such a solution depending only on a1, b1, c1 exists
at all is a very strong indication that crossing symmetry
should hold for the AdS5 � S5 worldsheet theory.

A. The crossing transformation

Before we present the result for the scalar factor f�1; 2�,
let us examine more closely the interpretation of the
particle-antiparticle transformation (46) and (58).
Expressing the transformation of the x
 induced by these
formulas we get the very simple result

x� !
��
x�

; x
 !
��
x


: (59)

Using eip � x�=x
 we see that the momentum changes
sign. The same also holds for the energy. This is reassuring
since the analogous transformation for a relativistic theory
�! �� i� also reverses the signs of both the momentum
and energy. Let us note, however, that we did not assume
the form of transformation (59) but obtained it purely
algebraically.

We may now obtain the function f�1; 2� from any of the
Eqs. (54)–(56). Again the expression in terms of the ai, bi,
and ci is quite complicated but it simplifies considerably
when expressed in terms of the x
i variables:

f�1; 2� �
���x�1

 x
2 ��x

�
1 
 x

�
2 �

���x
1

 x
2 ��x



1 
 x

�
2 �
: (60)

Let us first note that the above function is not a constant, so
a nontrivial scalar factor is needed in order to form a
crossing symmetric S matrix. If we would be interested
only in a su�2j2� symmetric S matrix we would thus be led
to the equation

S0��1; 2�S0�1; 2� � f�1; 2�: (61)

On the other hand, if we consider the case of our main
interest i.e. su�2j2� � su�2j2� symmetry the relevant equa-
tion would be

S0��1; 2�S0�1; 2� � f�1; 2�2: (62)

We have verified the above by explicitly constructing the
su�2j2� � su�2j2� symmetric S matrix taking into account
various �
1�F factors and also the various signs appearing
in the supertranspose. We found that the relevant ‘‘cross-
ing’’ function is indeed just the square of f�1; 2�.

The above Eq. (62) has to be supplemented by the
unitarity equation

S0�1; 2�S0�2; 1� � 1 (63)

and an analogous crossing relation for the second particle
-6
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(i.e. 2! �2) which is obtained using

�id � C
1�Rfinal�1; �2�st2�id � C�Rfinal�1; 2� � id; (64)

where the superscript st2 is defined as

�Rst2�
b1b2
a1a2
� �
1�d�a2�d�b2��d�b2�Rb1a2

a1b2
: (65)

The result is

S0�1; �2�S0�1; 2� � f�1; 2�2: (66)

Let us note one slightly troubling property of (62). The
right-hand side is not symmetric under the interchange
(59), while the left-hand side apparently is symmetric.
This would lead to an apparent contradiction. In order to
avoid that conclusion we have to keep in mind that x
 are
not independent variables but are linked through the con-
straint (32). So such an expression as (60) has cuts. As
advocated in Sec. II, in order to deal with meromorphic
functions we would have to pass to the universal covering
space of (32) or Eqs. (17) and (30) and only there one
would have to consider the Eqs. (62). On this covering
space the transformation 1! �1 would no longer neces-
sarily be an involution.

Such behavior in fact holds for the conventional case of
the rapidity parametrization in relativistic QFT. There the
1! �1 transformation corresponds to �! �� i� which
does not square to the identity [while the original trans-
formation �E; p� ! �
E;
p� on the curve E2 
 p2 � m2

is an involution]. Also, for such generic Hopf algebras
involving nonlocal symmetry charges like Yangians, the
square of the antipode is not equal to the identity S2 � id.
Therefore, we expect the universal cover to be the natural
algebraic scene for considering the S matrices. Of course
we have to resort to such algebraic arguments since we lack
a deeper physical understanding of the structure of the
worldsheet theory.

In the next section we will explicitly construct the
universal covering space of the parameter space given by
(17) and (30), and in Sec. VI we will write the crossing and
unitarity equations directly on that generalized ‘‘rapidity
plane.’’
3A similar analysis directly in terms of the x� and x


parameters will be performed in Appendix A.
4An alternate but essentially equivalent parametrization is

derived in Appendix A.
V. THE GENERALIZED RAPIDITY PLANE

In this section we would like to introduce analogues of
the rapidity variable � in relativistic quantum field theory.
Let us recall that, as described in Sec. II, the rapidity
parameter space can be understood to be the universal
cover (with the caveat of an additional mapping from the
plane as mentioned above) of the �E; p� variables subject to
the constraint of the relativistic mass-shell condition E2 

p2 � m2. Intuitively this means that the rapidity variable �
allows to get rid of the cuts and to deal with purely
meromorphic functions.

The su�2j2� S matrix is expressed in terms of the com-
plex parameters a, b, c, d of the Q� and S� operators
086006
subject to two constraints3:

ad
 bc � 1; (67)

abcd� �ab� �cd � 0; (68)

where the first constraint is necessary for sl�1j2� symmetry,
while the second quartic constant follows from the struc-
ture of the central charges in order to have su�2j2� sym-
metry at zero total momentum. The a parameter can be
absorbed in the relative normalization of the states and so
we will set it to 1. Consequently, one can express d as d �
1� bc and the remaining nonlinear constraint is

�bc2 � c��b� �� � �b � 0: (69)

The above algebraic curve has degree 4, and so if it would
be nonsingular it would have genus g � �4
 1��
�4
 2�=2 � 3. It turns out, however, that it contains sin-
gularities: a double point and a cusp which brings down the
genus to 1. This means that it can be uniformized by
elliptic functions defined on the complex plane, which is
the universal cover of (69).

We will now find the explicit form of these mappings.
First let us express c as

c �

1� v

2b
; (70)

where v satisfies the equation

v2 � 1
 4
�b2

b� �
: (71)

Multiplying both sides by �2�b� ��2, and introducing
y � ��b� ��v, we obtain

y2 � 
4�3b3 � �1
 4����2b2 � 2��2b� �2�2:

(72)
Now a final coordinate transformation b � 
�x� �4��

1�=12�=� reduces this elliptic curve to the standard
Weierstrass form

y2 � 4x3 
 g2x
 g3; (73)
where

g2 �
1
12�1� 16��� 16�2�2�; (74)

g3 �
1

216�1� 8����
1
 16��� 8�2�2�: (75)

The resulting parametrization is y � P 0�z� and x � P �z�.
So finally

b�z� � 

1

�

�
P �z� �

4��
 1

12

�
; (76)

c�z� �
P 0�z� 
 �b�z� 
 ��

2�b�z��b�z� � ��
: (77)

Using formulas (33) we may obtain the functions4 x��z�
and x
�z�. Before we proceed let us describe in more detail
-7
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the elliptic curve (73). It depends explicitly on the gauge-
theory coupling-constant g2 � 2��. For nonzero (real)
coupling it is nonsingular; its discriminant is

� � g3
2 
 27g2

3 � �4�4�1� 16���: (78)
It has two half-periods !1 and !2 which, together with
!3 � 
!1 
!2 get mapped by the Weierstrass function
P �z� to the zeroes e1, e2, e3 of the polynomial

4x3 
 g2x
 g3 � 4�x
 e1��x
 e2��x
 e3�: (79)
Using the explicit forms of g2 and g3 we find that one of the
zeroes has the following simple form:

e1 �
1� 8��

12
: (80)

We will denote the corresponding half-period by !1 i.e.

P �!1� � e1: (81)

We also have another identity which will be useful later,

�e1 
 e2��e1 
 e3� � �2�2: (82)
A. Crossing transformations in the z plane

Now we have to see how the particle-antiparticle trans-
formation

x
 !
��
x


(83)

is represented on the generalized rapidity z plane. It turns
out that this transformation has a very simple representa-
tion similar to the transformation �! �� i� in the rela-
tivistic case.

Using the addition laws5 for P �z� and P 0�z�

P �z�!1� � e1 �
�e1 
 e2��e1 
 e3�

P �z� 
 e1
; (84)

and

P 0�z�!1� � 
�e1 
 e2��e1 
 e3�
P 0�z�

�P �z� 
 e1�
2 ; (85)

after straightforward but slightly tedious calculations we
obtain

b�z�!1� � �b�z�; c�z�!1� � �c�z�: (86)

Consequently we have that

x
�z�!1� �
��
x
�z�

: (87)

Therefore, the 1! �1 transformation on the universal cover
is represented by a translation by the half-period !1 de-
fined through (81):

z! z�!1: (88)

There is another natural transformation x� ! 
x
,
x
 ! 
x� which interchanges the sign of momentum
5See e.g. Sec. 20.33 of [36].
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while keeping the energy unchanged. This is represented
also very simply by z! 
z.

VI. CROSSING EQUATIONS FOR THE
su�2j2� � su�2j2� S MATRIX

We are now ready to write the final form of the func-
tional equations for the scalar factor of the su�2j2� �
su�2j2� invariant S matrix. We consider it to be defined
as a meromorphic function on two copies of the complex
plane which represent the ‘‘generalized rapidities’’ of the
two particles. It has to satisfy the unitarity equation

S0�z1; z2�S0�z2; z1� � 1 (89)

and crossing with respect to the first and second particle

S0�z1 �!1; z2�S0�z1; z2� � f�z1; z2�
2; (90)

S0�z1; z2 
!1�S0�z1; z2� � f�z1; z2�
2: (91)

In the above we used the fact that performing crossing with
respect to the second particle leads to the same scalar
function f�1; 2�. The transformation z2 ! z2 
!1 arises
from the Hopf-algebraic crossing equation for the second
particle [see (41)] which involves the inverse of the anti-
pode S
1. Let us note that in order for the two crossing
conditions (90) and (91) to be consistent with unitarity
(89), the function f�z1; z2� has to satisfy a nontrivial con-
sistency relation

f�z1 
!1; z2� �
1

f�z2; z1�
: (92)

We find that indeed (60) satisfies the above condition. We
believe that this is another argument for the relevance of
such a crossing condition, formulated on the universal
cover, to the AdS5 � S5 superstring worldsheet S matrix.
In fact if we would have chosen the translation z2 ! z2 �
!1 the resulting equation would be f�z1; z2� � 1=f�z2; z1�
which does not hold.

The natural question is now to determine a minimal
solution S0�z1; z2� and the corresponding form of CDD
factors. The equations are, however, quite complicated
and the standard iterative technique for solving the coupled
crossing and unitarity relations (see e.g. [35,37]) does not
work here. We postpone the study of this issue to a separate
publication [38].

VII. CONCLUSIONS

In this paper we have proposed how to implement cross-
ing relations for the su�2j2� � su�2j2� symmetric S matrix
relevant for the AdS5 � S

5 superstring worldsheet theory.
Once constructed, these relations provide functional equa-
tions for the overall scalar factor (the so-called ‘‘dressing
factor‘‘) of the S matrix.

Our proposal involves two basic steps. First, a Hopf-
algebraic reformulation of the relativistic crossing relation
-8
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allows us to address the problem in a purely algebraic
manner. The lack of knowledge of the full Hopf algebra
structure of the nonlocal symmetries allows us to deter-
mine only a part of the relations directly from properties of
the antipode; however, using the structure of the full S
matrix allowed us to fix uniquely the remaining ambiguity
in the crossing transformation. We found that the original S
matrix (normalized to the asymptotic gauge-theory result)
transforms nontrivially under crossing thus necessitating a
nonconstant scalar ‘‘dressing factor.’’

In a second step, in order to eliminate cuts and to deal
only with meromorphic functions, we proposed to intro-
duce the ‘‘generalized rapidity plane‘‘ which is a universal
covering space of the space of parameters appearing in the
S matrix. This space is constructed through a coupling-
constant dependent elliptic curve. On this space the cross-
ing transformation acts very simply as a translation by a
specific half-period.

Finally, we derive functional equations for the scalar
‘‘dressing factor‘‘ on the universal covering space. We
propose to investigate its solutions in a forthcoming paper
[38]. Apart from that, there are numerous interesting di-
rections for further study. It would be interesting to under-
stand more directly the geometric structure of the
parameter space and perhaps link it more directly to the
properties of the worldsheet theory. Another more mathe-
matical question would be to try to find the whole structure
of the Hopf algebra relevant in this case and, in particular,
to understand more intrinsically the mathematical origin of
the quartic constraint (30). Finally, it would be also very
interesting to make contact with near-BMN quantization of
the AdS5 � S

5 superstring (like the very recent work [39])
especially if formulated in an analogous explicit su�1j2�
picture.
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APPENDIX A: UNIFORMIZATION USING x


VARIABLES

It is interesting to derive directly the uniformization of
the parameters x
 satisfying the defining equations

x� �
��
x�

 x
 


��
x

� i: (A1)

In particular we should obtain the same elliptic curve as in
Sec. V. Equation (A1) can be rewritten as

x� 
 x
 �
ix�x


x�x
 
 ��
: (A2)
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Denoting w � 
x�x
 and x� � x
 � iy=�w� ��� we
may derive the equation linking y and w:

y2 
 w2 � 4w�w� ���2: (A3)

Performing a final substitution w � x
 �1� 8���=12 we
obtain finally the curve in Weierstrass form

y2 � 4x3 
 g2x
 g3; (A4)

which exactly coincides with (73). Putting all the above
together we obtain finally a parametrization for x
:

x��z� �
i
2

P 0�z� � w�z�
w�z� � ��

; (A5)

x
�z� �
i
2

P 0�z� 
 w�z�
w�z� � ��

; (A6)

where

w�z� � P �z� 

1� 8��

12
: (A7)

Let us note the amusing fact that if we compare the above
parametrization and the similar one derived in Sec. V, the
x
�z� functions coincide, while x��z� here corresponds to
��=x��z� there. In fact this can be implemented by a
linear transformation of the z variable6:

x
Sec: 5�z� � x
here

�
!1

2
�!2 
 z

�
; (A8)

showing that the construction presented here and the one in
Sec. V are essentially equivalent.

APPENDIX B: CROSSING PROPERTIES OF THE
ELEMENTARY PROJECTORS

In this appendix, for completeness we write the elements
of the matrixMij encoding the transformation properties of
the projectors proji under crossing [see Eq. (53)]:

M11 �
b1c1�1� b1c1�

�
1� b1c1 
 b2c2��b1c1 
 b2c2�
; (B1)

M12 � 

b1c1�1� b2c2�

�
1� b1c1 
 b2c2��b1c1 
 b2c2�
; (B2)

M13 �
b2c2�1� b2c2�

�
1� b1c1 
 b2c2��b1c1 
 b2c2�
; (B3)

M21 � 

2�1� b1c1��1� b2c2�

�
1� b1c1 
 b2c2��1� b1c1 
 b2c2�
; (B4)

M22 �
b1c1�1� b1c1� � b2c2�1� b2c2�

�
1� b1c1 
 b2c2��1� b1c1 
 b2c2�
; (B5)
-9
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M23 � 

2b1b2c1c2

�
1� b1c1 
 b2c2��1� b1c1 
 b2c2�
; (B6)

M31 �
b2c2�1� b2c2�

�b1c1 
 b2c2��1� b1c1 
 b2c2�
; (B7)
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M32 � 

b2c2�1� b1c1�

�b1c1 
 b2c2��1� b1c1 
 b2c2�
; (B8)

M33 �
b1c1�1� b1c1�

�b1c1 
 b2c2��1� b1c1 
 b2c2�
: (B9)
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