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Local bulk operators in AdS/CFT correspondence: A boundary view of horizons and locality
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We develop the representation of local bulk fields in anti-de Sitter (AdS) space by nonlocal operators on
the boundary, working in the semiclassical limit and using AdS2 as our main example. In global
coordinates we show that the boundary operator has support only at points which are spacelike separated
from the bulk point. We construct boundary operators that represent local bulk operators inserted behind
the horizon of the Poincaré patch and inside the Rindler horizon of a two-dimensional black hole. We
show that these operators respect bulk locality and comment on the generalization of our construction to
higher dimensional AdS black holes.
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I. INTRODUCTION

The anti-de Sitter/conformal field theory (AdS/CFT)
correspondence provides a nonperturbative definition of
string theory in asymptotically AdS space [1,2]. In princi-
ple, all bulk observables are encoded in correlation func-
tions of local operators in the CFT. In practice, however,
many of the quantum gravity questions we would like to
address are not simply related to local boundary correla-
tors. These questions include the following: how does a
quasilocal bulk spacetime emerge from the CFT? How
does the region behind a horizon get encoded in the
CFT? What is the CFT description (or perhaps resolution)
of a black hole singularity?

In this paper we develop a set of tools for recovering
local bulk physics from the CFT. We use the Lorentzian
AdS/CFT correspondence developed in [3–5]. The basic
idea is to express local operators in the bulk in terms of
nonlocal operators on the boundary. We work in the lead-
ing semiclassical approximation—meaning both large N
and large ’t Hooft coupling—and consider free scalar
fields in AdS space. The fields are taken to have normal-
izable falloff near the boundary of AdS space,

��z; x� � z��0�x�:

Here z is a radial coordinate which vanishes at the bound-
ary. We will show that the bulk supergravity field can be
expressed in terms of its behavior near the boundary via

��z; x� �
Z
dx0K�x0jz; x��0�x

0�:

We will refer to the kernel K�x0jz; x� as a smearing func-
tion. General AdS/CFT considerations imply that the
boundary behavior of the field corresponds to an operator
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of conformal dimension � in the CFT,

�0�x� $ O�x�:

This implies a correspondence between local fields in the
bulk and nonlocal operators in the CFT.

��z; x� $
Z
dx0K�x0jz; x�O�x0�:

Bulk-to-bulk correlation functions, for example, are then
equal to correlation functions of the corresponding non-
local operators in the dual CFT,

h��z1; x1���z2; x2�i �
Z
dx01dx

0
2K�x

0
1jz1; x1�K�x

0
2jz2; x2�

� hO�x01�O�x
0
2�i:

In this paper we construct smearing functions and show
how certain aspects of bulk physics are encoded by these
nonlocal operators. We will use AdS2 as our main example,
although many of the results presented here generalize to
higher dimensions [6]. Smearing functions were discussed
in [4,7], and smearing functions in AdS5, as well as in some
nonconformal variants, have been computed by Bena [8].
An algebraic formulation of the correspondence between
local bulk fields and nonlocal boundary observables was
developed in [9]. Other studies of bulk locality and cau-
sality include [10].

To avoid any possible confusion, we note that Witten
[11] (see also [12]) introduced a bulk-to-boundary propa-
gator whose Lorentzian continuation can be used to repre-
sent bulk fields having a prescribed non-normalizable
behavior near the boundary [3]. Such bulk fields are dual
to sources that deform the CFT action. Our approach is
quite different: we work directly with the undeformed CFT,
and introduce nonlocal operators that are dual to normal-
izable fluctuations in the bulk of AdS [13].

An outline of this paper is as follows. In Sec. II we
construct smearing functions in AdS2 in global coordi-
nates. In Sec. III we construct smearing functions in
-1 © 2006 The American Physical Society
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Poincaré coordinates and show how the Poincaré horizon
appears in the CFT. In Sec. IV we discuss the way in which
bulk-to-bulk correlators are recovered from the CFT and
show how coincident singularities arise. In Sec. V we work
in Rindler coordinates and discuss the appearance of black
hole horizons. In Sec. VI we extend the picture to general
AdS black holes. We conclude in Sec. VII.
II. GLOBAL SMEARING FUNCTIONS

A. AdS2 generalities

We begin by reviewing a few standard results; for more
details see [3] or Appendix A. In global coordinates the
AdS2 metric is

ds2 �
R2

cos2�
��d�2 � d�2� (1)

where R is the radius of curvature and �1< �<1,
��=2<�<�=2. It is convenient to introduce a distance
function

���; �j�0; �0� �
cos��� �0� � sin� sin�0

cos� cos�0
(2)

which is invariant under AdS isometries. Points in the unit
cell��< �� �0 <� that have�>�1 can be connected
by a geodesic; for such points

��

8><
>:

cos�s=R� timelike �s�geodesic proper time�;
1 null;
cosh�d=R� spacelike �d�geodesic proper distance�:

Points in the unit cell with �<�1 are timelike separated
but are not connected by a geodesic. A free scalar field of
mass m can be expanded in a complete set of normalizable
modes [16],

���; �� �
X1
n�0

ane
�i!n�cos��C�

n �sin�� � H:c: (3)

where !n � n��, � � 1
2�

��������������������
1
4�m

2R2
q

is the conformal

dimension of the corresponding operator, and C�
n �x� is a

Gegenbauer polynomial. We have not bothered normaliz-
ing the modes.

The field vanishes at the boundary of AdS space. In
global coordinates we define the right boundary value of
the field by

�global;R
0 ��� � lim

�!�=2

���; ��

cos��
: (4)

Similarly the left boundary value is

�global;L
0 ��� � lim

�!��=2

���; ��

cos��
: (5)

Some special simplifications occur when � is a positive
integer. First of all, in this case the field is single valued on
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the AdS2 hyperboloid (meaning that we can identify � �
�� 2�). Also we define the antipodal map on AdS2,

A: ��; ��� ��� �;���: (6)

Note that ��xjAx0� � ���xjx0�. When � is a positive
integer we have

��Ax� � ��1����x�

in which case the boundary values are related by

�global;L
0 ��� � ��1���global;R

0 ��� ��: (7)
B. Green’s function approach

In this subsection we construct smearing functions for
AdS2 in global coordinates starting from a suitable Green’s
function.

The Green’s function should satisfy

���m2�G�xjx0� �
1�������
�g
p �2�x� x0�; (8)

where �2�x� x0� is defined on the universal cover of AdS
space, ��=2 	 � < �=2, �1< �<1. We want a
smearing function that is nonzero only at spacelike sepa-
ration, so we make the ansatz

G�xjx0� � f���xjx0������� �0�2 � ��� �0�2�:

Here � is the AdS-invariant distance defined in (2).
Because of the step function, G is nonzero only at space-
like separation. By direct substitution one can check that
(8) is satisfied provided that f��� satisfies the homogene-
ous AdS-invariant wave equation

��2 � 1�f00��� � 2�f0��� � ���� 1�f��� � 0 (9)

with the boundary condition f�1� � 1=4 [18]. The solution

G�xjx0� � 1
4P��1�������� �0�2 � ��� �0�2�

is given by a Legendre function. It is worth emphasizing
some curious properties of this Green’s function. First of
all, by construction, it is nonzero only at spacelike separa-
tion. It is finite (but discontinuous) on the light cone, when
G! 1=4 as the light cone is approached from a spacelike
direction. However it is non-normalizable near the bound-
ary of AdS space, with

G�xjx0� �
��2�� 1�

2��1����2
���1

at large spacelike separation. In AdS2 we can simplify the
discussion by working with a Green’s function that is
nonzero only in the right-hand part of the light cone [19].
With similar arguments it is easy to see that

G�xjx0� � 1
2P��1������� �

0����� �0 � j�� �0j� (10)

is a suitable Green’s function.
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FIG. 1. Global smearing function for a � � 3 bulk operator
located at � � 0.
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Having constructed a Green’s function that is nonzero
only in the right light cone, we can make use of the Green’s
identity

��x0� �
Z 1
�1

d�
�������
�g
p


���; ��@�G��; �jx0�

�G��; �jx0�@����; ���j���0
:

We are interested in sending the regulator �0 ! �=2. In
this limit only the leading behavior of both the field and the
Green’s function contributes, and we have

��x0� �
Z 1
�1

d�K��jx0��global;R
0 ��� (11)

where the smearing function can be variously expressed as

K��j�0; �0� � �2�� 1� lim
�!�=2

cos��1�G��; �j�0; �0� (12)

�
2��1����1=2�����

�
p

����
lim

�!�=2
��cos����1�����0 �j���0j�

(13)

�
2��1���� 1=2�����

�
p

����

�
cos��� �0� � sin�0

cos�0

�
��1

� �
�
�
2
� �0 � j�� �0j

�
: (14)

These smearing functions have several important proper-
ties.
(i) T
he smearing function has compact support on the
boundary of AdS space: K is nonzero on the bound-
ary only within the right light cone of the point
��0; �0�. Of course, we could have chosen to con-
struct a smearing function that was nonzero only in
the left light cone. Note that a local bulk operator
near the left boundary could be described with a
highly localized smearing function on the left
boundary, or with a delocalized smearing function
on the right boundary.
(ii) T
he whole setup is AdS covariant, since �global;R
0

transforms as a primary field with dimension �
under conformal transformations. This is clear
when K is written in the form (13): the factor
cos��1� appearing in that expression cancels the
conformal weight of the field together with the
conformal weight of the measure

R
d�.
(iii) A
s can be seen explicitly in (14), the smearing
function has a finite limit as the regulator is re-
moved, �0 ! �=2.
Note that these properties all follow from the fact that we
began with a Green’s function that is non-normalizable
near the boundary and nonzero only at spacelike separa-
tion. We have plotted the � � 3 smearing function in
Fig. 1.
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As a particularly simple example, consider a massless
field in AdS2. Such a field has � � 1 and the general
expression (14) reduces to

K �
1

2
�
�
�
2
� �0 � j�� �0j

�
:

That is, a massless bulk field can be expressed in terms of
its boundary value by

���0; �0� �
1

2

Z �0���=2��0�

�0���=2��0�
d��global;R

0 ���:

As a check on our work, it is easy to see that this bulk field
indeed satisfies the massless wave equation: it is annihi-
lated by �@2

�0 � @
2
�0 �. One can also verify that it has the

correct behavior near the boundary. As �0 ! �=2 we can
bring the boundary field out of the integral to obtain

���0; �0� � 1
2�

global;R
0 ��0� � ��� 2�0�:

This shows that the boundary conditions (4) are satisfied
when � � 1.

It is not much harder to check the boundary conditions
for general �. As �0 ! �=2 we have

���0;�0���global;R
0 ��0�

Z
d�K��j�0;�0�

��global;R
0 ��0�

����1=2�����
�
p

����cos��1�0

�
Z �0���=2��0�

�0���=2��0�
d����=2��0�2�����0�2���1

��global;R
0 ��0���=2��0��

as required by (4).

C. Mode sum approach

In this subsection we take a different point of view and
construct global smearing functions from a mode sum. We
begin with integer conformal dimension then generalize.

Let us first suppose that � is a positive integer. Then,
given an on-shell bulk field with mode expansion (3), we
can reconstruct the bulk field from its right boundary value
using
-3
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an �
1

C�
n �1�

I d�
2�

ei!n��global;R
0 ���: (15)

The integral is over any 2� interval on the boundary.
Plugging this back into the bulk mode expansion, we can
write (as an operator identity)

���0; �0� �
I
d�K��j�0; �0��global;R

0 ��� (16)

where the smearing function

K��j�0; �0� �
1

2�
ei�����

0�cos��0
X1
n�0

ein����
0�i�� C

�
n �sin�0�

C�
n �1�

� c:c: (17)

We have inserted an i� to keep the mode sum convergent.
Note that K is periodic in �, with the same periodicity as
the underlying modes, unlike the Green’s function (10). To
make contact with the results of the previous section we
will eventually choose the range of integration in (16) to be
��< �� �0 <�.

It is important to note that the smearing functions are not
unique. For example, we could equally well have con-
structed a smearing function on the left boundary. More
importantly, from (3) note that �global;R

0 does not have
Fourier components with frequencies in the range ���
1; . . . ;�� 1, so we are free to drop any Fourier compo-
nents of K with frequencies in this range.

To evaluate K we use the integral representation [20]

C�
n �x�

C�
n �1�

�
���� 1=2�����

�
p

����

�
Z �

0
d�sin2��1��x�

��������������
x2 � 1

p
cos��n:

Performing the sum on n gives

K��j0; �0� �
1

2�
ei��cos��0

���� 1=2�����
�
p

����

�
Z �

0
d�

sin2��1�

1� ei���i���sin�0 � i cos�0 cos��

� c:c:

The integral is a polynomial in ei� plus a logarithm [20].
The polynomial only involves Fourier modes which do not
appear in �global

0 , so we may drop it leaving

K��j0; �0� ’
2��1���� 1=2�����

�
p

����

�
cos�� sin�0

cos�0

�
��1 i

2�

� log
�

1� iei����
0�i��

1� ie�i����
0�i��

1� ie�i����
0�i��

1� iei����
0�i��

�
:

Here ’ means up to terms whose time dependence is such
that they vanish when integrated against �global

0 . At this
point it helps to note that f�x� � �i log
�1�
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ei�x�i���=�1� e�i�x�i���� is a sawtooth function, f�x� � x
for ��< x < � and f�x� 2�� � f�x�. Again, some
Fourier modes do not contribute—only the discontinuities
of the sawtooth function matter—and one is left with

K��j�0; �0� ’
2��1���� 1=2�����

�
p

����

�
cos��� �0� � sin�0

cos�0

�
��1

� �
�
cos��� �0� � cos

�
�
2
� �0

��
: (18)

Choosing the range of integration in (16) to be ��< ��
�0 <�, the step function in (18) reduces to the step func-
tion in (14), so this expression reproduces the result we
obtained in the previous subsection starting from a Green’s
function [21].

What if � is not an integer? Recall that we are working
on the universal cover of AdS space where �1< �<1.
In this case the mode functions are no longer periodic. This
means (15) is no longer valid, since for general � the
positive- and negative-frequency modes are not orthogonal
on the interval ��< �< �. The trick is to first decom-
pose the field into positive- and negative-frequency pieces,
���; �� � ����; �� �����; �� where

����; �� �
X1
n�0

ane
�i!n�cos��C�

n �sin�� (19)

and �� � ��. We can recover �� from their boundary
values, integrating over only the range �� 	 �� �0 <�,
via ����0; �0� �

H
d�K���j�0; �0��

global;R
0� ��� where

K���j�0; �0� �
1

2�
cos��0

X1
n�0

e�i!n����0�i��
C�
n �sin�0�

C�
n �1�

:

(20)

These positive- and negative-frequency smearing functions
are highly nonunique, since, for example, we can add
Fourier modes to K� that �ei���1�����0�; ei���2�����0�; . . . .
By making use of this freedom we can putK� into the form
of an image sum,

K� ’
X1

k��1

e�i2�k�K��j�0 � 2�k; �0� (21)

where for any �

K��j�0; �0� ’
2��1���� 1=2�����

�
p

����

�
cos��� �0� � sin�0

cos�0

�
��1

� �
�
�
2
� �0 � j�� �0j

�
(22)

is defined over the range �1< �� �0 <1. One can
verify (21) by doing an inverse Fourier transform using a
complete set of skew-periodic modes e�i�n�������0�, n 2
Z, and showing that the coefficients of the n � 0 modes
appear in (20). On the restricted interval��< �� �0 <�
only the k � 0 term contributes, so the smearing functions
all agree and
-4
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� �
Z �0��

�0��
d��K��

global;R
0� � K��

global;R
0� �

�
Z �0��

�0��
d�K�global;R

0

reproduces our previous Green’s function expression.
III. POINCARÉ COORDINATES

A. Smearing functions

It is worth asking how these nonlocal operators look in
different coordinate systems. For example, one can intro-
duce Poincaré coordinates

Z �
R cos�

cos�� sin�
; T �

R sin�
cos�� sin�

;

0< Z<1; �1< T <1

(23)

in which

ds2 �
R2

Z2 ��dT
2 � dZ2�:

These coordinates only cover an interval ��< � < � of
global time on the right boundary. The mode expansion
reads

��T; Z� �
Z 1

0
d!a!e�i!T

����
Z
p

J	�!Z� � c:c:

where 	 � �� 1
2 . The field vanishes as Z! 0. In

Poincaré coordinates it is convenient to define the bound-
ary value

�Poincare
0 �T� � lim

Z!0

��T; Z�

Z�
: (24)

Note that this differs from the definition (4) we used in
global coordinates.

It is straightforward to compute the smearing function in
Poincaré coordinates directly from a mode sum. Given an
on-shell bulk field we have

a! �
Z 1
�1

dTei!T
1

2�
����
Z
p

J	�!Z�
��T; Z�;

or taking the limit Z! 0,

a! �
��	� 1�

2��!=2�	

Z 1
�1

dTei!T�Poincare
0 �T�:

Plugging this back into the bulk mode expansion we can
write

��T0; Z0� �
Z 1
�1

dTK�TjT0; Z0��Poincare
0 �T�

where the Poincaré smearing function is
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K�TjT0; Z0� �
1

�
2	��	� 1�

�����
Z0
p Z 1

0
d!

1

!	 J	�!Z
0�

� cos!�T � T0�: (25)

The integral is well defined without an i� prescription. It
vanishes identically for jT � T0j> Z0, while for jT �
T0j< Z0 we have [20]

K �
���� 1=2�����

�
p

����
Z0��1F

�
1

2
; 1� �;

1

2
;
�T � T0�2

Z02

�
:

Thus, in general,

K �
���� 1=2�����

�
p

����

�
Z02 � �T � T0�2

Z0

�
��1

��Z0 � jT � T0j�;

(26)

where we used F�
;�; 
; x� � �1� x���. This expression
is valid for any positive �. Note that, unlike the global
mode sum (17), the Poincaré mode sum is nonzero only at
spacelike separation [22]. It is also AdS covariant since

K�TjT0; Z0� �
2��1���� 1=2�����

�
p

����
lim
Z!0
�Z��T; ZjT0; Z0����1

� ���� 1� (27)

where the AdS-invariant distance (2) expressed in Poincaré
coordinates is

��Z; TjZ0; T0� �
Z2 � Z02 � �T � T0�2

2ZZ0
: (28)

Upon changing variables from Poincaré time to global
time, this is equivalent to our previous result (13). To see
this, one merely has to note that near the boundary

Z��Poincare
0 � cos���global;R

0

while the change of integration measure is

dT
Z
�

d�
cos�

:

B. Going behind the Poincaré horizon

In the previous subsection we showed how local bulk
fields in the Poincaré patch are represented by smeared
operators on the boundary. But what if the bulk point is
outside the Poincaré patch? Can it still be represented as an
operator on the boundary of the Poincaré patch? The
answer turns out to be yes: we can still work in Poincaré
coordinates on the boundary, but we have to use a different
smearing function.

To obtain the correct smearing function, our strategy is
to start with the global smearing function, manipulate it so
that it is nonzero only on the boundary of the Poincaré
patch, and then convert to Poincaré coordinates. We first
assume that � is a positive integer. In this case �global;R

0 ���
is periodic in the global time coordinate � with period 2�,
-5
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FIG. 2 (color online). Smearing function for a bulk operator
with integer � located outside the Poincaré patch.
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so one can take the global smearing function (18) and
translate whatever part of it has left the Poincaré patch
by a multiple of 2� in order to get it back inside the
Poincaré patch. This is illustrated in Fig. 2.

This can be expressed quite simply in terms of the
invariant distance (2). Noting that � is 2� periodic in
global time, for a general point P (not necessarily inside
the Poincaré patch) we can express the smearing function
in a form that, upon changing to Poincaré coordinates,
looks identical to (27):

��P� �
Z 1
�1

dTK�TjP��Poincare
0 �T�;

K�TjP� �
2��1���� 1=2�����

�
p

����
lim
Z!0
�Z��T; ZjP����1

� ���� 1�: (29)

Note that the signal of a bulk operator approaching the
future (past) Poincaré horizon is that the smearing function
extends to Poincaré time T ! �1 (T ! �1).

What happens if � is not an integer? The trick is to note
that, although the field itself is not periodic in �, its
positive- and negative-frequency components (19) are pe-
riodic up to a phase:

����� 2�;�� � e�i2������; ��:

For a bulk point P with global coordinates ��0; �0� we set
�0 � �00 � 2�n with ��< �00 <� and n 2 Z and write

���0; �0� �
Z
d�Kglobal��j�

0
0; �

0��e�i2�n��global;R
0� ���

� ei2�n��global;R
0� ����: (30)

Converting to Poincaré coordinates this becomes

��P� �
Z 1
�1

dTKPoincare�TjP0��e
�i2�n��Poincare

0� �T�

� ei2�n��Poincare
0� �T��: (31)

Here KPoincare is given in (29) and P0 is the bulk point with
global coordinates ��00; �

0�. In deriving this we used the fact
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that the global and Poincaré vacua are identical [23,24].
This equivalence is discussed in more detail in
Appendix B.

When expressed in terms of �Poincare
0� and �Poincare

0� the
smearing function consists of one or two disconnected
blobs on the boundary [25]. However, expressing
�Poincare

0� in terms of �Poincare
0 is completely nonlocal. For

example, the positive-frequency part of the Poincaré
boundary field is

�Poincare
0� �T0� �

Z
dTP��TjT0��Poincare

0 �T�;

P��TjT0� �
Z 1

0

d!
2�

ei!�T�T
0�i�� �

i
2��T � T0 � i��

:

(32)

For a point outside the Poincaré patch the smearing func-
tion in terms of �Poincare

0 is nonzero everywhere. Just as for
integer �, the signal of a bulk operator approaching the
future (past) Poincaré horizon is that the smearing function
extends to Poincaré time T ! �1 (T ! �1).
IV. RECOVERING BULK CORRELATORS

In the previous section we defined a set of smearing
functions which enable us to reconstruct a normalizable
bulk field from its behavior near the boundary of AdS
space. We obtained these smearing functions by solving a
wave equation in AdS space, so our expressions are valid
for any state of the field provided we are in the limit of
semiclassical supergravity where backreaction of the field
on the geometry can be neglected.

Assuming the existence of a dual CFT, we can identify
local operators in the bulk supergravity with nonlocal
operators in the CFT,

���0; �0� $
Z
d�K��j�0; �0�O���:

This correspondence should hold for any state of the field
(equivalently, any state of the CFT) provided we are in the
limit of semiclassical supergravity where backreaction is
negligible; note that in this limit the smearing functions are
independent of the state. We can use the correspondence to
recover bulk supergravity correlation functions from the
CFT; for example,

Sh j���;�����0;�0�j iS�
Z
ds
Z
ds0K�sj�;��K�s0j�0;�0�C

�h jO�s�O�s0�j iC: (33)

Here j iS is any supergravity state and j iC is the corre-
sponding CFT state. To see this, note that our expression
for the bulk field in terms of the boundary field holds as an
operator identity at the level of supergravity. It enables us
to express a bulk supergravity correlator in terms of a
boundary supergravity correlator
-6
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Sh j���;�����0;�0�j iS�
Z
ds
Z
ds0K�sj�;��K�s0j�0;�0�S

�h j�0�s��0�s
0�j iS: (34)

The boundary supergravity correlator can be identified
with a correlator in the CFT,

Sh j�0�s��0�s0�j iS�
C
h jO�s�O�s0�j iC:

Combining these statements proves (33). One can also
establish (33) somewhat more directly, by representing
the CFT correlator as a sum over normalized positive-
frequency boundary modes fn�s�. For example, in the
ground state of the CFT,

Ch0jO�s�O�s0�j0iC �
X
n

fn�s�fn�s0�:

Plugging this into the right-hand side of (33) and perform-
ing the integrals over s and s0 generates the appropriate
bulk-to-bulk correlator, also in the form of a mode sum.

This gives a relationship between bulk and boundary
expectation values (Wightman functions). All other bulk
Green’s functions can be expressed in terms of the bulk
Wightman function; for example, the time-ordered Green’s
function is

iGF��; �j�0; �0� � ���� �0�h���; �����0; �0�i

� ���0 � ��h���0; �0����; ��i:

Note however that (34) would not allow us to express a
time-ordered Green’s function in the bulk in terms of a
time-ordered Green’s function on the boundary.

Although true by construction, at first sight (33) is a
rather surprising identity. For example, in the global AdS2

vacuum the bulk and boundary Wightman functions are
[24]

h���; �����0; �0�i �
����

2��1 ����
�
p

���� 1=2�
���

� F
�
�

2
;
�� 1

2
;
2�� 1

2
;

1

�2

�
;

hO�s�O�s0�i �
��1������

22��1 ����
�
p

���� 1
2�sin2��s�s

0

2 �
: (35)

When �<�1 (bulk points not connected by a geodesic)
both the left- and right-hand sides of (33) are unambiguous.
As a check on our work, we have verified numerically that
the two sides are equal. To continue into the regime �>
�1 one has to check that the i� prescriptions go through
correctly. The bulk Wightman function is defined by a �!
�� i� prescription, and, fortunately, by translation invari-
ance of K�sj�; �� this is equivalent to the correct s! s�
i� prescription for the boundary Wightman function.

Given (33) we are guaranteed that—in the strict semi-
classical limit—two nonlocal boundary operators will
commute whenever the bulk points are spacelike separated.
086003
Bena [8] checked explicitly that the commutator vanishes
from the boundary point of view.

Light-cone singularities in the bulk

Correlation functions of these nonlocal boundary opera-
tors diverge whenever the corresponding bulk points are
coincident or lightlike separated. In this section we explain
how these singularities arise from the boundary point of
view.

It may seem a little surprising that the correlators di-
verge at all, since in field theory one usually introduces
smeared operators to avoid singular correlators. To see
what is going on let us look at how these operators are
constructed. It is simplest to work in terms of a mode sum
in frequency space. From (17) or (25) one sees that the
smearing is done by multiplying each mode of the bound-
ary operator by a frequency dependent phase. These phases
act as a regulator which makes the correlator with most
other operators nonsingular. However, for a given smeared
operator one can find certain other smeared operators for
which the phases cancel. For two such operators the corre-
lator has a UV divergence.

To make this explicit, consider the correlator of two bulk
operators in the Poincaré patch. Working in frequency
space on the boundary the correlator is

h��T; Z���T0; Z0�i �
Z 1
�1

d!K�!jT; Z�K��!jT0; Z0�

� hO�!�O��!�i: (36)
The Poincaré smearing function in frequency space can be
read off from (25),

K�!jT; Z� � 2	��	� 1�

����
Z
p

j!j	
J	�j!jZ�e

�i!T

�
1

j!j	�1=2
cos�j!jZ� const:�e�i!T
at large j!j. For an operator of dimension � the boundary
correlator in frequency space behaves as hO�!�O��!�i �
j!j2	. For generic bulk points the integrand in (36) has
oscillating phases which regulate the behavior at large !.
But whenever �T; Z� and �T0; Z0� either coincide or are
lightlike separated the phases cancel and the integral di-
verges logarithmically in the UV.

It is important to note that, even in the center of AdS
space, the light-cone singularities of the bulk theory arise
from the UV behavior of the boundary theory. This means,
for example, that any attempt to put a UV cutoff on the
boundary theory will modify locality everywhere in the
bulk.
-7
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V. AdS2 BLACK HOLES

A. Smearing functions

One can also introduce Rindler coordinates on AdS2

r

R
�����
M
p �

cos�
cos�

; tanh
t
�����
M
p

R
�

sin�
sin�

;

R
�����
M
p

< r<1; �1< t <1;

ds2 � �

�
r2

R2 �M
�
dt2 �

�
r2

R2 �M
�
�1
dr2:

(37)

The metric looks like a black hole [26] but the ‘‘mass’’M is
just an arbitrary dimensionless parameter which enters
through the change of coordinates. These coordinates
only cover an interval ��=2< �< �=2 of global time
on the right boundary, but they can be extended in the usual
way to cover an identical interval on the left boundary.

What do smearing functions look like in Rindler coor-
dinates? This depends on whether the bulk point is inside
or outside the Rindler horizon. For a bulk point in the right
Rindler wedge there is no difficulty: we merely have to
transform the global smearing function (12) to Rindler
coordinates. This gives a Rindler smearing function which
is nonzero only at spacelike separation on the right bound-
ary. Likewise, for a bulk point in the left Rindler wedge we
can construct a smearing function that is nonzero only at
spacelike separation on the left boundary. But what if the
bulk point is inside the horizon? Then we need to modify
the smearing function. Just as in Poincaré coordinates, our
strategy will be to start with the global smearing function,
manipulate it so that it is nonzero only on the boundary of
the Rindler patch, and then convert to Rindler coordinates.

The analysis is simplest when � is an integer. Then we
can use (7) to take those parts of the global smearing
function that have left the boundary of the Rindler patch
and bring them back inside. However, one obtains a smear-
ing function with support on both the left and right bounda-
ries of AdS space. This is illustrated in Fig. 3.

This can be expressed quite simply in terms of the
invariant distance �. Recall that � is 2� periodic in global
time, while under the antipodal map
P

FIG. 3 (color online). Smearing function for an integer-
dimension bulk operator located behind the Rindler horizon.
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��xjAx0� � ���xjx0�; ��Ax� � ��1����x�:

By starting with the global smearing function (12), decom-
posing it into pieces that are inside/outside the Rindler
patch, and moving the outside part to the other boundary,
we have

��P��
Z �=2

��=2
d��KR

global��jP��
global;R
0 ���

���1��KL
global��jP��

global;L
0 ����;

KR
global��jP��

2��1����1=2�����
�
p

����
lim

�!�=2
����;�jP�cos����1

�����1�;

KL
global��jP��

2��1����1=2�����
�
p

����
lim

�!��=2
�����;�jP�cos����

������1�: (38)

Here P is any point inside the Rindler horizon [28]. To
express this in Rindler coordinates it is convenient to define
the left and right Rindler boundary fields �Rindler;L=R

0 �t� �
limr!1r���t; r� where L (R) refers to the left (right)
Rindler wedge. Near the boundary

�Rindler;L=R
0

r�
� cos���global;L=R

0

while the change of integration measure is

d�
cos�

�
rdt

R2 :

Putting this all together we have the final expression in
Rindler coordinates,

��P��
Z 1
�1
dt�KR

Rindler�tjP��
Rindler;R
0 �t�

���1��KL
Rindler�tjP��

Rindler;L
0 �t��;

KR
Rindler�tjP��

2��1����1=2�����
�
p

����R2 lim
r!1
��=r���1����1�;

KL
Rindler�tjP��

2��1����1=2�����
�
p

����R2 lim
r!1
���=r���1�����1�:

(39)

Here � is the invariant distance from P to the point �t; r� on
the appropriate boundary,

��t; rjt0; r0� �
1

M

�
rr0

R2 �

�
r2

R2 �M
�

1=2
�
M�

r02

R2

�
1=2

� sinh

�����
M
p
�t� t0�
R

�

where P is inside the horizon with coordinates �t0; r0� and
the upper (lower) sign applies for �t; r� near the right (left)
boundary. Note that the smearing function on the left
-8
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boundary has support only on points that are not connected
to P by a geodesic (points with �<�1).

What happens if � is not an integer? Although we no
longer have (7), a similar property holds separately for the
positive- and negative-frequency components of the
boundary field (19):

�global;R
0� ��� � e�i���global;L

0� ��� ��: (40)

We can use this to rewrite the global smearing function in a
form similar to (38), where it is nonzero only on the
boundary of the Rindler patch. For a bulk point P inside
the horizon with global coordinates ��0; �0� we set �0 �
�00 � 2�n, n 2 Z and

��P� �
Z �=2

��=2
d�
KR

global��jP��e
�i2�n��global;R

0� ���

� ei2�n��global;R
0� ���� � KL

global��jP�

� �e�i��2n�1���global;L
0� ���

� ei��2n�1���global;L
0� ����� (41)

where KR;L
global��jP� appear in (38). Expressed in terms of

positive- and negative-frequency global fields, this smear-
ing function consists of two disconnected blobs, one on the
left boundary and one on the right [29]. One can switch to
Rindler coordinates, however for points inside the horizon,
in general, one obtains a smearing function that is com-
pletely nonlocal in terms of �Rindler;L=R

0 . This is worked out
in Appendix B.

B. Thermofield interpretation and black holes

We can regard the AdS2 metric in Rindler coordinates as
a prototype for a black hole. A standard Euclidean calcu-
lation shows that the Hawking temperature is 1=� �

����
M
p

2�R .
By keeping modes in both the left and right Rindler
wedges, the Hartle-Hawking state can be understood as a
thermofield double [30,31].

How does this look on the boundary? As discussed in
[33] an eternal AdS black hole is dual to two copies of the
CFT in an entangled thermofield state. As we show in
Appendix A the thermofield Hamiltonian is

HTF �

�����
M
p

R
�Ŝ1 � 12 � 11 � Ŝ2�:

Here Ŝ is a noncompact conformal generator on the bound-
ary. The thermofield state is annihilated byHTF, and can be
formally expressed in terms of Ŝ eigenstates as

j i �
1�����������
Z���

p X
n

e��En=2jni1 � jni2:

Since the global vacuum is SL�2;R� invariant, this state
should also be annihilated by the global Hamiltonian R̂ �
1� 1 � R̂ and the Poincaré Hamiltonian 1 � Ĥ.
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What does this mean as far as constructing local bulk
operators? The expressions we derived in Sec. VA are
perfectly applicable. They imply that to put a bulk operator
behind the horizon of the black hole we need boundary
operators that act nontrivially on both copies of the Hilbert
space. Related observations were made in [33].

Let us summarize the picture we have developed. A bulk
operator outside the horizon corresponds to a nonlocal
operator that acts on a single copy of the Hilbert space.
As the bulk point approaches the future (past) horizon the
smearing function extends to cover an infinite range of
coordinate time on the boundary: it has support as t! �1
(t! �1) [34]. To insert a bulk operator behind the hori-
zon we need a nonlocal operator that acts on both copies of
the Hilbert space.

What does this mean from the point of view of an
observer outside the black hole, who can only interact
with a single copy of the CFT? Such an observer must
trace over the second copy of the CFT. If no operators are
inserted behind the horizon then the trace leads to a pre-
cisely thermal density matrix that describes the black hole.
But operator insertions behind the horizon act on the other
copy of the CFT, and modify the resulting density matrix.
In general, these modifications will not have a thermal
character. Thus, from the point of view of an outside
observer, operator insertions behind the horizon are seen
as nonthermal modifications to the black hole density
matrix.
VI. HIGHER DIMENSIONAL BLACK HOLES

In the previous section we saw that in order to describe
an object inside the Rindler horizon of a two-dimensional
black hole one needs a nonlocal operator that acts on both
copies of the Hilbert space [35]. In this section we show
that a similar property holds for a general AdS black hole.
Analogous arguments can be made for bulk points outside
of the Poincaré patch.

A local field ��U;V;�� anywhere in the extended
Kruskal diagram can be expanded in terms of Kruskal
creation and annihilation operators,

� �
X
i

fi�U;V;��a
i
K � f


i �U;V;��a

iy
K : (42)

The Kruskal creation and annihilation operators can be
expressed in terms of left and right creation and annihila-
tion operators using Bogolubov coefficients

aiK � 
Lija
j
L � �

L
ija

jy
L � 


R
ija

j
R � �

R
ija

jy
R ;

aiyK � 
Lij a
jy
L � �

L
ij a

j
L � 


R
ij a

jy
R � �

R
ij a

j
R:

(43)

Since the left and right creation and annihilation operators
can be written as a Fourier transform of operators in one of
the copies of the CFT,
-9
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ajL �
Z
dtddxe�i!jt�ikjxOL�t; x�;

ajR �
Z
dtddxe�i!jt�ikjxOR�t; x�;

(44)

we see that a local bulk field anywhere in the Kruskal
diagram can be represented as a linear combination of
two operators, one acting on the left and one acting on
the right. If the bulk point is in either the left or the right
region, then its representation reduces to a single operator
on the appropriate copy.
VII. CONCLUSIONS

In this paper we related local bulk fields in AdS space to
nonlocal operators on the boundary. In global coordinates
we found AdS-covariant smearing functions with support
purely at spacelike separation. We then showed how to
represent bulk operators that are inserted behind the
Poincaré horizon, or inside the horizon of a black hole.
By construction these boundary operators reproduce all
bulk correlation functions; they therefore respect bulk
locality. Light-cone singularities in the bulk arise from
the UV behavior of the boundary theory. Although we
concentrated on AdS2, similar results hold in higher di-
mensions [6].

It is curious that local operators in the interior of a black
hole correspond to boundary operators that act on both
copies of the thermofield double. Note that in the thermal
AdS phase, such operators do not exist: any operator that
acts on both copies of the CFT will at best be bilocal in the
(disconnected) bulk spacetime. It is only in the black hole
phase that operators which act on both copies of the CFT
can be local in the bulk.

One can even give a boundary description of the fact that
the black hole time coordinate switches from timelike to
spacelike at the horizon. In the right Rindler wedge, or
more generally whenever the Killing vector @

@t is timelike,
chronology in the bulk corresponds to chronology on the
boundary: bulk operators which are inserted at the same
spatial position but different values of t correspond to
smeared operators on a single boundary that are related
by time translation. This holds in the left and right Rindler
wedges, inside the Poincaré horizon, or even globally if
one uses global time. But for bulk points inside the horizon,
a Rindler time translation will move the left and right
boundary operators in opposite directions. This corre-
sponds to the fact that @

@t is spacelike inside the horizon.
There are many open questions and directions for future

work. Our construction is applicable in the limit of semi-
classical supergravity; it would be extremely interesting to
understand 1=N and 
0 corrections. Nonlocal operators in
the CFT should provide a new tool to study bulk phe-
nomena such as black hole singularities [36,37], the inter-
play of holography and locality [38], or even nonlocal
deformations of AdS space [39]. But, at a more fundamen-
086003
tal level, one might ask: purely from the boundary CFT
point of view, what if anything would allow one to identify
a particular set of nonlocal operators as appropriate for
describing bulk spacetime?
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APPENDIX A: ADS ISOMETRIES

We review the relationship between isometries of AdS2

and conformal transformations on the boundary. For a
more extensive discussion see [40,41].

AdS2 can be embedded as a hypersurface

��X0�2 � �X1�2 � �X2�2 � �R2

in R2;1 with a �� ��� metric. Isometries of AdS2 arise
from Lorentz transformations of the embedding space,
with generators

J�	 � ��X
�@	 � 	�X

�@�:

For example, the SL�2;R�-invariant distance function is

��xjx0� �
1

2R2 �X� X
0���X� X

0�� � 1

and the antipodal map is simply A: X� ! �X�.
We would like to understand the action of these isometry

generators on the boundary in different coordinate systems
(global, Poincaré and Rindler). These coordinate systems
are defined as follows [3]:8
(i)
-10
Global :
><
>:
X0 � R sec� cos�;
X1 � R sec� sin�;
X2 � R tan�;

with metric ds2 � R2

cos2�
��d�2 � d�2�,
(ii)
Poincar�e :

8><
>:
X0 � �R2 � Z2 � T2�=2Z;
X1 � RT=Z;
X2 � �R2 � Z2 � T2�=2Z;

with metric ds2 � R2

Z2 ��dT2 � dZ2�,

(iii)
 Rindler �with arbitrary dimensionless M�:8>>>><

>>>>:

X0 � r=
�����
M
p

;

X1 �
���������������
r2

M� R
2

q
sinh�

�����
M
p

t=R�;

X2 �
���������������
r2

M� R
2

q
cosh�

�����
M
p

t=R�;

with metric ds2���r
2

R2�M�dt2��r
2

R2�M��1dr2.
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Near the boundary ��! �=2; Z! 0; r! 1� the isometry
generators approach 8
(i)

Global :

<
:
J01 � �@�;
J02 � sin�@�;
J12 � � cos�@�;

8

(ii)
Poincar�e :
><
>:
J01 � �

1
2R �T

2 � R2�@T;
J02 � T@T;
J12 �

1
2R �T

2 � R2�@T;

8 �����p

(iii)
Rindler :

>><
>>:
J01 � �

R����
M
p cosh� Mt=R�@t;

J02 �
R����
M
p sinh�

�����
M
p

t=R�@t;

J12 � �
R����
M
p @t:
Here we are keeping only the leading (divergent) behavior
of the vector field near the boundary.

In Poincaré coordinates the isometries give rise to the
usual representation for the conformal generators on a line,

Ĥ � i@T � ��i=R��J01 � J12�; D̂ � iT@T � iJ02;

K̂ � iT2@T � �iR�J01 � J12�: (A1)

Rather than adopting Ĥ as the Hamiltonian, one can use a
different linear combination of the conformal generators to
evolve in time [42]. This is exactly what is done when
using the other two coordinate systems:
(i) G
lobal: i@� �
1
2 �RĤ �

1
R K̂� � R̂.����p ����p
(ii) R
indler: i@t �
M

2R �RĤ �
1
R K̂� � �

M
R Ŝ.
Here R̂ (not to be confused with the AdS radius) and Ŝ are
compact rotation and noncompact boost generators, re-
spectively. One can show that when evolving in time using
noncompact generators (such as Ŝ), one cannot cover the
entire range�1< T <1. This is exactly what happens in
Rindler coordinates—Rindler time t only covers half of the
boundary of the Poincaré patch. When evolving with com-
pact generators such as R̂, one does cover the entire range
of T (as global coordinates do) [42].
APPENDIX B: ADS VACUA

At various points in the paper we made use of the
equivalence between the global, Poincaré and Hartle-
Hawking vacua [23,24,32]. In this appendix we review
these results and show how they relate different boundary
fields.

We begin with the equivalence between the global and
Poincaré vacua. Bulk modes that are positive frequency
with respect to global time are also positive frequency with
respect to Poincaré time [23]. This implies that the two
bulk vacua are equivalent. To understand the correspond-
ing relationship between the global and Poincaré boundary
fields, let us start with a global boundary field that is purely
positive frequency,
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�global;R
0� ��� �

X1
n�0

cne�i!n�: (B1)

Near the boundary,

Z��Poincare
0 � cos���global;R

0

so the corresponding Poincaré boundary field is equal to
the global field times a Jacobian

�Poincare
0 �T� � lim

�!�=2

�
cos�
Z

�
�
�global;R

0� ���

�

�
2R

T2 � R2

�
�
�global;R

0� ���: (B2)

Here � � 2tan�1�T=R� � �i log1�iT=R
1�iT=R so

�Poincare
0 �T� �

�
2

R

�
� X1
n�0

cn
�1� iT=R�n

�1� iT=R�n�2�
: (B3)

The Poincaré boundary field is analytic in the lower half of
the complex T plane, so its Fourier transform

~� Poincare
0 �!� �

Z
dTei!T�Poincare

0 �T�

vanishes if !< 0. Thus it follows from the equivalence of
the bulk Poincaré and global vacua that a positive-
frequency global boundary field corresponds to a
positive-frequency Poincaré boundary field. We used this
in Sec. III B to go from (30) and (31). Note that the
Jacobian appearing in (B2) is crucial: the global boundary
field (B1) by itself, when expressed in terms of Poincaré
time, is not positive frequency.

Now let us turn to the equivalence between the global
and Hartle-Hawking vacua. For these purposes it is conve-
nient to introduce null Kruskal coordinates

u � tan
�� �

2
; v � tan

�� �
2

(B4)

in which

ds2 � �
4R2dudv

�1� uv�2
: (B5)

These coordinates cover the region shown in Fig. 4; the
restriction ��=2< �<�=2 corresponds to uv >�1.
For u < 0 note that points with uv � �1 make up the
boundary of the left Rindler wedge, while for u > 0 points
with uv � �1 make up the boundary of the right Rindler
wedge.

Working in the right Rindler wedge (u > 0 and v < 0)
mode solutions with normalizable falloff near the right
boundary of AdS space are

��u; v� � u�i!�1� uv��F��;�� i!; 2�; 1� uv�:

(B6)

Here �1<!<1 is a parameter which can be under-
-11



FIG. 4. The Kruskal patch, indicated on the AdS Penrose
diagram (left) and in the uv plane (right).
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stood as the frequency measured with respect to Rindler
time, since under the isometry corresponding to a Rindler
time translation,

u! e�u; v! e��v;

these modes transform by a definite phase �! e�i!��.
Note that! does not correspond to the frequency measured
with respect to a Kruskal time coordinate.

We want to find a set of positive-frequency Kruskal
modes [43] for which (by construction) the Kruskal vac-
uum will be equivalent to the global vacuum. This depends
on making the correct analytic continuation from right to
left. To do this we first write the modes (B6) in a more
symmetric form, using a transformation formula for the
hypergeometric function

��u; v� � �1� uv��
�

��2����i!�
�������� i!�

u�i!F��;�

� i!; 1� i!;�uv� �
��2�����i!�

�������� i!�

� ��v�i!F��;�� i!; 1� i!;�uv�
�
: (B7)

This makes it clear that, aside from the prescribed behavior
near the boundary of AdS space, the modes have branch
points on the horizon (at u � 0 or v � 0). A positive-
frequency Kruskal mode is defined by analytically con-
tinuing from right to left going through the lower half of
the complex u and v planes, while a negative-frequency
Kruskal mode is defined by analytically continuing
through the upper half u and v planes [44]. With this
prescription the global and Kruskal bulk vacua are
equivalent.

It is straightforward to obtain the corresponding analy-
ticity properties on the boundary. In Kruskal coordinates
we define the boundary field by
086003
�Kruskal
0 �u� � lim

uv!�1

��u; v�

�1� uv��
: (B8)

The relation between Kruskal and global boundary fields is
then

�Kruskal
0 �u� �

8><
>:

lim
uv!�1

cos��
�1�uv��

�global;R
0 ��� for u > 0;

lim
uv!�1

cos��
�1�uv��

�global;L
0 ��� for u < 0:

(B9)

A positive-frequency global boundary field takes the form

�global;R
0� ��� �

X1
n�0

cne
�i!n�;

�global;L
0� ��� �

X1
n�0

cn��1�ne�i!n�:

(B10)

Note that

lim
�!��=2

�global;L
0� ��� � e�i�� lim

�!��=2
�global;R

0� ���: (B11)

Inserting (B10) into (B9) we find that a positive-frequency
global boundary field maps to a Kruskal boundary field
given by

�Kruskal
0 �u� �

X1
n�0

cn
��1�n=2��iu���u� i�n

�u� i�2��n
: (B12)

The Kruskal field has a branch point at u � 0. In order to
reproduce (B11) we must analytically continue from u > 0
to u < 0 by going through the lower half of the complex u
plane. We take this analyticity condition to define a
positive-frequency Kruskal boundary mode; this makes
the global and Kruskal vacua equivalent on the boundary,
just as they were equivalent in the bulk.

With this definition, from (B7) a positive-frequency
Kruskal mode can be characterized by the boundary be-
havior

�Kruskal
0� �u� �

�
u�i! for u > 0;
e��!��u��i! for u < 0;

while a negative-frequency Kruskal mode is characterized
by

�Kruskal
0� �u� �

�
u�i! for u > 0;
e��!��u��i! for u < 0:

At this point it is convenient to switch to Rindler coordi-
nates. The relation is

u � �
�
r�

�����
M
p

R

r�
�����
M
p

R

�
1=2
e
����
M
p

t=R;

v � �
�
r�

�����
M
p

R

r�
�����
M
p

R

�
1=2
e�

����
M
p

t=R

where the upper (lower) sign holds in the right (left)
-12
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Rindler wedge. The Jacobian for switching from Kruskal
to Rindler is a constant,

�Rindler
0 � lim

r!1
�r�1� uv����Kruskal

0 � �2
�����
M
p

R���Kruskal
0 ;

so we can characterize Rindler modes which are positive or
negative frequency with respect to Kruskal time as having
the behavior

�Rindler;R
0� � e�i!t; �Rindler;L

0� � e��!=2e�i!t

where � � 2�R=
�����
M
p

is the inverse temperature of the
black hole. Finally, this lets us define a projection operator
which picks out the part of the Rindler boundary field
which is positive or negative frequency with respect to
Kruskal time. Let

~� Rindler;L=R
0 �!� �

Z 1
�1

dtei!t�Rindler;L=R
0 �t�

be the Fourier transform of the Rindler boundary field.
Then Rindler boundary fields which are positive or nega-
tive frequency with respect to Kruskal time are given by

�Rindler;R
0� �t� �

Z 1
�1

d!
2�

f��!�e�i!t;

�Rindler;L
0� �t� �

Z 1
�1

d!
2�

f��!�e
��!=2e�i!t

(B13)
086003
where the conditions

f� � f� � ~�Rindler;R
0 ;

f�e
��!=2 � f�e

�!=2 � ~�Rindler;L
0

(B14)

fix

f��!� �
~�Rindler;R

0 �!�e�!=2 � ~�Rindler;L
0 �!�

2 sinh�!=2
;

f��!� �
~�Rindler;L

0 �!� � ~�Rindler;R
0 �!�e��!=2

2 sinh�!=2
:

(B!5)

Multiplying by the Rindler-to-global Jacobian

lim
r!1

1

�r cos���
�

�
cosh�

�����
M
p

t=R������
M
p

R

�
�

(B16)

the boundary fields (B13) become positive or negative
frequency with respect to global rather than Kruskal
time. They can then be substituted in (41) to obtain the
Rindler smearing function for a point inside the horizon.
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automatically vanishes at timelike separation: the Poincaré
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