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Creation of defects with core condensation
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Defects in superfluid 3He, high-Tc superconductors, QCD color superfluids, and cosmic vortons can
possess (anti)ferromagnetic cores, and theirgeneralizationss. In each case there is a second-order
parameter whose value is zero in the bulk which does not vanish in the core. We examine the production
of defects in the simplest 1� 1 dimensional scalar theory in which a second-order parameter can take
nonzero values in a defect core. We study in detail the effects of core condensation on the defect
production mechanism.
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I. INTRODUCTION

Since phase transitions take place in a finite time, cau-
sality guarantees that correlation lengths remain finite. If
the symmetry breaking permits nontrivial homotopy
groups the frustration of the order parameter fields is
resolved by the creation of topological defects to mediate
between the different ground states. Since defects are, in
principle, observable, they provide an excellent experi-
mental tool for determining how transitions occur.

Zurek [1,2] and Kibble [3] originally suggested that
causality alone is sufficient to bound the initial density of
defects arising in a continuous transition, whether in con-
densed matter or quantum field theory. The analysis is very
general, and depends on the fact that there is a maximum
speed (e.g. the speed of light or the speed of sound) at
which the system can become ordered. The Zurek-Kibble
(ZK) causal arguments can be quantified in many variants,
and we will not rehearse them here. It is sufficient to
consider a system with critical temperature Tc, cooled
through that temperature at a rate

1

Tc

dT
dt

��������Tc

� �
1

�Q
; (1)

thereby defining the quench time �Q. The prediction is that,
if �� is the defect separation at the time of defect formation,
then

�� � f�0

��Q
�0

�
�
� �0; (2)

where �0 is the relaxation time for short wavelength modes
and �0, also determined from the microscopic details of the
system, characterizes the size of cold defects. The coeffi-
cient f is an undetermined efficiency factor, taken to be
O�1�, but anticipated to be greater than unity.

We term � the ZK characteristic index. Its mean-field
values are typically � � 1=3 for relativistic systems and
� � 1=4 for strongly damped nonrelativistic systems.
Experiments on a range of condensed-matter systems (su-
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perfluid 3He [4,5], high-Tc superconductors [6,7],
Josephson tunnel junctions (JTJs) [8,9]) give results that
are commensurate with (2).

This may seem paradoxical in that subsequent analytic
approximations [10,11] and numerical simulations [12–
14] have shown that, for simple systems, the scaling be-
havior of (2) is understood, not so much in terms of causal
bounds, but in terms of the instabilities of the time-
dependent Ginzburg-Landau (TDGL) theory, whose dissi-
pative behavior controls which regime we are in. However,
where scaling is appropriate it is found that causality argu-
ments identify the correct engineering dimensions for the
scaling behavior of defect densities [11,14] and (2) sur-
vives [15].

For symmetry breaking of local gauge theories the result
(2) is not complete because of the freezing in of long
wavelength modes of the gauge fields [16]. However, for
the high-Tc experiments of [6,7] and the JTJs of [8,9]) the
effect of this additional mechanism is small and we shall
ignore it, given that it does not occur for the simple model
that we shall solve numerically later.

For each of the condensed-matter systems listed above
the relevant topological defects are vortex lines (strings).
Again, in the context of the early universe, strings (cosmic
strings) are the almost inevitable consequence of symmetry
breaking in the most obvious extensions of the standard
model for electroweak unification [17]. Observation has
suggested the possible existence of cosmic strings [18–20]
but, as yet, the evidence is not compelling.

Most simply, for both condensed matter and the early
universe, the most studied and best understood strings arise
from the breaking of a global or local U�1� symmetry, in
which the order parameter can be represented by a single
complex scalar field. In such cases the structure of the
vortex is quite simple, with a trivial core, in the center of
which the order parameter vanishes, restoring the U�1�
symmetry there. That is, a string is a simple tube of false
vacuum or ground state, trapping flux if the symmetry is
local. Although this is appropriate for the phases of the
-1 © 2006 The American Physical Society
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condensed-matter systems for which experiments have
been performed, it is a simplification since both superfluid
3He and high-Tc superconductors have order parameters ~�
with several components. The unstable ground state (‘‘false
vacuum’’) corresponds to ~� � 0. We can separate the
components of ~� into two types ~� � � ~�; ~�� so that, in
bulk, the ~� fields condense (i.e. are nonzero), whereas the
~� fields do not. For any defect this characterizes the
situation in its exterior and, for a ‘‘normal’’ defect, both
~� and ~� are zero in the core. However, in some parts of

parameter space it may require less energy to produce
defects with ‘‘abnormal’’ cores, in which ~� � 0, but the
~� � 0. The existence of defects inside which the ~� fields
condense is not a question of topology, merely one of
energetics.

This is the case for superfluid 3He� B with its nine
complex order parameters, for which there is experimental
evidence for superfluid 3He� B vortices with ferromag-
netic 3He� A cores [21,22]. Also, this phenomenon has
been predicted to occur in the idealized SO�5� model
[23,24] of high-temperature superconductivity, where, for
appropriate doping, the cores of the conventional
Abrikosov vortices are antiferromagnetic. There has been
recent experimental evidence to support this theoretical
picture [25–29].

This is not just a phenomenon of condensed-matter
physics. It has been argued [30–32] that such strings also
occur in the so-called color superconducting phase of
QCD, that is believed to be realized when the baryon
density is a few times larger than nuclear density [33],
and hence in neutron stars. In fact, that such a phenomenon
can occur in relativistic systems was first discussed by
Witten [34] on looking at generalizations of cosmic strings.
His model is the simplest of all that is compatible with
early universe cosmology: consider a two-component sys-
tem described by two complex scalar fields (�, �) with an
approximate U�2� symmetry. If the U�2� symmetry be-
tween fields � and � is explicitly broken down to U�1� �
U�1�, the � condensation might be energetically more
favorable than � condensation, and the ground state will
be given by h�i � 0 and h�i � 0. As intimated above, this
system permits � vortices characterized by the phase of �
field varying by an integer multiple of 2� as one traverses a
contour around the vortex core. Witten showed that, if the
approximate U�2� symmetry is broken only weakly, the �
field may condense inside the core of the� string, breaking
the corresponding U�1� symmetry in the core.

One consequence of this ‘‘core condensation’’ is that
[35–38] it provides a way to stabilize a string loop against
shrinking, as would normally be the case because of the
string tension. The condensed-matter counterpart to
Witten’s model of approximate U�2� symmetry breaking
is in two-component Bose-Einstein condensates (BECs)
[39], for which both core condensation and this stabiliza-
tion may already have been seen.
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Most of the work cited above has addressed the static
properties of defects with core condensation. In this paper
we are interested in the dynamics of the creation of such
defects. Insofar as the scaling behavior of (2) is truly a
consequence of causality we would expect it to be equally
true for defects with and without core condensation.
However, it may not be so simple in that one consequence
of core condensation is that the interactions between vor-
tices can be drastically altered by the presence of nontrivial
cores [40]. In the following sections we shall consider the
simplest model permitting core condensation, to check
whether the formation accords with the simple Kibble-
Zurek scaling laws in �Q of (2).

II. THE O�2� ! Z2 � Z2 ! Z2 MODEL IN 1D

Our model is a simplified version of more realistic
dissipative systems, such as the Ginzburg-Landau descrip-
tion [41] of high-Tc superconductors. However, with the
early universe in mind we extend it to a relativistic under-
damped model when appropriate.

Specifically, let us consider the symmetry breaking
O�2�!ESBZ2 � Z2!

SSBZ2 in one dimension, where ESB
denotes explicit symmetry breaking by the introduction of
terms in the action and SSB denotes spontaneous symme-
try breaking. We consider a free energy of the form

F �
Z
dx�12��@x��

2 � �@x��2	 � V��;��	; (3)

where

V��;�� �
1

2
a�T��2 �

1

2
a�T���2 �

b
4
��2 � �2�2 �

a2

4b
(4)

for which we have chosen to implement the ‘‘phase tran-
sition’’ explicitly through the Landau form a�T� �
�a0�1� T=Tc�, where a0 > 0. The fact that there is no
true transition in one dimension is irrelevant for the rapid
changes in temperature that we shall consider [12].

When � � 1 F possesses O�2� symmetry, and we can
take � and � to be the real and imaginary parts of a
complex field �. There is a minor complication in that,
if we fix the phase of � to be zero, say, at infinity, making
space S1, the winding number of the phase is a conserved
charge. However, the configurations with nonzero charge
are Skyrmions, and not the defects of relevance to the ZK
scenario, of which none exist in the absence of topological
charge when there are no fixed boundary conditions.

The O�2� is broken explicitly to Z2 � Z2 when � � 1,
which will be the case of interest for defect formation. In
1D, the defects are kinks. For example, to convert F of (3)
into an SO�5� model for high-Tc along the lines of [41] we
elevate � into the two-component complex field that cou-
ples to the electromagnetic field, and elevate � to the three-
component Néel vector of antiferromagnetism. A similar
transmutation would recreate a model like Witten’s. In this
-2
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regard, we note that the potentials presented in the litera-
ture are not quite identical in the way the different sectors
couple. They only become so on imposing nonlinear con-
straints (e.g. ~�2

� ~�2 � f2), as in [41]. At an effective
level this can make little difference to the statics of defects
(e.g. [42]), but for the dynamics we revert to the more
fundamental linear sigma model of (3), modeled on
[42,43]. Phase transitions leading to kinks and walls with
core condensation and displaying repulsive interactions
were considered in the context of a S5 � Z2 ! S3 � S2

theory in [44]. In that case the authors were concerned
mostly with the long-time behavior of the system after the
transition. In particular, significant changes to the scaling
behavior of domain wall networks were observed as well as
the formation of defect lattices as the final product of the
evolution. Here we will concentrate on the period straight
after the transition, namely, on the process of defect for-
mation, rather than on the long-time dynamics.

The properties of the translation invariant configurations
that minimize the free energy above depend on the value of
�. Defining �2

0 � �a=b and �2
0 � ��a=b we have that,

for �> 1,

F��0; 0	>F�0; �0	; � > 1 (5)

corresponding to a ground state with ��x� � 0.
For 0<�< 1 the opposite relation holds

F��0; 0	<F�0; �0	; 0<�< 1 (6)

and the preferred ground-state configuration is now��x� �
0, �2�x� � �2

0. For �< 0, the case corresponding to
Eq. (5) holds again, as � is now negative and � is therefore
constrained to be zero.

A. Kink solutions

We will concentrate on the 0<�< 1 regime and con-
sider kinklike solutions that minimize the action in Eq. (3)
for the set of boundary conditions ���1� � ��0,
���1� � 0 and ���1� � �0, ���1� � 0. For any
value of � in this region the free energy is always sta-
tionary for the straightforward kink solution obtained by
setting

��x� � �0 tanh�lkx�; ��x� � 0; (7)

where lk � ��a=2�1=2 is the kink size. The free energy of
this configuration is � independent and given by

Fk �
2
���
2
p

3
b1=2�3

0: (8)

It is possible that for certain values of � other stable
configurations exist with a lower free energy [42,43]. It
turns out that, for this particular system, we were able to
find such solutions analytically.

Any static solution obeys the time-independent equa-
tions of motion derived from the free-energy Eq. (3):
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@2
x� � a�� b��2 � �2��; (9)

@2
x� � �a�� b��2 � �2��: (10)

We start by assuming that ��x� has the usual kink profile

��x� � �0 tanh�x=l�; (11)

where l, the size of the core can now depend on �. The
trivial kink profile with lk �

�������������
�2=a

p
and � � 0 is obvi-

ously a solution for all values of �. In order to find other
possible solutions, we assume ��x� � 0 and replace the
general kink profile (with arbitrary core size l) into the
equation for �, Eq. (9). Solving in terms of � we obtain:

��x� � �0

�
1�

2

al2

�
1=2 1

cosh�x=l�
: (12)

Demanding that this result satisfies the second equation,
Eq. (10), we obtain an explicit expression for the kink core
size

l �
1�������
�a
p

1�������������
1� �
p �

lk����������������
2� 2�
p : (13)

The full solution is then given by

��x� � �0 tanh�x=l�; (14)

��x� � 
�0

����������������
2�� 1

p 1

cosh�x=l�
: (15)

Note that we have included the two possible signs for the �
field. In general, for each choice of � profile, there will be
two allowed symmetric configurations for �. We will refer
to solutions for which � interpolates between��0 and�0

as x goes from �1 to 1 as kinks. These can be positively
of negatively charged, depending on whether � is positive
or negative. Conversely, antikinks will have ���1� � �0

and ��1� � ��0. We will say an antikink has negative
charge if �> 0 and positive charge otherwise. This con-
vention for the charge signs for kinks and antikinks corre-
sponds to the winding direction of the solution in the (�, �
plane, mimicking the U�1� charge definition in the �! 1
limit. As we will see below, the interaction potential be-
tween kinks and antikinks will depend on their charges, as
defined above.

The free energy of the nontrivial kink profile can be
evaluated explicitly, being given by

F � Fk
����������������
2� 2�

p
�12� ��; (16)

where Fk the energy of the � � 0 solution as defined in
Eq. (8). Such a kink is rather like a slice through a con-
figuration known as a ‘‘dark-bright vector soliton’’ in two-
component BEC [45], which consists of a domain wall
formed by one condensate with the second condensate
confined to the wall’s center. The difference lies in the
fact that the BEC condensate obeys nondissipative Gross-
Pitaevskii equations, rather than the (relativistic) dissipa-
-3
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FIG. 1 (color online). Profiles of ��x� and ��x� for several
values of �> 0:5, a � �1:0, and b � 1:0.
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of the most stable configuration versus �.

ANTUNES, GANDRA, RIVERS, AND SWARUP PHYSICAL REVIEW D 73, 085012 (2006)
tive TDGL equation appropriate to condensed matter and
the early universe.

The above expressions for the fields’ profiles and the
free energy of the nontrivial solution are defined only for
�> �c, where �c � 0:5, a value independent of the pa-
rameters of the theory. For � above the critical value we
have that F < Fk, the free energy of the nontrivial solution
is smaller than that of the � � 0 kink. In this region of
parameter space the configuration in Eqs. (11) and (12) is
energetically more stable and should be more likely to
form as the outcome of a phase transition. As �! ��c
this solution converges smoothly to the trivial kink profile,
with l! lk, �! 0, and F ! Fk. For �<�k, Eq. (7)
corresponds to the single valid solution. These points are
illustrated in Figs. 1–3. In Fig. 1 we show several field
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FIG. 2 (color online). The free energy of the most stable kink
configuration against �, normalized by the energy of the � � 0
kink.
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profiles in the �> �c regime. As � approaches its critical
value the size of the kink core decreases tending to lk, and
the magnitude of the peak of � goes to zero. In Fig. 2 we
have the free energy of the most stable configuration, for �
in the interval (0, 1). Finally, in Fig. 3 we show, for the most
stable configuration, the maximum value of � and the size
of the kink core. As expected, both these and the free
energy are constant below �c. It is interesting to note
that while all these quantities are continuous at �c, their
derivatives behave in different ways. In particular, F0��� is
continuous throughout the interval (0, 1), whereas the core
size has finite discontinuous derivative at �c and �max has
diverging derivative at ��c .

B. Kink/antikink interaction

The problem we want to address here is to determine
what happens when a kink and an antikink are put in the
vicinity of each other. For the trivial profiles corresponding
to �< 0:5, it is well known that a kink and antikink attract
each other with a force that decreases exponentially with
the separation of the cores. In a setting where kinks and
antikinks form as a consequence of a phase transition, this
allows for pair annihilation processes. In our case, because
of the presence of the extra field, kinks can have two
distinct charges and it is reasonable to expect these to
play a role in their interaction. If we imagine a kink/
antikink pair with the same charge in the limit �� 1, the
result is a configuration close to a ‘‘springy’’U�1�winding.
The U�1� spring will tend naturally to ‘‘stretch’’ itself,
corresponding, in terms of the kink/antikink pair, to a
repulsive interaction. The opposite reasoning suggests
that kinks and antikinks with symmetric charges should
attract each other.

In order to check this scenario and obtain effective
interaction potentials we followed the gradient flow ap-
-4
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proximation [46]. This consists in setting up an initial kink/
antikink configuration and evolving it numerically accord-
ing to the first-order equation of motion corresponding to
the free energy in Eq. (3):

@t�a � @2
x�a �

@V
@�a

; (17)

where the index a runs from 1 to 2 with�1 � � and �2 �
�. This forces the solution to be locally on a minimal
energy configuration for all t, in the sense that its trajectory
should follow the ‘‘valleys’’ of the free-energy landscape.
At given simulation times we define the defect separation r
as the distance between the two zeros of� and we measure
the total free energy of the system. A potential V�r� for this
‘‘moduli’’ is defined by subtracting the energy of two
isolated kinks to the energy measured for each value of r
in the simulation.

In Figs. 4 and 5 we show V�r� for several values of�, for
pairs with opposite and identical charges, respectively.

As expected, the force between opposite charged kinks
and antikinks is always attractive. As � increases and the
kinks become less localized, the steepness of the potential
decreases indicating a weakening of the interaction force.
A kink/antikink pair with identical charges displays, on the
contrary, a repulsive interaction for distances above a
certain threshold. For smaller distances the interaction
seems to be always attractive, though results below the
core size, r < l���, should not be trusted as the moduli
becomes ill-defined. As � increases, the height of the
potential maximum becomes larger and its location moves
towards smaller values of r. Though for values of � just
above the 1=2 threshold the size of the potential barrier is
likely to have negligible effects, as �! 1 the kinetic
energy needed to surpass the barrier will become increas-
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FIG. 4 (color online). The gradient flow interaction potential
between a kink and an antikink with opposite charges, for several
choices of �. The kink/antikink separation is given in units of
core size.
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ingly high. As a consequence of the repulsive nature of
their interaction, same-charge kinks may be prevented
from colliding and we can expect a regime where pair
annihilation will be suppressed. As we will see, this will
lead to qualitative changes in defect production in a typical
phase transition.
III. NUMERICAL SIMULATIONS OF DEFECT
FORMATION

We now proceed to numerically evaluate the formation
of these various types of defects by using a Langevin
equation to simulate a series of quenched transitions. Our
main goal will be to check whether the types of scaling
predicted by the Kibble-Zurek scenario in (2) are compat-
ible with the presence of nontrivial defects as described in
the previous section. We will evolve the general second-
order Langevin equation

@2
t �a � @

2
x�a � �

2@t�a �
@V
@�a

� �	a; (18)

where the index a runs from 1 to 2 with�1 � � and�2 �
�. 	a is a Gaussian noise term obeying

h	a�x
0; t0�	b�x; t�i � �
�x0 � x�
�t0 � t�
ab;

h	a�x; t�i � 0;
(19)

and � measures both the amplitude of the noise and of the
dissipative first-order time derivative term. The relation
between these two terms ensures that the fluctuation-
dissipation theorem is satisfied and guarantees that for
very large times thermal equilibrium at temperature �=2
is reached. A simpler version of this model with one single
field has been used successfully in several studies of defect
formation in 1� 1 dimensions [12,47]; we refer the reader
-5
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to these for a more detailed discussion of the model and its
numerical implementation.

Our goal here is to simulate a ‘‘phase transition’’ with
general quench rate ��1

Q . We start at high temperature with
a > 0 and, after allowing the fields to equilibrate, we
decrease a�T� with T changing according to Eq. (1). As
T goes below Tc, a series of defects forms separating
regions in alternating vacua. Finally, a�T� settles to a
constant negative value and the defect population enters a
period of relative slow evolution, with occasional pairs of
defects and antidefects annihilating. At this point, we
measure the defect density � � 1= �� by counting the num-
ber of kinks and antikinks in the field configuration. The
defects are identified as zero crossings of the � field,
suitably coarse-grained over a few lattice sites. The
coarse-graining is particularly relevant for high values of
�, when the size of the defect core becomes considerably
large, and small fluctuations around zero might lead to
defect overcounting.

By repeating the above process for several values of the
quench rate we obtain ���Q� and fit the results to a power-
law A���Q . Note that depending on the magnitude of the
parameter �, Eq. (18) may describe either a relativistic
system (small �) or one where dissipation is dominant
(large �). The former type of setting will be typical of
high-energy and cosmological systems, whereas the later
will correspond to condensed-matter systems. As dis-
cussed in Section I we should obtain, according to the
standard KZ predictions, � � 1=4 for the overdamped
regime and � � 1=3 for the underdamped case.

In Fig. 6 we show� as a function of� for two choices of
�, representative of the two types of regime. In both cases
we set a � 1, b � 1, and � � 0:01, and we vary the
0.4 0.5 0.6 0.7 0.8 0.9 1
0.15

0.2

0.25

0.3

β

σ α=1.0

α=0.6

FIG. 6 (color online). The scaling exponent � as a function of
� for 0:4<�< 1, in the underdamped (� � 0:6) and over-
damped (� � 1:0) regimes. The error bars, not shown for clarity,
are of order of 10% of the values measured.
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quench rate as �Q � 2n, n � 1; 2; . . . ; 9. The final defect
densities are obtained by averaging over ten independent
realizations. Production runs were performed on periodic
lattices with 16 000 points and space and time steps of

x � 0:125 and 
t � 0:1. We found that coarse-graining
� over eight lattice points was enough to eliminate any
unwanted fluctuations of the field. The error bars, not
shown in the plot for clarity, were obtained by calculating
the standard deviation over the ensemble of 10 sample
runs, and are of order of 10% of the values observed for �.

Starting with the high-dissipation results with � � 1:0,
we see that within error bars, the scaling exponent is
approximately constant for �< 0:5. The value measured
� � 0:28, coincides with that obtained for similar simula-
tion parameters in the case of a single field system [47].
One should note that the method used to determine the final
defect density is known to lead to a slight overestimate in�
when compared to other, computationally more demand-
ing, approaches (for a discussion see [12]). This leads to
the deviation from the theoretical prediction �� 1=4 for
the overdamped regime. With this caveat in mind, and
remembering that the transition between the under and
overdamped regimes is continuous, we will proceed as in
[47] and use the value �� 0:30 to distinguish between the
two types of behavior. In the following, all values of �
should be taken in reference to those obtained in the low-�
parameter region. As is clear in Fig. 6, as � increases, the
scaling exponent goes down signaling a departure from the
canonical KZ-scaling behavior, moving deeper into the
dissipative regime. For values of � in the vicinity of
0.80, � reaches a stable plateau, remaining constant
(within error bars) up to �� 0:97 when a sharp increase
takes place. The results for the relativistic case � � 0:6
show a very similar pattern, with � steadily decreasing
towards a flat regime, followed by a sudden rise as �! 1.

The initial period of slow decrease in � for values of �
up to 0.7–0.8 can be related to the fact that the effective
physical consequences of the dissipation should be mea-
sured in terms of the relevant masses of the problem. The
relaxation time scale that determines the type of behavior
(dissipative vs relativistic) is given by the inverse of �2=m,
where m stands for the lowest mass in the theory. As �
increases and T < Tc, the mass of one of the excitations of
the vacuum approaches zero. When � � 1 and the original
Lagrangian becomes explicitly U�1� symmetric, this de-
gree of freedom corresponds to the massless Goldstone
boson. More specifically, the masses of the vacuum exci-
tations for the potential in Eq. (4) are given by m2

1 � �2a
andm2

2 � �a�1� ��. Clearly,m2 takes increasingly small
values as � approaches 1. This leads to a rise in the largest
effective dissipation scale �2=m2, shifting the system to-
wards the overdamped limit and decreasing the value of �.
In order to check this we simulated a one field relativistic
system with a varying mass term. We observed as ex-
pected, that as the mass was reduced the value of �
decreased, with the system displaying dissipative effects.
-6
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FIG. 7 (color online). Fraction of same-charge kink/antikink
pairs (crosses) and opposite charged pairs (squares) as a function
of �. For reference we also show the fraction of negative charge
kinks (diamonds). The bottom plot corresponds to the under-
damped regime � � 0:6 and the top plot to the overdamped case
� � 1.
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How is this trend towards lower values of the scaling
exponent stopped? To understand the overall behavior of �
as displayed is Fig. 6 one must keep in mind that as� takes
larger values, the interaction between kinks and antikinks
changes considerably. As discussed in Section II B, for
large separations, there is a repulsive interaction between
kinks and antikinks with the same charge. Note that the
effect of the repulsive interaction should not be felt imme-
diately after �> 0:5, as the height of the potential barrier
is initially very small. Nevertheless, since the energy
needed to overcome the repulsive barrier increases with
�, we expect kink/antikink annihilation to be inhibited for
larger values of this parameter. This should lead to survival
of a larger number of kink pairs, increasing the final
number of defects. What would be the signature of this
mechanism in the scaling of the final defect density with
quench rate? Clearly the effect would be felt more strongly
for fast quenches, where defect densities are higher and
annihilation is likely to play a bigger role. An increase in
kink survival rates for low values of �Q should lead to a
steeper distribution ���Q�, that is, larger values of the
exponent �.

The mechanism above provides an explanation to why
the decrease in � is halted for values of � roughly halfway
between 0.5 and 1.0. In order to confirm this scenario we
identified neighboring pairs of kinks and antikinks in the
simulation and determined their charges by looking at the
sign of � in their cores. Using the knowledge of the spatial
distribution of charges at the final time of each simulation,
we counted the number of defect pairs with equal and
opposite charge, respectively. If same-charge pairs are
being prevented from annihilating, then their numbers
should be in excess of those of opposite charged pairs. In
Fig. 7 we compare the total number (i.e. summed over all
quenches) of both types of kink/antikink pairs as a function
of �, in the dissipative and relativistic cases. The results
match our expectations well, with the fraction of pairs with
equal charge deviating little from 0.5 up to values of ��
0:7. Above that threshold there is a decrease in the per-
centage of pairs with attracting charges, signaling the
survival of equal charge pairs due to the rise in the repul-
sive potential barrier. We also confirmed that this effect is
more marked for fast quenches, as discussed above. For
reference, the plots include the data of the fraction of pairs
with negative charge as well. As expected, as a conse-
quence of the symmetry of the theory, this quantity remains
equal to 0.5 within error bars throughout the whole range of
�.

Finally we will focus on the apparently anomalous
behavior of the system for values of � very near 1, in
which limit there is no topological charge. For the three
points with highest �, i.e. for �> 0:96, there is a marked
increase in the exponent �, accompanied by a decrease in
the fraction of same-charge pairs. A closer look at the data
reveals that the change in relative amount of types of kink/
085012
antikink pairs is caused exclusively by the number of pairs
with opposite charge going up by a considerable amount.
We note that the results for these three values of � should
be taken with care since we are in a regime where the kink
core size becomes increasingly large. In particular, for fast
quenches with high final defect densities, the defect-defect
separation becomes of the order of magnitude of the core
size. Taking the most extreme case � � 0:99, we find for
the simulation parameters l � 10, which implies that each
defect has a spatial extension of the order of 20. Our
simulation box should in principle not be able to accom-
modate more than 100 of these kinks, and for fast quenches
the number observed is indeed very close (for example 80
in the relativistic case, for the smallest �Q). In other words,
the correlation length leading to domain formation at the
transition is close to the core kink size. These cases should
be understood as being effectively in theU�1� regime, with
winding springs being formed with no spatially localized
core. The dynamics of these objects should be described in
terms of unwinding processes and this might lead to a
slower annihilation rate than traditional kink/antikink col-
lisions. In terms of the interaction potentials in Fig. 4 this
corresponds to the flattening of the attraction potential as
�! 1. A study of the time scales involved in the departure
from equilibrium in such case (using, for example, the
techniques developed in [48]) could also shed some light
on the dynamics of these systems. A detailed analysis of
the unwinding process and its role in defect production in a
phase transition will be the focus of a future publication
dedicated exclusively to the U�1� theory in 1� 1 dimen-
sions [49].
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IV. CONCLUSIONS

We studied kink formation in 1� 1 dimensions, in a
scalar theory where an added field can lead to condensation
in the defect core. We obtained explicit expressions for the
nontrivial defect profiles, and determined the region of
parameter space for which these are stable. This introduces
an extra degree of complexity in the theory as kinks acquire
a charge defined in terms of the sign of the core condensate.
As a consequence, the process of defect production at a
nonequilibrium phase transition suffers a qualitative
change, with annihilation of kinks and antikinks being
suppressed due to the repulsive nature of their interaction.
The degree to which this takes place depends on the
parameters of the potential. As a consequence we observed
deviations from traditional Kibble-Zurek scaling, with the
value of the scaling parameter showing a clear, measurable
signature of this effect.

These results open interesting possibilities for the case
of higher dimensional theories. Though there seems to be
good evidence by now in favor of the stability of vortons in
085012
U�1� �U�1� theories in 3� 1 dimensions [50], the ques-
tion of formation still remains unresolved. Vortons are very
fragile objects making a numerical study of their produc-
tion in a phase transition impossible, the size of the do-
mains required being severely constrained by
computational limitations. The model described in this
article can be generalized to 2� 1 dimensions and an extra
condensate field introduced. Such Z2 �U�1� theory would
display domain walls formed by kinks of the Z2 field, with
the U�1� field condensing in their cores and leading to
vortonlike solutions. The lower space-time dimensionality
of this model could make numerical simulations of vorton
formation possible—a line of research we will be follow-
ing in a future publication.

ACKNOWLEDGMENTS

N. D. Antunes was funded by PPARC. P. Gandra was
supported by FCT, grant number PRAXIS XXI No. BD/
18432/98. R. R. would like to acknowledge support from
the ESF COSLAB programme.
[1] W. H. Zurek, Nature (London) 317, 505 (1985); Acta
Phys. Pol. B 24, 1301 (1993).

[2] W. H. Zurek, Phys. Rep. 276, 177 (1996).
[3] T. W. B. Kibble, Phys. Rep. 67, 183 (1980).
[4] C. Bauerle et al., Nature (London) 382, 332 (1996).
[5] V. M. H. Ruutu et al., Nature (London) 382, 334 (1996).
[6] R. Carmi and E. Polturak, Phys. Rev. B 60, 7595 (1999).
[7] A. Maniv, E. Polturak, and G. Koren, Phys. Rev. Lett. 91,

197001 (2003).
[8] R. Monaco, J. Mygind, and R. J. Rivers, Phys. Rev. Lett.

89, 080603 (2002).
[9] R. Monaco, J. Mygind, and R. J. Rivers, Phys. Rev. B 67,

104506 (2003).
[10] G. Karra and R. J. Rivers, Phys. Lett. B 414, 28 (1997).
[11] G. Karra and R. J. Rivers, Phys. Rev. Lett. 81, 3707

(1998).
[12] P. Laguna and W. H. Zurek, Phys. Rev. Lett. 78, 2519

(1997).
[13] N. D. Antunes, L. M. A. Bettencourt, and W. H. Zurek,

Phys. Rev. Lett. 82, 2824 (1999).
[14] E. Moro and G. Lythe, Phys. Rev. E 59, R1303 (1999).
[15] N. D. Antunes, P. Gandra, and Ray J. Rivers, hep-ph/

0504004.
[16] M. Hindmarsh and A. Rajantie, Phys. Rev. Lett. 85, 4660

(2000); A. Rajantie, J. Low Temp. Phys. 124, 5 (2001).
[17] R. Jeannerot, J. Rocher, and M. Sakellariadou, Phys. Rev.

D 68, 103514 (2003).
[18] M. Sazhin, G. Longo, M. Capaccioli, J. M. Alcalá, R.
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