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Fermion generations, masses, and mixings in a 6D brane model
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We study the motion of higher dimensional fermions in a nonsingular 6D brane background with an
increasing warp factor. This background acts as a potential well trapping fermions and fields of other spins
near a 3� 1 dimensional brane. By adjusting the shape of this potential well it is possible to obtain three
normalizable zero-mass modes giving a possible higher dimensional solution to the fermion generation
puzzle. The three different zero-mass modes correspond to the different angular momentum eigenvalues
for rotations around the brane. This bulk angular momentum acts as the family or generation number. The
three normalizable zero modes have different profiles with respect to the bulk, thus by coupling the higher
dimensional fermion field to a higher dimensional scalar field it is possible to generate both a realistic
mass hierarchy and realistic mixings between the different families.
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I. INTRODUCTION

In the standard model of particle physics [1] there are
open questions which have not yet found an answer. Chief
among these is the fermion family or generation puzzle as
to why the first generation of quarks and leptons (up quark,
down quark, electron, and electron neutrino) are replicated
in two families or generations of increasing mass (the
second generation consisting of charm quark, strange
quark, muon, and muon neutrino; the third generation
consisting of top quark, bottom quark, tau, and tau neu-
trino) In addition to explaining why there are heavier
copies of the first generation of fermions one would like
to explain the mass hierarchy of the generations and the
mixings between the generations characterized by the
Cabibbo-Kobayashi-Maskawa quark-mixing matrix
(CKM). Several ideas have been suggested such as a
horizontal family symmetry [2].

Recently theories with extra dimensions have been used
in a novel way to try and explain some of the open ques-
tions in particle physics and cosmology. In [3–5] the
hierarchy problem (i.e. why the gravitational interaction
is many orders of magnitude weaker than the strong and
electroweak interactions of particle physics) was addressed
using large or infinite extra dimensions. Early versions of
these extra dimensional models were investigated by sev-
eral researchers [6–9]. In contrast to extra dimensions in
the usual Kaluza-Klein picture, in the models with large or
infinite extra dimensions gravity acts in all the spacetime
dimensions, while the other particles and fields are con-
fined, up to some energy scale, to a 3� 1 dimensional
brane. These recent extra dimensional models have also
been applied to answer other questions of particle physics
and cosmology. Nonsupersymmetric string models [10]
have been constructed which have been able to reproduce
the standard model particles from intersecting D5-branes.
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More phenomenological brane models [11–14] have been
constructed to explain the hierarchy of masses and/or the
CKM elements of the fermions. In [15,16] brane world
models were used to explain dark energy and dark matter.
General studies of higher dimensional cosmologies can be
found in [17,18].

In this paper we attempt to give a toy model for the
generation problem using a brane world model in 6D. We
obtain three 4D fermion families from the zero modes of a
single 6D spinor field. A mass hierarchy and mixings
between the three zero modes are obtained by introducing
a Yukawa type interaction between the 6D spinor field and
a 6D scalar field. This gives a common origin (i.e. the
higher dimensional Yukawa interaction) for both the mass
spectrum and the mixings of the fundamental fermions.
II. 6D GRAVITATIONAL BACKGROUND

In [13,19–21] a 6D brane world model was investigated
which gave universal gravitational trapping of fields of
spins 0, 1

2 , 1, 2, to the brane. The system considered was
6D gravity with a cosmological constant and some matter
field energy-momentum. The action for this system was

S �
Z
d6x

����������
�6g

q �
M4

2
�6R� 2�� � 6L

�
; (1)

where
����������
�6g

p
is the determinant, M is the fundamental

scale, 6R is the scalar curvature, � is the cosmological
constant and 6L is the Lagrangian of the matter fields. All
of these quantities are six dimensional. The ansatz for the
6D metric was taken as

ds2 � �2�r�����x��dx�dx� � ��r��dr2 � r2d�2�; (2)

where the Greek indices �;�; . . . � 0, 1, 2, 3 refer to 4-
dimensional coordinates. The metric of ordinary 4-space,
����x��, has the signature ��;�;�;��. The functions
��r� and ��r� depend only on the extra radial coordinate,
r, and thus are cylindrically symmetric in the transverse
-1 © 2006 The American Physical Society
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polar coordinates (0 � r <1, 0 � � < 2�). The ansatz
for the energy-momentum tensor of the matter fields was
taken to have the form

T	� � �g	�F�r�; Tij � �gijK�r�; Ti	 � 0:

(3)

Other than satisfying energy-momentum conservation i.e.

rATAB �
1����������
�6g

p @A�
����������
�6g

q
TAB� � �BCDT

CD

� K0 � 4
�0

�
�K � F� � 0; (4)

the energy-momentum tensor was unrestricted, although it
was desirable for it to satisfy physical requirements such as
being everywhere finite, and being peaked near the brane.
In (4) and in the rest of the paper a prime indicates
derivative with respect to r.

In [20,13] it was found that the above system had the
following nonsingular solution

��r� �
cb � arb

cb � rb
; (5)

where a, b, c are constants and a > 1. All other ansatz
functions were given in terms of ��r�.

��r� �

2�0

r
� 
2�a� 1�bcb

rb�2

�cb � rb�2
; (6)

where 
 is an integration constant with units of length,
085007
which was related to the constants a and b by


2�

10M4
�

b
a� 1

: (7)

This solution in terms of ��r� and ��r� represents a non-
singular, thick brane. The brane thickness is proportional to
c. Recently the matching conditions for a general thick
brane of codimension 2 was given [22]. This provides a
general framework in which to study gravitational phe-
nomena and particle trapping in codimension 2 brane-
worlds. The source functions are also determined by ��r�.

F�r� �
f1

2�2 �
3f2

4�
; K�r� �

f1

�2 �
f2

�
; (8)

where f1 and f2 are constants given by

f1 � �
3�

5
a; f2 �

4�

5
�a� 1�: (9)

In [20,13] it was shown that for b � 2 this solution gave a
universal, gravitational trapping for fields with spins 0, 1

2 ,
1, 2 within the brane width ( � c) of r � 0.

For b > 2 (6) shows that the scale factor for the extra
dimensions, ��r� � 0 at r � 0, raising the possibility of
having a singularity on the brane and making the solutions
with b > 2 unphysical. However, by looking at invariants
such as the Ricci scalar, R, one finds that they are non-
singular at r � 0. This indicates that the zero of ��r� at r �
0 for b > 2 solutions is not a physical singularity. The
Ricci scalar for the above solution is
R �
2b��5c2b � 4ac2b � 10cbrb � 22acbrb � 10a2cbrb � 4ar2b � 5a2r2b�

�a� 1�
2�cb � arb�2
: (10)
It is easy to see that this is finite at r � 0. Other invariants
such as the fully contracted Riemann tensor, RAB

CDRCD
AB,

or the square of the Ricci tensor, RABRAB also turn out to be
finite at r � 0. Thus we take the zero in the scale factor
��r� to be a coordinate rather than physical singularity.
Note that ��r� goes to zero both at r � 0 and r � 1 so that
the metric (2) essentially becomes 4D at these locations.
Thus the solution given in (5) is like the 2 brane model of
[4] where two 4D branes sandwich the higher dimensional,
bulk spacetime.

The weak point in the above is that the source ansatz
functions have no clear physical interpreation. It would be
desirable to show that an energy-mometum tensor of the
general form given by F�r�, K�r� could arise from some
realistic source such as a scalar field. Because ��r� in-
creases as r! 1 (8) and (9) indicate that F�r�, K�r� have
their maximum near r � 0 and decrease as ! 1. This
behavior is similar to soliton solutions of classical field
theory. Thus F�r�, K�r� might be considered as modeling
some solitonic field configuration which forms the brane.
As specific examples Refs. [23,24] investigate solitonic
scalar field configurations which form branes. Another
possible physical interpretation of the source ansatz func-
tions can be given by transforming the metric given by (2),
(5), and (6) via the transformation r � ctan2=b��=2� and
setting c2=4 � 10M4=� � 
2�a� 1�=b. With this the
metric takes the form

ds2 � �2�������x��dx�dx� �
c2

4

�
d�2 �

b4

4
sin2�d�2

�
;

(11)

where ���� � 1
2 ��a� 1� � �1� a� cos��. When b � 2

one can see (after renaming the angles in a standard way
as �! � and �! ’) that the geometry of the extra
dimensions is that of a sphere. However when b > 2 one
has zeroes in the 2D scale function, ��r�, at r � 0 and r �
1 and a conical deficit angle of � � 2�� b�. This is
essentially the ‘‘football’’-shaped geometry for the extra
dimensions considered in [25] (see, in particular, Eq. (24)
of [25]). The 6D solution in [25] involved realistic sources:
an electromagnetic field in the form of a magnetic flux and
-2
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a bulk cosmological constant. Thus the source ansatz
functions, F�r�, K�r� may be acting as effective magnetic
flux plus bulk cosmological constant.

III. THREE FAMILIES FROM THREE ZERO
MODES

We now study the motion of a 6D fermion field in the
gravitational background given by (2). We make the iden-
tification that different fermion zero-mass modes (i.e. so-
lutions for which the 4D part of the fermion wavefunction
satisfies �	@	 �x�� � 0) correspond to different families.
Thus we want to see if it is possible to obtain three zero
modes. The picture that we present here is a toy model in
the sense that the effective 4D fermion fields do not have
the full SU�3� � SU�2� �U�1� charges of the real stan-
dard model fields. As will be shown below the fermions
considered here carry only a U�1� charge associated with
the rotational symmetry around the brane i.e. the symmetry
associated with the extra dimensional variable �. This is
the same as the first example in [12], with the U�1� quan-
tum number being associated with family number.
Reference [12] gives other more complex and realistic
examples where the fermions carry U�1� �U�1� or
SU�2� �U�1� charges. In the U�1� �U�1� example one
of the U�1�’s is associated with a horizontal, family sym-
metry [2] which distinguishes between fermions of differ-
ent generations, while the other U�1� is then an ordinary
gauge symmetry. In the present case the single U�1� is
associated with the family symmetry. Other authors [26]
also have studied 6D brane models with more realistic
standard model charges.

One can gauge [12] any of the above examples using the
Kaluza-Klein approach. For example, with the simpleU�1�
model considered here the metric in (2) has a Killing
vector, @�, which via the standard Kaluza-Klein mecha-
nism implies an associated gauge boson in the effective 4D
theory. The gauge field arises from the off-diagonal com-
ponents of the higher dimensional metric as

ds2 � �2�r�����x��dx�dx�

� ��r��dr2 � �rd�� A	dx
	�2�: (12)

This A	 is analogous to the horizontal gauge boson of the
family symmetry models [2]. In [27] it was shown that the
zero mode of the gauge field A	 was localized to the brane.
Since horizontal gauge bosons have an experimentally
fixed lower mass limit a more realistic model would need
to have some symmetry breaking, Higgs mechanism in
order to give A	 an acceptably large mass.

From the previous section we found that in 6D one has
the freedom to let the exponent b take values other than
b � 2. The motion of fermions in the 6D brane solution of
(2) for the b � 2 case was studied in [21]. It was found that
in this case only one zero mode occurred, and thus only one
family. Therefore we want to consider the b > 2 case and
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show that for a certain range of b it is possible to get three
zero modes. The constant b controls the steepness of the
scale functions ��r� and ��r�. Therefore it is reasonable
that larger b should give a stronger confinement of the
fermions to the vicinity of the brane at r � 0, and thus to a
larger number of zero modes.

The 6D action and resulting equations of motion for a
spinor field are

S� �
Z
d6x

����������
�6g

q
��i�ADA�;

�ADA� � �	D	�� �rDr�� ��D�� � 0:
(13)

In the above �A � hA�B�
B are the 6D curved spacetime

gamma matrices, and hA�B are the sechsbiens defined via
gAB � h �A

Ah
�B
B� �A �B. In order to evaluate the 6D Dirac equa-

tion in (13) we need to calculated the spin connections

! �M �N
M � 1

2h
N �M�@Mh

�N
N � @Nh

�N
M� �

1
2h
N �N�@Mh

�M
N � @Nh

�M
M�

� 1
2h
P �MhQ �N�@PhQ �R � @QhP �R�h

�R
M: (14)

The nonzero spin connections are

! �r ��
	 � � ��

	

��������
r�0

p



; ! �r ��
� �

������
r
�0

s
@r�

��������
r�0

q
�: (15)

With these one can explicitly calculate the various cova-
riant derivatives in (13)

D	� �
�
@	 �

1

2
! �r ��
	 �r��

�
�; Dr� � @r�;

D�� �
�
@� �

1

2
! �r ��
� �r��

�
�:

(16)

We now assume that the 6D fermion spinor can be decom-
posed as ��xA� �  �x	� 	 
�r; �� into 4D and 2D parts.
We are interested in the zero-mass modes so the 4D fer-
mion part is taken to satisfy �	@	 �x�� � 0. The 2D
spinor can be expanded as


�r; �� �
fl�r�
gl�r�

� �
eil�: (17)

We take the gamma matrices of the extra space as in
[12,13]

�r �
0 1
1 0

� �
�� �

0 �i
i 0

� �
: (18)

Combining Eqs. (13)–(18) we arrive at the following equa-
tions for fl�r� and gl�r��

@r � 2
�0

�
�

1

2

@r�
��������
r�0

p
���������

r�0
p �

l
r

�
gl�r� � 0;

�
@r � 2

�0

�
�

1

2

@r�
��������
r�0

p
���������

r�0
p �

l
r

�
fl�r� � 0:

(19)

The solutions for fl�r� and gl�r� are
-3
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fl�r� � al��r��2�r�0�r����1=4�rl;

gl�r� � bl��r��2�r�0�r����1=4�r�l:
(20)

Because of the l dependence in both fl�r� and gl�r�, differ-
ent l values give fermion fields with different profiles in the
bulk. This will result in different masses and mixings for
different l values when the fermion field is coupled to a
scalar field in the next section. One criteria for the trapping
of the fermion field is that it should be normalizable with
respect to the extra dimensions r, �

1 �
Z ����������
�6g

q
�
�r; ��
�r; ��drd�

�
Z 2�

0
d�

Z 1
0
dr�4
2�0

��4��������
r�0

p �a2
l r

2l � b2
l r
�2l�

� 2�
2
Z 1

0
dr

������
�0

r

s
�a2
l r

2l � b2
l r
�2l�: (21)

From (6) one finds
����������
�0=r

p
� �a�

1�1=2b1=2cb=2r�b=2��1�cb � rb��1. Thus in order for (21) to
be normalizable and for the particular fermion l-mode to be
trapped, we want the integral

2�
2
�����������������������
�a� 1�bcb

q Z 1
0

r
2l��b=2��1

cb � rb
dr (22)

to be finite. If (22) diverges the particular l-mode will not
be trapped. This requirement that (22) be finite leads to
restrictions on b for particular values of l. Evaluating the
integral (22) gives

2�2
2c
2l sec
�
2l�
b

� ������������
a� 1

b

s
if b > 4jlj; (23)

and (22) diverges if b � 4jlj. Thus in order to have three
normalizable l-modes we require that 4< b � 8. Under
these conditions the l � 0, and jlj � 1 modes are normal-
ized and trapped, while jlj � 2 modes are not. Since the
integrand in (22) is positive definite and only has possible
divergences at r � 0 and r � 1 one can come to this
conclusion by investigating the r! 0 and r! 1 behavior
of this integrand. For jlj � 1 one finds that for l � �1 the
integrand behaves as limr!0 ’ r

1��b=2�, limr!1 ’ r
1��b=2�;

for l � �1, it behaves as limr!0 ’ r�3��b=2�, limr!1 ’

r�3��b=2�. The r! 0 limit of l � �1 and r! 1 limit of
l � �1 give convergent results. On the other hand the r!
0 limit of l � �1 and r! 1 limit of l � �1 give con-
vergent results only if b > 4. One can see the for b > 4 the
l � 0 mode is normalized. For jlj � 2 one finds that for
l � �2 the integrand behaves as limr!0 ’ r

3��b=2�,
limr!1 ’ r

3��b=2�; for l � �2, it behaves as limr!0 ’

r�5��b=2�, limr!1 ’ r�5��b=2�. The l � �2 integral di-
verges at r! 1 and the l � �2 diverges at r! 0 if b �
8. This analysis again shows that one has three normal-
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izable modes (i.e. three fermion families) when the 4<
b � 8.

One could also consider using the criteria for trapping
that the fermion action be finite when integrated over the
extra dimensions.

S� �
Z
d6x

����������
�6g

q
��i�ADA�

� 2�
2
Z 1

0
dr

1

�

������
�0

r

s
�a2
l r

2l � b2
l r
�2l�

�
Z
d4x

��������
��
p � i��@� : (24)

The fermions are trapped if the integral over r in the last
expression is convergent. This integral is almost the same
as the last integral in (21). It differs only by a factor of 1=�
which comes from the sechsbien that modifies the gamma
matrices, ��. The explicit expression for��1

����������
�0=r

p
can be

read off from (5) and (6). From this one finds that
��1

����������
�0=r

p
/ r�b=2��1�cb � arb��1. The only change with

respect to the normalization condition (21) is that rb ! arb

in the denominator. Thus the integral of the action over the
extra coordinates will have the same convergence proper-
ties as the normalization condition (21), thus giving the
same conclusion that three zero-mass modes will be
trapped if 4< b � 8.

In [21] only the b � 2 case in (5) was considered and
only one zero-mass mode occurred. Thus the existence of
three zero modes is the result of allowing the exponent in
(5) to take values b > 2. In [28] it was shown that the
solution of (5), (6), and (8) could be generalized to space-
times of dimension greater than 6D. For these greater than
6D spacetimes the exponent, b, in (5) was not free, but
fixed to b � 2. This would seem to imply that only in 6D
can one have more than one fermion generation for the
background solution given by (5), (6), and (8). However in
the case where spacetime greater than 6D one could con-
sider taking the higher generations as nonzero-mass
modes. Also one could try to generalize the other 6D brane
solution given in [21] to spacetime dimensions greater than
6D.

In discussing the masses and mixing between the differ-
ent families (i.e. different l) we will need the normalization
relationship between al and bl. From (21)–(23) we find

a2
l c

2l � b2
l c
�2l �

cos�2l�b �

2�2
2

������������
b

a� 1

s
: (25)

This condition allows us to write bl in terms of al or visa
versa.

IV. MIXINGS AND MASSES

By adjusting the exponent b in our gravitational back-
ground solution we have three zero-mass modes which can
be taken as a toy model for three generations of fermions.
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There are two problems: first there is no mixing between
the different generations due to the orthogonality of the
angular parts of the higher dimensional wave functions.
Overlap integrals like

R
1
0

R
2�
0

�
l
mdrd�, which character-
ize the mixing between the different states, vanish sinceR

2�
0 e�il�eim�d� � 0 if l � m. Second, all the states are

massless, whereas the fermions of the real world have
masses that increase with each succeeding family.
Following [12] we address both of these issues by intro-
ducing a coupling between the 6D fermions and a 6D
scalar field of the form Hp�xA� ��l�xB��l0 �xC�. This adds
to the action a scalar-fermion interaction of the form

Ssf � f
Z
d4xdrd�

����������
�6g

q
Hp

��l�l0 (26)

f is a constant which gives the scalar-fermion coupling
strength.

We now take the scalar field to be of the form

Hp�xA� � Hp�r�eip�; (27)

i.e. only depending on the bulk coordinates r, �, but not on
the brane coordinates x	. In [12] the same form as in (27)
was taken for the scalar field, but certain simplifying
assumptions were made about the form of H�r�—it was
assumed to be either a constant or a delta function. In [14]
other forms for the scalar field profile were used. In the
following we will determine the form of H�r� by studying
the field equations for a scalar field in the background
provided by (5) and (6). Note that in the form (27) the
scalar field is only dynamical with respect to the extra
dimensions, r, �, but not with respect to the brane space-
time dimensions, x	. Thus one has a scalar field mecha-
nism for fermion mass generation without a dynamical 4D
scalar particle.

Substituting (27) into (26) we find

Ssf � Ull0
Z
d4x � l�x

	� l0 �x
	� where

Ull0 � f
Z
drd�

����������
�6g

q
Hp�r�e

i�p�l�l0�� �
l�r�
l0 �r�;
(28)

Ull0 will be nonzero when p� l� l0 � 0. When l � l0 this
gives a mass term and when l � l0 this gives a mixing term
between the l and l0 modes.

To get explicit results for Ull0 one needs an explicit form
for Hp�r�. This is done by solving the field equations for a
test scalar field in the background given by ��r� and ��r�
for the different p-modes. The equation for the scalar field
in the background given by (5) and (6) is

1����������
�6g

p @A�
����������
�6g

q
gAB@BHp�xA�� � 0: (29)

Inserting (27) into (29) we get
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H00p�r� �
�
1

r
�

4�0�r�
��r�

�
H0p�r� �

p2

r2 Hp�r� � 0: (30)

From (5) we find that

4�0�r�
��r�

�
4�a� 1� bc �

r
c�
b�1

�1� �rc�
b��1� a�rc�

b�
: (31)

Inserting this expression back into (30) we were not able to
find a closed form solution, but were only able to solve it
numerically. From the form of 4�0�r�=��r� in (31) one can
see that when 4< b � 8 that the �p2=r2 and 1=r terms
dominate in the limits r! 0 and r! 1. If one drops the
4�0�r�=��r� term then one finds that the asymptotic (r! 0
and r! 1) solutions to (30) are

Hp�r� � A�prjpj or A�pr�jpj for p � 0; (32)

H0�r� � A0 or B0 ln�r� for p � 0; (33)

where A
p, A0, and B0 constants. These asymptotic solu-
tions gave a fair representation to the numerical solution
even for intermediate values of r. The p � 0 solutions can
be written in combined form asH0�r� � B0 ln�r=c0� where
A0 � �B0 ln�c0�. This form will be used the the next
subsection to give masses to the three zero modes. The
singularities in H0�r�, at r � 0 and r � 1, are not a prob-
lem since the combination of the fermion ‘‘wave function’’
and the metric ansatz functions go to zero fast enough at
r � 0 and r � 1 to negate these singularities in the
Yukawa coupling integral (28).

A. Masses

From (28) one can sees that the mass terms are those for
which l � l0 and thus we want to consider couplings to the
p � 0 scalar mode in (32). We will use the combined form
of the two solutions namelyH0�r� � B0 ln�r=c0�. With this
(28) becomes

ml�Ull�f
Z
drd�

����������
�6g

q
H0�r� �
l�r�
l�r�

�2fB0�
2
����������������������
�a�1�bcb

q Z 1
0

ln� rc0
�rb=2�1

cb�rb

��a2
l r

2l�b2
l r
�2l
dr

�fB0

�
ln
�
c
c0

�
�
�Kl
b

tan
�
2l�
b

��
where

Kl�
4a2

l c
2l�2
2

cos�2�lb �

�����������
a�1

b

s
�1: (34)

In arriving at the final line in (34) where have used (25) to
replace bl in terms of al. Looking at only the tan�2l�=b�
term and taking fB0Kl�=b > 0 gives a hierarchy of
masses of m�1 <m0 <m�1. However m�1 < 0 and m0 �
0 which is phenomenologically wrong. Taking ln�c=c0� as
positive (i.e. c > c0) and sufficently large can shift the
-5
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mass spectrum so that all masses are positive and while still
maintaining the hierarchy m�1 <m0 <m�1. Because our
fermions only carry a U�1� charge the above hierarchy is a
toy model. Here, as an example, we take the three fermions
as the ‘‘down’’ sector of quark generations where l � �1 is
the down quark, l � 0 is the strange quark, and l � �1 is
the bottom quark. Taking the masses of the down, strange
and bottom quarks as m�1 � md � 4 MeV, m0 � ms �
100 MeV and m�1 � mb � 4400 MeV we find from (34)

md

ms
�
m�1

m0
� 0:04 �

�
�K�1� tan�2�=b�

b ln�c=c0�
� 1

�
;

mb

ms
�
m�1

m0
� 44:00 �

�
K�1� tan�2�=b�

b ln�c=c0�
� 1

�
:

(35)

Solving these equations for a1 and a�1 (which are em-
bedded in the definition of K�1 and K�1) gives

a1 �
D

c2

���������������������������������������
�1� 43x� cos

�
2�
b

�s
;

a�1 � D

�������������������������������������������
�1� 0:96x� cos

�
2�
b

�s
;

(36)

where x � b ln�c=c0�
� tan�2�=b� and D2 � c2

4�2
2 �
b

a�1�
1=2. If a1 and a�1

are chosen as in (36) then the mass ratios in (35) are
obtained.

B. Mixings

A similar analysis can be carried out with the mixings
between the different ‘‘families’’ characterized by different
l number. The mixings are delineated by U0;1, U1;0, U1;�1,
U�1;1, U0;�1, and U�1;0. In the case of mixings the scalar
field must have a nonzero angular eigenvalue (i.e.
Hp�r; �� � Hp�r�eip� with p � 0) which satisfies p� l�
l0 � 0. Thus forU�1;0 andU0;1 one needs p � �1; forU1;0

andU0;�1 one needs p � 1; forU1;�1 one needs p � 2; for
U�1;1 one needs p � �2. We will require the following
relationship between the mixings: U0;1 � U1;0, U1;�1 �
U�1;1 and U0;�1 � U�1;0. This in turn implies that Hp�r�
should depend only on jpj (e.g. H1�r� � H�1�r�). Looking
at the first line in (32) this means that we can take either the
first solution or the second but not the sum in general
unless A�1 � A�1. In what follows we will take Hp �

A�pr
jpj. The conclusions are not qualitatively different if

we make the other choice Hp � A�pr�jpj. With this we
find

Ull0 � f
Z
drd�

����������
�6g

q
Hp�r� �
l�r�
l0 �r�

� 2�
2f
�����������������������
�a� 1�bcb

q Z 1
0
Hp�r�

r�b=2��1

cb � rb

� �a�l al0r
l�l0 � b�l bl0r

�l�l0 
; (37)

where in (37) we have carried out the d� integration, and
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the condition p� l� l0 holds. Inserting Hp�r� � A�prjpj

in (37) and assuming all al and bl are purely real we get

Ull0 �2�
2f
����������������������
�a�1�bcb

q
A�p

Z 1
0

r�b=2��p�1

cb�rb

��alal0r
l�l0 �blbl0r

�l�l0 


�2�2
2f

�����������
a�1

b

s
A�pcjpj

�
alal0cl�l

0
sec

�
�l� l0 �jpj��

b

�

�blbl0c
�l�l0 sec

�
�l� l0�jpj��

b

��
: (38)

Now the four cases �l � 0; l0 � �1�, �l � �1; l0 � 0�,
�l � 0; l0 � 1� and �l � 1; l0 � 0� involve jpj � 1 and
from (38) yield

U0;�1 � U�1;0 �
fDA�1c

2

2

�
a0a�1

c2 � b0b�1 sec
�

2�
b

��
;

(39)

U0;1 � U1;0 �
fDA�1c

2

2

�
sec

�
2�
b

�
a0a�1 �

b0b�1

c2

�
:

(40)

For the two cases l � 1, l0 � �1, l � �1, l0 � 1 one has
jpj � 2

U1;�1 � U�1;1 �
fDA�2c2

2
�a1a�1 � b1b�1� sec

�
2�
b

�
;

(41)

where as in the previous subsection D2 � c2

4�2
2 �
b

a�1�
1=2.

We now show that parameters (i.e. a, b, c, a0) can be
chosen so the ratios of the above mixings match the ratios
of the CKM mixing matrix elements. If this can be done
then taking a
1 as in (36) will yield the correct mass ratios.
From [29] we take U0;�1 � Vus � 0:224, U0;1 � Vcb �
0:040 and U�1;1 � Vub � 0:0036. Again note that since
in our model we only have one flavor in each family (here
taken as the down flavor or sector) these associations
betweenUi;j and Vij are to be taken as representing generic
interfamily mixing. Now combining (39)–(41) gives

U0;�1

U0;1
�
a0a�1 � c2 sec�2�b �b0b�1

b0b1 � c2 sec�2�b �a0a1

� 5:6; (42)

U0;�1

U�1;1
�

A�1�
a0a�1

c2 � b0b�1 sec�2�b ��

A�2�a1a�1 � b1b�1� sec�2�b �
� 60:5: (43)

To determine the last ratio one needs to determine the
normalization constants, A�1 and A�2 of the p � 1 and
p � 2 scalar field modes. For this one needs to explicitly

evaluate the integral 1 � A2
p
R ����������
�6g

p
H2
pdrd� for p � 1

and p � 2, with Hp�r� given by (32). Explicitly the ratio
A�1=A�2 is
-6
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A�1

A�2
� c

�������������������������������������R
1
0
�1�ayb�4

�1�yb�6
yb�3dyR

1
0
�1�ayb�4

�1�yb�6
yb�1dy

vuuuut : (44)

The two mass ratios have already been fixed by choosing
a
1 [this also fixes b
1 because of (25)] as in (36). Next the
mixing ratio, U0;�1

U0;1
, in (42) can be fixed by choosing a0 [this

also fixes b0 because of (25)]. In particular let us parame-

terize a0 as a0 �
D
c � so that b0 �

D
c

���������������
2� �2

p
where � is

arbitrary, and D and c are previously defined. In this way
one can see that (42) and also (36) are independent of c.
Finally one can fix (43) by choosing a in (44) to give the
ratio A�1=A�2. As an example choose a � 7:5, b � 4:041,
c � 1:0, D � 1:0 (this can be done by adjusting 
), and
x � 0:001 (this can be done by adjusting c0). In this way
one finds a1 � 0:1289 and a�1 � 0:1263. The associated
bl’s are b1 � 0:1234 and b�1 � 0:1262. Using these one
find that the mass ratios in (35) are satisfied. Next choosing
� � 0:223 so that a0 � 0:223 and b0 � 1:397 one finds
that the mixings in (42) and (43) are satisfied.

Other values of a, b, c, D, and x in this general range
worked as well. However in general the various relation-
ships worked best when b was close to 4.

V. SUMMARY AND CONCLUSIONS

In this paper we studied the field equations of fermions
in the background of the nonsingular, 6D brane solution of
[19,13]. By allowing the exponent, b, in the 4D scale
function, ��r�, to take values b > 2 we found that we
could get multiple zero-mass modes which were identified
with different fermion generations. In particular for 4<
085007
b � 8 we obtained three zero-mass modes corresponding
to different l eigenvalues: l � �1, 0, 1. The charge l
played the role of the family number. When one fixes the
value of b � 2 as in [19] one has only one zero mode [21].
For b > 2 the 2D scale function, � has a zero both at r � 0
and r � 1. However the scalar invariants such as the Ricci
scalar are well behaved and nonsingular over the entire
range of r, indicating these points are coordinate rather
than physical singularities.

The masses and mixings between the different genera-
tions was given by a common mechanism—the introduc-
tion of a scalar field with a Yukawa coupling to the
fermions.

An interesting extension of the above scenario is to see if
the scalar field could play a dual role: (i) as the mechanism
for generating the masses and mixings and (ii) as the matter
source for forming the brane. In [23,24] it was shown that a
scalar field could be used as a source to construct a thick
brane. Thus it might be possible to replace the phenome-
nological matter sources, F�r� and K�r�, by a scalar field
source. Such a scenario would be more economical since
the scalar would serve the dual role of forming the brane
and giving masses and mixings to the fermions.
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