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Boundary localized symmetry breaking and topological defects
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We discuss the structure of topological defects in the context of extra dimensions where the symmetry
breaking terms are localized. These defects develop structure in the extra dimension which differs from
the case where symmetry breaking is not localized. This new structure can lead to corrections to the mass
scale of the defects which is not captured by a simple effective theory obtained by integrating out the extra
dimension. We also consider the Higgsless model of symmetry breaking and show that no finite energy
defects appear in some situations where they might have been expected.
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I. INTRODUCTION

Much recent model building work has made use of
additional dimensions beyond the 3� 1 with which we
are familiar. These efforts are largely motivated by an
attempt to relate the vastly different scales of gravity and
the electroweak theory in a natural way. The possibilities
for doing this have been greatly expanded through many
new tools which become available with extra dimensions,
but one common feature to nearly all of these models is the
presence of symmetry breaking terms localized to a hyper-
surface (brane) in the extra dimension. For some models, it
is simply the electroweak symmetry which is broken at a
boundary [1–4], while in other cases it could be left-right
symmetry [5–7] or GUT symmetry [8–13] that is broken
on the brane.

The formation and evolution of topological defects
which result from the breaking of some symmetries is
also a well studied topic. The type of defect that could
form in a symmetry breaking transition depends on the
topology, specifically the homotopy structure of the vac-
uum manifold of the theory, while how many form in a
given situation as well as their subsequent evolution is a
dynamical question [14,15]. It is well known, for example,
that GUT symmetry breaking allows for the formation of
monopoles and that they can give rise to cosmological
problems [16]. In addition, many models lead to either
global or local strings and walls, as can be found in the
comprehensive reviews [17–19]. Even the electroweak
symmetry breaking in the standard model allows for tex-
tures which separate different vacua labeled by the Higgs
field winding number or the Chern-Simons number.
Transitions between these vacua mediate changes in
baryon plus lepton number and are a key ingredient in
models of electroweak baryogenesis [20].
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In the presence of an extra dimension, defect solutions
have been extended from the 4 dimensional case if the extra
dimension is homogeneous [21]. However, when the sym-
metry breaking is localized so that the symmetry remains
unbroken in the bulk of the extra dimension, the structure
of these defects may be modified. The essential reason for
this modification can be understood in a simple way. When
the symmetry is broken throughout the bulk of the extra
dimension, the field profile for defect solutions is homoge-
neous in that extra dimension because the potential is
homogeneous. In some sense, the defect itself is spread
out across the new dimension. However, if the symmetry
breaking is localized to one boundary, then the defect will
try to interpolate between the symmetry breaking solution
on the boundary and the unbroken solution in the bulk. It is
now possible that the defect will in some sense (to be made
more precise later) be localized to the symmetry breaking
brane. It is also possible that the defect will remain, more
or less, spread across the extra dimension. Which situation
is actually realized will depend in general on the type of
symmetry under consideration as well as on the choices of
parameters in the scalar potential.

In this paper, we consider the structure of topological
defects in spaces with one flat extra dimension where the
symmetry breaking is localized on a single brane. To be
specific, we will look at the static solutions for both a
global and local U�1� symmetry. In 3� 1 infinite dimen-
sions it is well known that these models lead to global and
local strings, respectively. Similarly, in our extra dimen-
sional setup defects will form for some values of parame-
ters, even if the symmetry is not broken in the bulk of the
extra dimension. We will show that this symmetry breaking
can be understood from the perspective of a simple 4
dimensional effective theory, but also that the effective
theory does not capture enough of the 5 dimensional
physics to correctly predict the tension of the resulting 5
dimensional strings. This is actually equivalent to the state-
ment that solutions which are homogeneous in the bulk do
-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.73.085006


R. HOLMAN AND MATTHEW R. MARTIN PHYSICAL REVIEW D 73, 085006 (2006)
not correctly describe the strings coming from boundary
localized symmetry breaking.

Of course if the defects are spread across the extra
dimension in any sense then it is no longer strictly correct
to call them strings. However, from the perspective of the
low energy observer who can only probe the large 3� 1
dimensions, they still look like strings. For lack of a better
term, we will continue to call all these structures strings in
both the 4 and 5 dimensional theories. Similar situations
can occur for other defects as well.

In the case of a global symmetry, the localization of the
symmetry breaking induces a nontrivial profile for the
scalar field, especially near the core of the defect. In the
case of a local U�1� symmetry, only the gauge field has a
nontrivial profile in the extra dimension. For either case, it
is clear that the 4-dimensional effective field theory ob-
tained by naı̈vely integrating out the extra dimension will
not contain this information. In particular, observers un-
aware of the fifth dimension will not infer the correct value
of the string tension �, if they only know the symmetry
breaking scale. This could have some cosmological appli-
cations since the evolution of a string network depends
crucially on the dimensionless parameter GN� [22].

Similarly, in the electroweak theory, the energy scale
associated with the sphaleron saddle-point configuration
between two vacua controls the rate of baryon violating
transitions in models of electroweak baryogenesis [20].
What this means is that, when looking at defects in higher
dimensions, care must be taken to incorporate the full
defect profile, including its behavior in the extra dimen-
sions in order to compute the correct value of the defect’s
energy density.

In the case of the local symmetry, another question
arises when we consider the Higgsless models of electro-
weak symmetry breaking [5]. In this category of models,
the symmetry is spontaneously broken through the choice
of boundary conditions rather than by placing a Higgs field
on that boundary. However, these same boundary condi-
tions may be realized by making use of the Higgs mecha-
nism and then taking the Higgs vacuum expectation value
(VEV) to infinity. By repeating this procedure with a defect
solution, we will see that an Abelian theory with a broken
local symmetry will only support infinitely massive and
small topological defects in the absence of a Higgs field.
We make use of a generalization of Derrick’s theorem [23]
to show that in three large dimensions no finite energy
static defects may exist without a Higgs field. Similarly,
non-Abelian theories are somewhat constrained. The
Higgsless models may then provide another possible
method for removing unwanted defects from a theory.

Section II contains a discussion of the breaking of a
global U�1� symmetry which is broken in to two parts. We
first briefly discuss the 4 dimensional case which, while
well known, is necessary to make accurate comparisons to
the extra dimensional case in the second part. We then
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discuss the breaking of a local U�1� symmetry in Sec. III
and again compare the 4 and 5 dimensional solutions,
taking a special interest in comparing the string tensions
as a function of the size of the extra dimension. Finally,
Sec. IV treats the Higgsless models and we summarize our
results in Sec. V.
II. GLOBAL SYMMETRY BREAKING

We wish to begin consideration of localized symmetry
breaking with a very simple example where it is possible to
visualize the solutions easily and where some aspects of
the problem can be solved analytically. We will therefore
consider a single scalar field with a global U�1� symmetry.
After symmetry breaking the vacuum manifold is topologi-
cally a circle which, through winding at infinity, can sup-
port the well known global string in three spatial
dimensions [17]. In the presence of an extra dimension
where the vacuum manifold is still a circle, but the sym-
metry breaking is localized, we will find a modified string
with a new structure along the extra dimension and a
modified tension.

A. Global strings in four large dimensions.

In preparation for comparison with the extra dimen-
sional case, we first review the standard breaking of a
global U�1� symmetry in 3� 1 large dimensions. We
will want the results from this case to understand what
new features arise from the addition of an extra dimension,
as well as to make a comparison of the energy density in
the 4 and 5-dimensional strings. We start with the follow-
ing action for a complex scalar field:

S �
Z
d4x

�
���@��

�@���
�4

4
�j�j2 � v2

4�
2

�
; (1)

where the scalar has a constant, homogeneous solution,
j�j � v4, with zero energy density. The static solutions
which correspond to a topological defect have a winding of
the form

��r; �; z� � v4e
in�f�r�; (2)

where r is the radius from the core of the string and � is the
polar coordinate going around the string. These solutions
are both homogeneous in the third spatial direction, z, as
well as static. From the action (1) we can derive the
equation of motion for f�r�:

�
1

r
@r�rf0�r�� �

n2

r2 f�r� �
�4v

2
4

2
�f�r�2 � 1�f�r� � 0;

(3)

which we will solve numerically later. It would be reason-
able to simplify this equation further by rescaling the radial
coordinate by v4 to make it dimensionless and remove v4

from the equation. However, to make comparison with the
5 dimensional case later, we leave the v4 explicit. These
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winding solutions must reduce to the vacuum far from the
core of the string and have continuous field values in the
core, so f�r� has the boundary conditions:

f�0� � 0; lim
r!1

f�r� � 1: (4)

Once we have a solution for f�r� we may calculate the
tension of the string by integrating the energy density over
the two spatial dimensions transverse to the string:

�4 �
Z
rdrd���r; ��

� 2�v2
4

Z
rdr

�
f02 �

n2

r2 f
2 �

�4v2
4

4
�f2 � 1�2

�
: (5)

It is well known that this integral for the global string
tension does not converge. This may be seen through a
power series expansion far from the string showing that the
energy density does not fall to zero fast enough. If we
suppose that there is a network of strings with positive and
negative winding number separated by some characteristic
scale R then we may impose a large distance cutoff on the
integral. In this case the string tension scales with the log of
the cutoff scale:

�4 � 2�v2
4n

2 ln�v4R�: (6)

B. Symmetry breaking with a homogeneous extra
dimension

If we imagine for a moment, an extra dimension com-
pactified on a circle (with periodic boundary conditions),
such that the theory is homogeneous in the extra dimen-
sion, then the above work extends trivially. The winding
solution will simply be homogeneous in the new dimen-
sion. In other words, this is a 2-brane which wraps around
the compact 5th dimension. From the perspective of a low
energy observer who sees only the large uncompactified
dimensions, this looks like a string as we would expect.

We can illustrate the point by extending the action above
to a fifth dimension y:

S �
Z
d4x

Z L

0
dy
����@���@��

L
�
�4

4L
�j�j2 � v2

4�
2

�
;

(7)

where the factors of L are chosen such that engineering
dimensions of the coefficients and � are the same as the 4
dimensional case. The solution, as above is

��r; �; z; y� � v4e
in�f�r�; (8)

with homogeneity along the string and in the extra dimen-
sion (in z and y respectively). The function f must satisfy
the same equation of motion and boundary conditions as
before. We may introduce an effective theory which cap-
tures all of the physics of the string by replacing
��x�; z� ! ��x�� and integrating out the extra dimension.
The point here is that this procedure for writing down the
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effective theory is the same whether we are considering
vacuum solutions or winding solutions. The reason is that
neither the vacuum nor the string solutions depend on the
extra coordinate, z. Doing this yields an effective action
that is the same as the original 4-dimensional action. By
contrast, if a solution with nontrivial winding were to have
a structure along the extra dimension which differs from
the vacuum solution then we would need a different effec-
tive theory for each value of the winding number n. This is
what we will find in the next sections.

C. Symmetry breaking localized on a brane

Suppose now that the symmetry breaking terms are
localized in the extra dimension. The bulk contains only
a mass term for our complex scalar, while the brane has the
usual symmetry breaking term:

S �
Z
d4x

Z L

0
dy
�
�MN@M��@N��m2j�j2

� 	�y� L�
�

4�2 �j�j
2 � v3�2

�
: (9)

Again, y labels the extra compact dimension. The notation
is chosen so the � is dimensionless, while v, �, and m all
have units of mass. The metric is mostly minus withM and
N running over all five dimensions. The important change
from the case of the homogeneous extra dimension is that
the vacuum solution is necessarily dependent on y. In the
bulk, the potential is minimized at � � 0, but on the
symmetry breaking brane at y � L, the potential is mini-
mized by j�j � v3=2. Any solution will therefore interpo-
late between these two and the VEV will be something less
than that set by the scale v on the brane. It is easy to find a
solution which is homogeneous in the 3 infinite dimen-
sions, but the winding solution will require a numerical
calculation.

The equation of motion resulting from the action of
Eq. (9) is

@2
t �� ~r2�� @2

y��m
2� � 0: (10)

We explicitly separate out the time and space components
of the derivative because we will be seeking static solu-
tions. The vacuum solution is

� � a cosh�my� � b sinh�my�; (11)

where we have used the symmetry to make � real. We will
sometimes refer to this solution as the n � 0 solution since
there is no winding. The boundary conditions also come
from the variation of the action, taking care with the
integration by parts. They are

@y�jy�0 � 0; @y�jy�L � �
�

2�2 �j�j
2 � v3��jy�L:

(12)

These conditions imply b � 0 and
-3
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a �
1

cosh�mL�

���������������������������������������������
v3 �

2m�2

�
tanh�mL�

s
: (13)

Naı̈vely, we could allow the imaginary solution for a, since
the field is complex. However, the boundary condition
cannot be satisfied if v3 < �2m�2=�� tanh�mL� since for
small enough v, the positive bulk mass squared term
dominates the negative brane symmetry breaking term
and the only solution is � � 0. We will see this more
clearly from the effective theory in the next section.

We may calculate the effective 4 dimensional energy
density of this solution by integrating over the extra di-
mension:

��4�n�0 �
Z L

0
dy
�
@y�2�m2�2�	�y�L�

�

4�2 ��
2�v3�2

�

�m tanh�mL�
�
v3�

m�2

�
tanh�mL�

�
: (14)

This is the (classical) cosmological constant in this model
which we will need to subtract off of the energy density for
the winding solutions in order to compare with the 4
dimensional theory where the cosmological constant was
already set to zero. That this solution is in fact lower in
energy than the trivial � � 0 solution can be seen from the
difference in 4 dimensional energy densities:

��4���0 � �
�4�
n�0 �

�v6

4�2

�
1�

2m�2

�v3 tanh�mL�
�

2
> 0: (15)

D. The four dimensional effective action

We have seen that the VEVof the field on the symmetry
breaking brane is not set by v alone as it would be if the
bulk did not exist or if m � 0. Instead it is

��y � L� �

���������������������������������������������
v3 �

2m�2

�
tanh�mL�

s
< v3=2: (16)

This can be understood in a quantitative manner from the
perspective of a 4 dimensional effective theory by promot-
ing a to a 4 dimensional scalar. We make the replacement

�! a�x�� cosh�my� (17)

in the action (9) and integrate over the bulk. In doing so we
have made an assumption about the profile of the field in
the y direction. This assumption is accurate for a homoge-
neous solution, but it is incomplete when there are wind-
ings as we will see below. The resulting action does not yet
have a canonically normalized field, but we can still con-
sider the location of the minimum by setting the first
derivative of the potential to zero. It is located exactly at
the value of a given in Eq. (13) by solving the bulk
equation of motion.

Once we do rescale the field a�x�� we may compare
with the action in Eq. (1) and identify the effective
4-dimensional mass squared and coupling, ��4v2

4, �4:
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�4 �
4�

�2L2

cosh4�mL�

�1� sinh�2mL�
2mL �

2
(18)

m2
4 � ��4v

2
4

�
2�

L�2

cosh2�mL�

1� sinh�2mL�
2mL

�
�v3 �

2m�2

�
tanh�mL�

�
: (19)

Note that the 4D effective mass squared is negative for
exactly the region of parameter space which allowed a
nonzero value for a in the previous section. Decreasing v
(or increasing the bulk mass) just increases the mass
squared in the 4D theory until the symmetry is restored.
These relations will be important later to compare the 4-
dimensional and brane world calculations of the string
tension.

That this is the correct effective theory to use for the
background field in the absence of windings is clear from
the fact that it gives the correct VEV for the scalar.
Additionally, this effective theory indicates when symme-
try breaking happens through the sign of m2

4. This action is
not to be confused with the effective action for particle
fluctuations around this VEV, which we do not address in
this paper. The space-time dependence is included in the
field, a�x��, in order to allow for windings of this back-
ground field.

E. Nontrivial winding

We now want to consider solutions which wind on the
brane. These solutions will necessarily depend on both y
and r. The delta function contribution to the potential on
the brane means that the solution must have y dependence,
interpolating again between � � 0 in the bulk and � �
v3=2 on the brane. The winding of these solutions further
implies that the field must go to zero in the core of the
string and approach the vacuum solution far from the
string, thus having r dependence as well. Separable solu-
tions for the differential equation will not work because of
the nonlinear boundary condition on the symmetry break-
ing brane, so we try the following anzatz:

� � ��r; y�ein�; (20)

with � real. Again, the solution we are seeking is homoge-
neous along the string and static. As in the 4 dimensional
case without a brane, we must impose the boundary con-
dition � � 0 at r � 0 to render the field continuous. Also,
infinitely far from the string, the field should approach the
value of the n � 0 solution.

lim
r!1

��r; y� � a cosh�my�: (21)

The boundary conditions at y � 0 and y � L are unmodi-
fied from above. With these four boundary conditions and
the second order bulk equation of motion, the problem is
completely specified and we may numerically solve for the
-4
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profile of this ‘‘string’’ (recall our comments above; it
really is a 2-brane, but will look like a string to observers
restricted to the symmetry breaking brane).

Before this problem can be solved numerically, we make
the equations dimensionless by scaling by the appropriate
power of the bulk massm, and by performing the rescaling
�! v3=2�. The bulk equation of motion now reads:�

@2
y �

1

r
@r�r@r� �

n2

r2 � 1
�
��r; y� � 0; (22)

while the four boundary conditions are

@y��r; y�j0 � 0; (23)

@y��r; y�jL � �~���2�r; L� � 1���r; L�; (24)

��r � 0; y� � 0; (25)

lim
r!1

��r; y� �
cosh�y�
cosh�L�

������������������������������
1� tanh�L�= ~�

q
: (26)

Only three dimensionless parameters are left: L, n, and

~� �
�v3

2�2 : (27)

Starting from an appropriate ansatz satisfying the
boundary conditions, we may use a relaxational technique
to solve for the profile of ��r; y�. As expected, the system
settles down into the solution we are seeking and on the
symmetry breaking brane (at y � L) has the profile given
in Fig. 1. More generally, the solution for ��r; y� through-
out the bulk is shown in Fig. 2. We may numerically
integrate the 4-dimensional energy density over r and �
to get the mass per unit length of this defect. Of course
there will be a divergent contribution coming from the fact
that the homogeneous, n � 0, solution has nonzero 4-
2 4 6 8
r

0.2

0.4

0.6

0.8

r

FIG. 1. The value of the string profile on the symmetry break-
ing brane, ��r; L�, for the two solutions: n � 0 (flat line) and
n � 1. All quantities are in units of the bulk mass parameter. We
have chosen n � 1, L � 5=2, and ~� � 3.
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dimensional energy density (cosmological constant). So,
instead we calculate the difference in energy between these
two solutions to get the mass per unit length of string:
� � 2�v3
Z
rdr

�Z
dy
�
@y�2 � @r�2 �

n2

r2 �
2 � �2

�

�
~�
2
���r; L�2 � 1�2 � tanh�L�

�
1�

1

2 ~�
tanh�L�

��
:

(28)
Notice that although v is no longer a part of the equations
of motion or boundary conditions, it still affects the string
tension in a way similar to the case of the 4-dimensional
string. Recall that in this expression v is dimensionless and
this string tension is in units of m. We plot the 4-
dimensional energy density as a function of r in Fig. 3
(that is the quantity inside the square brackets in the
expression for the string tension). As in the case of the 4-
dimensional global string, the string tension diverges log-
arithmically with radius. In fact, since the winding solution
approaches the nonwinding solution far from the string and
the physics of the nonwinding solution is well described by
the effective theory obtained by integrating out the extra
dimension, this agreement in energy density for the wind-
ing of the full theory and the effective theory far from the
string is expected.

We now turn to the 4 dimensional problem specified in
section II A. In order to make a direct comparison between
the effective and full theories, we need the relation between
the 4 and 5 dimensional parameters in the rescaled, dimen-
sionless units. Eqs. (18) and (19) become
0
2

4
6

8

r
0

0.5

1

1.5

2

2.5

y
0

0.2
0.4
0.6
0.8

0
2

4
6r

FIG. 2 (color online). The value of ��r; y� throughout the bulk
with the same parameters as before. The value for r goes from 0
to 8, while y goes from 0 to 2.5.
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0.25
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0.75

1

1.25

1.5

FIG. 3. A comparison of the energy density as a function of r
in the cases where symmetry breaking happens on the brane
(lower curve) and the pure 4D model (upper curve). The string
tension comes from multiplying these curves by 2�v3r and
integrating over r. The difference goes to zero faster than 1=r2

at large r, so they have identical large distance log divergences as
they must if the effective theory is to capture the IR physics.
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�4 �
8 ~�

v3L2

cosh4�L�

�1� sinh�2L�
2L �

2
; (29)

�4v
2
4 �

4 ~�
L

cosh2�L�

1� sinh�2L�
2L

�
1�

1
~�

tanh�L�
�
: (30)

Notice that v2
4 is proportional to v3 so the tension for both

the 4 and 5 dimensional strings have a leading factor of
2�v3 which can be dropped. We then calculate the energy
per unit length of string as a function of r, the distance from
the string. This is shown in Fig. 3. The shape of both curves
are similar, however, the amplitudes near the core of the
string differ: the energy density for the effective theory is
larger. To compare the actual string tension, we need to
impose a cutoff in r, which in the absence of a cosmologi-
cal context for our problem is fairly arbitrary. By integrat-
ing to r � 2, we find the relative difference in the string
tensions to be 17%. Of course choosing a much larger
distance cutoff would make the relative difference in ten-
sion smaller.

The fact that the energy density of a winding configu-
ration in a 5-dimensional model is different from that in a
4-dimensional model should not be surprising. They nec-
essarily have different field profiles and there is even an
extra parameter in the 5-dimensional model. What this tells
us though, is that by knowing only the symmetry breaking
scale and without knowing about the fifth dimension, the
wrong string tension would be expected. On the other
hand, one might expect that a richer 4-dimensional effec-
tive theory should be capable of incorporating the neces-
sary physics of the 5-dimension string to get the right string
tension by somehow including more degrees of freedom.
One could, in principle, expand the 5-dimensional field as a
sum of orthogonal modes, generate the effective theory for
085006
coefficients of these modes, and solve for the full field
configuration with winding. This process should exactly
reproduce the 5-dimensional string for which we have
directly solved. Note that we are still considering classical
field configurations, so these extra modes are not particle
fluctuations, or Kałuza-Klein (KK) modes in the usual
sense. However, someone unaware of the fifth dimension
would simply use the 4-dimensional model, which we have
called the effective theory and described in Sec. II D.

F. Limiting behavior

Several regions of parameter space can be understood
analytically. We have already seen that for large values of
the bulk mass or small values of v, the symmetry is
restored and there are no winding solutions. In terms of
the dimensionless parameters, this corresponds to small ~�.
For large ~�, the field on the symmetry breaking brane far
from the string will approach v3=2 as can be seen simply
from the boundary condition (26). In this case, the potential
on the boundary is dominating over the mass term in the
bulk.

One check we can make is to consider the small L limit.
In this case we expect that the effective theory should give
a very good description of the physics of the string in the
full theory. That this is the case can be seen from expanding
the solution for � in my:

��r; y� � A�r� � B�r��my�2 � . . . ; (31)

where the term linear in y must have coefficient zero to
satisfy the boundary condition at y � 0. As may be ex-
pected, B�r� is order one as seen in numerical solutions,
and so for a small extra dimension (mL	 1) even the
winding solution is nearly homogeneous across the extra
dimension. Using this expansion for the wave function,
integrating over the y direction, and then rescaling the
scalar field by

����
L
p

, the action in Eq. (9) reproduces the 4
dimensional theory to leading order in mL

S �
Z
d4x

�
@���@���

�

4�2L2 �j�j
2 � v3L�2

�

 �1�O�mL��: (32)

This is just a restatement of the fact that for a homogeneous
theory, the effective theory captured all of the physics of
the string. It may be checked that the parameters in this
action agree with the small L limit of the 4-dimensional
parameters in Eqs. (18) and (19).

We may also consider the large L limit. Far from the
string, the field value drops off exponentially away from
the symmetry breaking brane. So although this object is
extended in the extra dimension, its profile is suppressed.
On the symmetry respecting brane and far from the string,
the field approaches
-6
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� �

������������������������
v3 �

2m�2

�

s
ein�e�mL: (33)

So in this sense the defect is trapped on the symmetry
breaking brane.
III. THE LOCAL STRING

We now turn to consider the breaking of a local U�1�
symmetry by a boundary localized Higgs field. This prob-
lem is more interesting from the point of view of model
building since it is the Abelian version of some models of
physics beyond the standard model and because we will be
able to explore the interesting question of whether topo-
logically stable defects may form in the absence of a Higgs
field when we take the large VEV limit. We begin again
with the 4 dimensional theory, which has been discussed at
length [17], so that we may clearly contrast this with the
extra dimensional model.

A. The four dimensional local string

We start with the action

S�
Z
d4x

�
�D����D���

1

4
F��F���

�
4
�j�j2�v2�2

�
;

(34)

where

D �� � �@� � ieA���; (35)

F�� � @�A� � @�A�: (36)

We may make A�, �, and x� dimensionless by scaling by
the appropriate power of v. Furthermore, we make the
rescaling scale x� ! x�=e so that there is only one pa-
rameter in the model, 
:

D � ! e�@� � iA��; (37)


 �
�

2e2 : (38)

Our anzatz for the winding solutions will be

� � f�r�ein�; (39)

A� �
�
0; 0;

n
r
��r�; 0

�
: (40)

We have used polar coordinates so that the components of
A� are �t; r; �; z�. The equations of motion which follow
from this anzatz are

0 �
1

r
@r�rf

0�r�� �
�
n2

r2 �1� ��r��
2 � 
�f�r�2 � 1�

�
f�r�

(41)
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0 � r@r

�
�0�r�
r

�
� 2f�r�2���r� � 1�: (42)

We also need to specify boundary conditions. To minimize
potential and gradient terms at infinity, we must have

lim
r!1

��r� � 1; lim
r!1

f�r� � 1: (43)

With these values for � and f far from the string, the fields
will be gauge equivalent to the trivial winding vacuum:
A� � 0 and � � 1. Continuity of the solutions in the core
of the string imply

lim
r!0

��r� � 0; lim
r!0

f�r� � 0: (44)

In fact, � must go to zero quickly (as r2, not just as r) so as
to avoid a divergence in the last term of the string tension
(the gradient of the gauge field). However, we cannot
require this as a boundary condition since that would
lead to an over-specified problem. It will turn out, though,
that this fall-off is true numerically. For the string tension
we find that

� � 2�v2
Z
rdr

�
f02 �

n2

r2 �1� ��
2f2

�


2
�f2 � 1�2 �

n2

2r2 �
02

�
: (45)

We may simplify this expression slightly by integrating the
last term by parts and using the equation of motion for �.

� � 2�v2
Z
rdr

�
f02 �

n2

r2 �1� ��f
2 �



2
�f2 � 1�2

�

� 2�v2lim
r!0

�@r�
r

(46)

� 2�v2g�
�: (47)

Notice that the factor �1� �� is no longer squared. If we
also make use of the fact that � goes to zero as r2 then the
last term is zero. Following [17] we have defined a new
function g�
�which we can numerically plot (see Fig. 8) to
understand the string tension as a function of our one free
parameter.

B. Local symmetry with brane localized Higgs

We now turn our attention to the U�1� gauge symmetry
in a flat extra dimension. We will allow the gauge fields to
propagate in the bulk, but restrict the Higgs to one bound-
ary. The action is

S �
Z
d4xdy

��
�D���

�D���
�
4
�j�j2 � v2�2

�
	�y� L�

�
1

4
FMNFMN

�
: (48)

Now we must vary the action to find the equations of
motion, taking care with the surface terms so that we
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also get the boundary conditions. The bulk equation of
motion for AM is simply

@MFMN � 0; (49)

since in the bulk there is nothing but a free, Abelian, gauge
field. The scalar equation of motion has the same form as
before since it is trapped on the 4-dimensional brane. We
repeat it here for completeness:

0 �D�D
���

�
2
�j�j2 � v2��: (50)

This equation depends of course on the 5-dimensional
parameters, such as the charge e5, so that D� �

@� � ie5A�. The boundary conditions are

y � 0: F5� � 0;

y � L: F5� � ie5���D��� �D������ � 0:
(51)

First consider the vacuum, or trivial n � 0 winding solu-
tion:

� � v; AM � 0: (52)

This solution to the equations of motion and the boundary
conditions differs qualitatively from the global string case
because there is no dependence on the extra dimension.
This would imply that a simple effective theory could
capture all of the string physics if the winding solutions
displayed the same homogeneity in the bulk. However, we
can see from the boundary condition that gradient terms
from the winding of the Higgs will force the gauge field to
have a profile in the bulk. By looking ahead to Eq. (61) we
may note that this vacuum solution has zero energy density,
so we will not need to subtract off a (classical) cosmologi-
cal constant as we did for the global string.

In order to be able to compare the winding solutions of
this theory with an equivalent 4-dimensional theory, we
need to consider equivalent parameters. As we did for the
global symmetry, we match the 4 and 5 dimensional pa-
rameters by considering the effective theory which results
from substituting

AM�x
�; z� ! A��x

��; A5 � 0 (53)

and integrating out the extra dimension. Because the scalar
is trapped on the brane, � and v will be equivalent to what
we had before, which we have already anticipated by using
the same variables. However, the gauge field samples the
bulk and a low energy observer scattering � particles
would measure a gauge coupling e for an effective 4-
dimensional theory given by

L

e2
5

�
1

e2 : (54)

Therefore we will want to express the problem in terms of e
(or 
) rather than e5.
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We will look for static solutions which have A0 � 0 �
A5. We will again make everything dimensionless by scal-
ing by the appropriate power of v. We also rescale the four
coordinates, x�, by the 4-dimensional charge, set 
 �
�=�2e2� and rescale the gauge field by

����
L
p

. We scale y by
L so that the new coordinate for the extra dimension runs
from 0 to 1. Note that this will not put all of the charge
dependence in
 as it did for the 4-dimensional case. It will
still appear in the combination L2e2 � Le2

5. In the limit of
a small extra dimension, this parameter will drop out when
e5 is taken to be fixed and we have just as many parameters
as in the 4-dimensional case.

For a winding solution, we modify our ansatz by allow-
ing the function � to have y dependence:

� � f�r�ein�; (55)

A� �
�
0; 0;

n
r
��r; y�; 0

�
: (56)

The equations of motion now become

0 �
�
L2e2r@r

�
1

r
@r

�
� @2

y

�
��r; y�; (57)

0�
1

r
@r�rf0�r���

�
n2

r2 �1���r;y��
2�
�f�r�2� 1�

�
f�r�:

(58)

The boundary conditions take the form

y � 0: @y� � 0; (59)

y � 1: @y� � 2L2e2f2�1� ��: (60)

Far from the string and in the core of the string f and �
must satisfy the same boundary conditions as the 4-
dimensional winding solution, Eqs. (43) and (44) respec-
tively, so that the solution approaches a vacuum and is
continuous. The fact that the boundary condition far from
the core of the string implies that the gauge field is inde-
pendent of ymeans that the total magnetic flux through the
string is a constant in y as can be determined by integrating
the gauge field around the circle at infinity for any value of
y.

The energy density is similar to the expression in the 4-
dimensional case:

� �
v5e2

L

�
	�y� 1�

�
jDi�j

2 �


2
�j�j2 � 1�2

�

�
1

4
F2
ij �

1

2L2e2 F
2
5j

�
; (61)

giving a string tension of
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FIG. 5. The profile for the gauge field. The bottom curve is
��r� from the 4-dimensional model while the top curve is the
gauge field on the symmetry breaking brane: ��r; L�. Both
curves are going to zero as r2. The model parameters are the
same as before.
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� � 2�v2
Z
rdr

�
f02 �

n2

r2 �1� ��
2f2 �



2
�f2 � 1�2

�
Z 1

0
dy

n2

2r2

�
�@r��2 �

1

L2e2 �@y��
2

��
: (62)

As a check, we may notice that if � has no y dependence,
this expression reduces to exactly that of the string tension
in the 4-dimensional case. One might worry about what
happens to the energy density as L! 0, since L appears in
the denominator. We can integrate the last term by parts,
make use of the equations of motion and boundary con-
ditions, and see that the string tension becomes

� � 2�v2
Z
rdr

�
f02 �

n2

r2 f
2�1� �� �



2
�f2 � 1�2

�
;

(63)

� 2�v2g�
�; (64)

where � is evaluated at y � 1. We have again made use of
the fact that � is O�r2� at small r. This is exactly the same
form as the expression for the 4-dimensional string tension.
Although the bulk contribution to the string tension drops
out of this expression after using the equations of motion,
there is still a nonzero energy density in the bulk, as can be
checked with the numerical solutions below.

C. Numerical comparison

Using a similar relaxational numerical technique as
before to solve for the functions f and � in both the 4
and 5-dimensional models we find that with reasonable
initial guesses for both, they settle quickly into the sought-
after solutions. The profile for the Higgs field, f�r�, is
shown for both models in Fig. 4, while the profile of the
gauge field, �, is in Fig. 5 and 6. As can be seen from
Fig. 6, the winding of the gauge field extends across the
2 4 6 8
r

0.2

0.4

0.6

0.8

1
f r

FIG. 4. The profile for the Higgs field as represented by the
function, f�r�. The bottom curve is from the 4-dimensional
model. The parameters for this solution are 
 � 1 and for the
5-dimensional model, e2L2 � 5.

085006
extra dimension without being exponentially damped as
the scalar field profile was in the case of global symmetry
breaking, Fig. 2. The gauge string is much more extended
across the extra dimension than the global string was.

We have calculated the energy density as a function of
radius from the string, r, for each case and the result is
shown in Fig. 7. The energy density in the core of the 5-
dimensional string is considerably higher than in the 4-
dimensional string but this is more than offset in the string
tension by the fact that the 4-dimensional string has more
energy density near r� 1. In both cases, the energy density
falls off exponentially at large radius so that the total string
tension is finite.
0

2
4

6
8

r
0.25

0.5

0.75

1

y

0.5

1

2
4

6
8

r

FIG. 6 (color online). The value of ��r; y� throughout the bulk.
The model parameters are the same as in Fig. 4. The value of r
goes from 0 to 8, while y goes from 0 to 1.
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FIG. 7. The energy density of the string solution as a function
of r. This is the quantity in square brackets in Eq. (63) and this
figure is analogous to Fig. 3. The 5D model peaks at a higher
energy density in the core of the string, but the string tension
comes from multiplying these functions by 2�rv2 and then
integrating. As a result, the string tension for the 5D model is
smaller. The parameters are the same as Fig. 4.

0.125 0.25 0.5 2 4 8
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FIG. 8. The string tension, g�
�. The top line is the 4D model
where g�1� � 1. The next three lines down are for the 5D model
with e2L2 � 0:2, 1.0, 5.0, respectively.
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We have also plotted the string tension, g�
�, for the
4-dimensional model and for various values of e2L2 in the
5-dimensional model, Fig. 8. The string tension of the 5-
dimensional model seems to be converging to the 4-
dimensional model as e2L2 becomes small, as we expect.
In other words, the effective theory becomes exact as the
size of the extra dimension goes to zero.

IV. HIGGSLESS MODELS

Some recent efforts to address the hierarchy problem
with an extra dimensional setup have made use of bound-
ary conditions, rather than a Higgs field, to break the
symmetry spontaneously [5]. It was found that in a pure
gauge theory, the variation of the action could be set to zero
085006
through several different choices of boundary conditions.
In a gauge theory the choice of Dirichlet conditions on one
end and Neumann on the other, for example, had the effect
of giving a mass to the lowest KK mode for the gauge field
which would otherwise have been massless. That this
gauge symmetry breaking is spontaneous might be guessed
from the fact that the Lagrangian is gauge invariant. In
addition the unitarity violations which are common to
generic massive gauge theories do not occur if the mass
arises from boundary conditions through this action
principle.

We want to understand then what happens to topological
defects if the symmetry is broken by boundary conditions.
Without a potential for the Higgs boson with a nontrivial
vacuum manifold we might immediately think that there is
no possibility for a stable defect solution. However, in the
Higgsless construction of gauge symmetry breaking, the
component of the gauge field in the compact dimension,
A5, plays the role of the Goldstone boson which is eaten to
make the gauge field massive. It seems that there is some
possibility for structure in the A5 field to give rise to a
winding. We will see, though, that for an Abelian theory
this does not happen. The structure of the equations of
motions and boundary conditions allow for a very simple
scaling argument which rules out any stable, finite energy,
defects in an Abelian Higgsless model. In non-Abelian
theories, the picture is more complicated and there may
still be a possibility for defects in some cases.

At this point, the choice of boundary conditions seems
like an arbitrary choice for the model builder to make.
However, in other contexts, such as a vibrating guitar
string, boundary conditions are imposed by knowing the
physics of the boundaries. The situation is really no differ-
ent here and there should be a more fundamental theory
which explains the choice of boundary conditions. The
case of Dirichlet boundary conditions, A� � 0, arise
from a Higgs field where the VEV is taken to infinity,
while Neumann conditions, @5A� � 0, arise if there is no
breaking of the gauge theory on the boundary.

Examples of these results for the boundary conditions
can be seen in Eqs. (51) for the Abelian model we have
already considered. By working in the A5 � 0 gauge we
see that the large VEV limit of� imposes Dirichlet bound-
ary conditions on the symmetry breaking brane at y � L.
For this Abelian model then, the equations of motions
remain:

@MFMN � 0; (65)

while the boundary conditions have become

F�5j0 � 0; A�jL � 0; (66)

which are all linear in AM and homogeneous. If AM is a
solution with string tension �, then �AM is also a solution
with tension �2� since the tension is quadratic in the gauge
field. Intuitively then it is clear that any hypothetical
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solution, AM, is smoothly connected to the vacuum solu-
tion with zero tension and AM � 0. There are, therefore, no
stable defects with only a gauge field. We will make this
statement more precise below and show that this is a
special case of the scaling arguments employed by
Derrick’s Theorem [17].

First, though, we consider the large VEV limit of the
winding solution we already have for the local U�1� break-
ing with a Higgs field. Recall that we scaled all dimen-
sionful parameters by v to make the system dimensionless
and as a result, the parameter vmade an appearance only in
the string tension. Therefore, the tension will diverge as
�� v2, but the profile of the winding will remain constant
in the variables used in Eqs. (57)–(60). In physical coor-
dinates then, the size of the string will shrink in the radial
direction, r� 1=v. In the fifth dimension the profile of the
string will remain constant since we worked with a variable
which was also scaled by the size of the extra dimension,
�yv�=�Lv�, which is constant as v grows. We can now see
that the Higgsless limit of a broken U�1� gauge theory may
contain infinitely massive and thin strings, and that no new
windings make an appearance.

A. Higgsless equations of motion and boundary
conditions

We now consider a non-Abelian Higgsless gauge theory.
In this subsection we review the conditions at the bounda-
ries so that the action is minimized. Consider a generic
non-Abelian gauge theory with no scalars:

S �
1

4

Z L

0
dy
Z
d4xFaMNF

aMN; (67)

where the field strength tensor is defined as usual,

FaMN � @MAaN � @NA
a
M � gf

abcAbMA
c
N: (68)

Let us vary the action, taking care with any integration by
parts and the boundary terms. We get

	S �
Z L

0
dy
Z
d4xf	Aa��	ac@M � gfabcAbM�F

c�M

� 	Aa5�	
ac@� � gfabcAb��Fc�5g

�
Z
d4x	Aa�Fa�5j

y�L
y�0 (69)

Requiring that the variation vanish implies the bulk equa-
tion of motion:

�	ac@M � gf
abcAbM�F

cNM � 0; (70)

together with the boundary conditions

Fa�5 � 0 or Aa� � 0: (71)

We have used the fact that the metric is mostly minus to
raise or lower the 5.

By varying the action for our gauge theory with respect
to the metric, we find that the stress-energy tensor is
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T�
 �
1
4��
F

a
��F

a�� � Fa�� Fa
�; (72)

and the energy density is always positive:

T00 �
1

2

X
a;i

�Fa0i�
2 �

1

4

X
a;i;j

�Faij�
2: (73)

Now notice that Aa��x�; y� � 0 is a solution to the bulk
equation of motion as well as to either of the possible
boundary conditions. Thus, the trivial solution is the lowest
energy solution. This differs from the case of the scalar
field where the � � 0 solution had higher energy than the
n � 0 solution.

B. Generalized Derrick’s theorem

By considering a generalization of Derrick’s Theorem
(see Ref. [17]) in spaces with compact extra dimensions we
will find that our options for finite energy, time-
independent defects are quite limited. First, however, we
reconsider a simple scaling argument to make sure we
understand what happens in finite dimensions. Suppose
we have an integral over m dimensions of a derivative of
some function, for example:

I �
Z
dmx ~r2

xf� ~x�; (74)

where we have not yet specified whether these dimensions
are compact so the limits have not yet been written in. The
function f� ~x� represents some field configuration which we
can rescale by replacing it with f��~x�. For � > 1 we are
shrinking the configuration: think of f��~x� � exp���2 ~x2�.
Now the family of integrals generated by this family of
field configurations is given by

I��� �
Z
dmx ~r2

xf��~x�; (75)

and can be related to the original integral I by substituting

~z � �~x; (76)

dmx � ��mdmz; (77)

@x � �@z: (78)

After making this substitution we have

I��� � �2�m
Z
dmz ~r2

zf�~z�; (79)

but we must now consider the limits of integration. If the
dimensions are infinite and the integral runs over all space
then the limits are unchanged by this rescaling of ~x. This
leaves:

I��� � �2�mI: (80)

However, if the limits in x run from a to b (where these are
representing multidimensional quantities) then all we can
say is:
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I��� � �2�m
Z �b

�a
dmz ~r2

zf�~z�; (81)

and we are left with no simple scaling relation for the
integral. Therefore, in what follows, we will only look
for scaling arguments in the infinite dimensions. Of course,
if we have a large compact dimension which is larger than
the length scales of the field configuration then we may be
able to treat those dimensions as infinite so long as chang-
ing the limits of integration has no impact on the integral.
By compact, we mean then, any dimension which is of the
size of, or smaller than, the field configuration of interest.

In an important aside, if the integral I represents an
action or an energy which is infinite then we must regulate
by cutting off the spatial integral. We now see that this will
ruin the scaling argument. This is why Derrick’s theorem
does not rule out the global string which has a divergent
Lagrangian in an infinite space.

Consider now 1� d� n dimensions where d spatial
dimensions have infinite extent and n spatial dimensions
have finite extent. The action for a non-Abelian theory with
only gauge fields is

S �
�1

4

Z
dt
Z
ddx

Z
dnyFaMNF

aMN; (82)

so that the Lagrangian can be written as

L �
1

4

Z
ddx

Z
dny

�
2�Fa0xi�

2 � 2�Fa0yi�
2 � �Faxixj�

2

� �Fayiyj�
2 � 2�Faxiyj�

2

�
(83)

� L1 � L2 � L3 � L4 � L5; (84)

where sums over the gauge and dimensional indices are
assumed and we are using a mostly minus metric. Each of
the Li are non-negative. Furthermore, we may calculate the
energy of a static configuration to be the sum of these five
terms:

E �
Z
ddx

Z
dny� �

X5

i�1

Li: (85)

If we seek a finite energy solution, then each of the Li must
be finite.

Let us first consider an Abelian theory and the scaling of
the different terms in the Lagrangian with three parame-
ters, �, �, and  as follows

��A0��~x; ~y�; (86)

�2Axi��~x; ~y�; (87)

Ayi��~x; ~y�: (88)

Notice that we are looking for time-independent solutions
here. With this rescaling of the gauge field configuration
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the Lagrangian scales as

L! ��d�d��2��42L1 � �2L2� � �46L3 � 2L4

� �24L5�: (89)

Since we seek a solution to the equations of motion, any
solution must be stationary at � � 1 � �. By varying �
we see immediately that L1 � 0 � L2. By varying � and
, we get two equations for the remaining parts of the
Lagrangian. Subtracting these two equations gives, L3 �
L4 � L5 � 0 and we see that they must all vanish (since
they are individually non-negative). This seems to preclude
the existence of defects. However, it really only rules out
time-independent, finite energy solutions, not time-
dependent, nondissipative or infinite energy solutions.

For a non-Abelian theory, the scaling with  will trans-
form the L5 term inhomogeneously:

Fxiyj ! �2�@xiA
a
yj � @yjA

a
xi� � �

3gfabcAbxiA
c
yj : (90)

We can therefore only make use of the scaling with � and
�. We are left with the constraint:

�4� d�L3 � dL4 � �2� d�L5 � 0: (91)

It seems then that static defect solutions may be possible
for non-Abelian theories so long as d is less than or equal to
4. It would certainly be interesting to find an example of a
new defect solution in a Higgsless model, but we leave this
for future work.
V. SUMMARY

We have considered several scenarios of extra dimen-
sions with localized symmetry breaking. In the first, the
breaking of a global U�1� symmetry by boundary terms
forced the scalar to acquire a vacuum expectation value
(VEV). This system was simple enough that many features
of the possible static, classical, solutions could be under-
stood qualitatively. The magnitude of the VEV could be
understood via an effective theory where an integration
was performed over the extra dimension. However, in the
case of windings, the tension in the resulting string was less
than we would have expected from the effective theory.
This happens because the winding forces the profile of the
scalar in the new dimension to differ from what it would
have been without the winding. In some sense, the energy
density in the core of the string is high enough that the
string is sensitive to the full 5-dimensional theory.

The gauge string retained many similarities with the
global string. For example, the tension of the solution
from the full 5-dimension theory was less than that for
the equivalent 4-dimensional effective theory. Because of
the finite nature of the tension, in this case, we were able to
make more meaningful quantitative comparisons between
the 4 and 5-dimensional theories. A significant qualitative
difference is that the gauge string has a winding which is
nearly constant throughout the bulk of the extra dimension,
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while the global string was exponentially localized on the
symmetry breaking brane.

In both cases, the strings are not going to be able to miss
each other in the extra dimension since they are both
required to have winding of the scalar on the symmetry
breaking brane and some amount of the winding is carried
across the entire bulk of the extra dimension. In this sense
they are not genuine strings and if the symmetry breaking
terms were homogeneous throughout the extra dimension
they would be 2-branes. It remains an open question as to
whether or not the structure of the strings in the extra
dimension changes the dependence of the intercommuta-
tion probability on the string velocity.

Finally, we looked at the Higgsless limit of the local
symmetry breaking and found that the string tension scales
with the square of the VEV of the scalar and the radius of
the string scales with the inverse of the VEV leading to
massive, thin strings. Through a generalization of Derrick’s
theorem we showed that there are no new static, finite
energy, winding structures possible for an Abelian theory.
This may provide another way to remove unwanted topo-
logical defects from a theory. A non-Abelian theory, how-
ever, may be able to support windings without a Higgs
field, but we have not yet investigated this possibility in
depth.

There are a number of interesting follow-up questions
we can ask at this point. First, what happens when the
internal space is warped, such as in the Randall-Sundrum
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models [24]? We would expect that the existence of a new
length scale such as the AdS curvature scale would modify
both the structure of defects as well as our discussion of
how well the effective field theory obtained by integrating
out the warped extra dimension would account for the
energy density of the defect.

A second question, already alluded to above is what
happens to baryogenesis in theories with localized sym-
metry breaking or in the Higgsless case. If the energy of the
sphaleron is modified, this will have a profound effect on
the rate of baryon number violation, since the energy
appears in the Boltzmann exponential. In the Higgsless
case, we need to examine the theory to see if anything like
the sphaleron even exists.

There are other topics of interest; changes in the evolu-
tion of cosmic string networks, for example, but we hope
that we have persuaded the reader that this line of research
will yield fruitful new insights into many interesting
phenomena.
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