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Equivalent Hermitian Hamiltonian for the non-Hermitian�x4 potential
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The potential V�x� � �x4, which is unbounded below on the real line, can give rise to a well-posed
bound state problem when x is taken on a contour in the lower-half complex plane. It is then
PT-symmetric rather than Hermitian. Nonetheless it has been shown numerically to have a real spectrum,
and a proof of reality, involving the correspondence between ordinary differential equations and integrable
systems, was subsequently constructed for the general class of potentials ��ix�N . For such Hamiltonians
the natural PT metric is not positive definite, but a dynamically-defined positive-definite metric can be
defined, depending on an operator Q. Further, with the help of this operator an equivalent Hermitian
Hamiltonian h can be constructed. This programme has been carried out exactly for a few soluble models,
and the first few terms of a perturbative expansion have been found for the potential m2x2 � igx3.
However, until now, the �x4 potential has proved intractable. In the present paper we give explicit, closed
form expressions for Q and h, which are made possible by a particular parametrization of the contour in
the complex plane on which the problem is defined. This constitutes an explicit proof of the reality of the
spectrum. The resulting equivalent Hamiltonian has a potential with a positive quartic term together with a
linear term.
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FIG. 1 (color online). Energy levels of Eq. (1) for N � 4 with
g � 1, from Ref. [1]
I. INTRODUCTION

There has been a great deal of interest in non-Hermitian
Hamiltonians since the numerical observation by Bender
and Boettcher [1] that Hamiltonians of the form

H � p2 � g�ix�N (1)

have a real positive spectrum for N � 2. As illustrated in
Fig. 1 (from Ref. [1], where g � 1), their spectra constitute
a smooth extrapolation from the simple harmonic oscilla-
tor, for which N � 2. The reality of their spectra is under-
stood as being due to their unbroken PT symmetry, but
there is no simple way of telling in advance whether or not
this symmetry is broken, as indeed it is for N < 2, where
the spectra are partly complex. Eventually a rather intricate
proof of the reality of the spectrum, involving the corre-
spondence between the differential equations for such
potentials and integrable models, was constructed by
Dorey et al. [2].

A potential problem with such Hamiltonians is their
physical interpretation, since the natural PT norm on the
Hilbert space,

R
dx ��x� ��x�, is not positive definite, in

contrast to the usual norm
R
dx ��x� �x�. However, it

turns out to be possible to construct an alternative norm,
the CPT norm [3], which is indeed positive definite. This
norm is different from the usual norm, in that it is dynami-
cally determined by the Hamiltonian itself, and needs to be
calculated in each individual case.

Such calculations were encompassed by Mostafazadeh
[4] in the more general framework of pseudo-Hermiticity,
whereby
06=73(8)=085002(4)$23.00 085002
Hy � �H��1 (2)

Here the operator � is Hermitian and positive definite, and
may usefully be written as � � e�Q, in order to connect
with the notation of Ref. [5], where, for PT-symmetric
Hamiltonians, � � PC and Q was defined by C � eQP.
For calculational purposes it is much easier to deal with Q
rather than � directly. Mostafazadeh showed further that
-1 © 2006 The American Physical Society
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FIG. 2. Wedges in the complex plane in which the Schrödinger
equation for Eq. (1) is posed.
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h � e��1=2�QHe1=2Q (3)

is an equivalent Hermitian Hamiltonian, obtained from H
by a similarity (Darboux) transformation.

In general it is difficult to solve Eqs. (2) and (3) exactly;
instead one uses perturbation theory in a small parameter
". If H is of the form H � H0 � "H1, where H0 is
Hermitian and H1 anti-Hermitian, then Q can be taken as
Q �

P
r oddQr"r, which then gives h �

P
r evenhr"

r. In this
case the first few equations for the Qr, arising from the
expansion of Eq. (2), read 1

	Q1; H0
 � 2H1

	Q3; H0
 �
1

6
	Q1; 	Q1; H1



	Q5; H0
 �
1

6
�	Q3; 	Q1; H1

 � 	Q1; 	Q3; H1

�

�
1

360
	Q1; 	Q1; 	Q1; 	Q1; H1





(4)

and so on. Using these, the first few equations for the hr,
arising from the expansion of Eq. (3), can be cast in the
form

h0 � H0

h2 � �
1

4
	Q1; H1


h4 �
1

192
	Q1; 	Q1; 	Q1; H1


 �

1

4
	Q3; H1
:

(5)

The smooth continuation from the harmonic oscillator,
and the ODE-IM correspondence of Ref. [2], rest on the
fact that the Schrödinger differential equation has various
different sectors, defined by wedges in the complex
x-plane. Along the center of the wedges the wave-function
decays exponentially at infinity, while along the edges the
wave-function is purely oscillatory. Fig. 2, taken from
Ref. [1], shows the particular wedge that connects
smoothly with that for the harmonic oscillator.

The critical case, where the upper edge of the wedge
coincides with the real axis is the case N � 4, i.e. the
potential �x4. For N < 4, it is possible to stay on the
real axis, where the wave-function decays exponentially,
albeit with an oscillatory modulation, but for N � 4 we
have no option but to formulate the problem on a contour in
the lower-half x plane.

This is the fundamental reason why the �gx4 potential
has proved so intractable. At first sight it appears
Hermitian: it is only because of the contour on which it
must be defined that it is non-Hermitian. The problem is
inherently nonperturbative, so any expansion to be at-
tempted can not be in the coupling constant g. A previous
1The equations of even order are satisfied identically by
Q2n � 0.
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attempt [6] used WKB methods, and was able to calculate
Q to leading nonperturbative order.
II. CHOICE OF CONTOUR

Our present approach starts with the idea of
Mostafazadeh [7], to map the problem back onto the real
axis using a real parametrization of a suitable contour. We
recall that a wide variety of contours are possible, as long
as they go off to infinity at an angle within the wedges.
Taking N � 4 and writing the original x variable of Eq. (1)
as z to reflect its complex character, so that

H � �
d2

dz2 � gz
4; (6)

the parametrization used in Ref. [7] was

z � x cos�� ijxj sin�; (7)

corresponding to straightline contours, with an infinitesi-
mal rounding off near the origin. Here �was taken as �=6,
the optimal angle for N � 4. The resulting Hamiltonian
was

H � ei sgn�x��=3

�
�
d2

dx2 � gjxj
4

�
: (8)

Because of rounding, there are nontrivial boundary con-
ditions at x � 0, namely, (i)  is real and continuous,
(ii)  0�0�� � e4i� 0�0��. Consequently, in calculating
Hy there is an additional term �H beyond the obvious one.

A calculation ofQwith this Hamiltonian is very difficult
because of the boundary conditions at x � 0 and the lack of
an obvious expansion parameter. In Ref. [8] we attempted
to make an expansion in �, freeing it from its optimal value
for N � 4, noting that any positive value for � would
suffice to make the wave function vanish with an exponen-
tial component. In addition we smoothed out the curve
chosen in Ref. [7], taking the hyperbola
-2
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z � x cos�� i sin�
p
�1� x2�; (9)

in order to remove the boundary conditions at x � 0.
Unfortunately this calculation did not produce a very use-
ful h, but rather one which still had a�x4 term, so that the
asymptotic behavior of the wave function was oscillatory,
with only a power suppression.

In the present paper we adopt a different approach. First
we choose a new parametrization, whose asymptotes are
not in fact in the center of the wedges, but rather are
inclined at �=4 to the real axis, and then we introduce an
artificial parameter " multiplying H1, the non-Hermitian
part of H�x�.

The contour that turns out to give particularly simple
results is of the form

z � �2i
p
�1� ix�: (10)

Notice that with this choice, the PT-symmetry of the
original Hamiltonian, which is a real function of iz, will
be respected by the new Hamiltonian, written in terms of x.
This new Hamiltonian is in fact

H �
1

2
f�1� ix�; p2g �

1

2
p� ��1� ix�2; (11)

where f::; ::g denotes the anticommutator, p � d=dx, and
for convenience we have introduced � � 16g. Separating
H into its Hermitian and anti-Hermitian parts, and multi-
plying the latter by the artificial parameter ", which at the
end will be set equal to one, we write

H � H0 � "H1; (12)

where

H0 � p2 �
1

2
p� ��x2 � 1� H1 �

1

2
ifx; p2g � 2i�x

(13)
III. CALCULATION OF QAND h

First we calculate Q1 from the first of Eqs. (4), namely
	Q1; H0
 � 2H1. As a general, systematic procedure for
such problems we would write the Hermitian operator Q1

as a sum of anticommutators of the form Q1 �P
n oddffn�x�; p

ng, where fn�x� is a real function of x, and
gradually increase the order n. However, in this case H0

and H1 are so simple that the solution can essentially be
found by inspection. Thus a p3 term in Q1 will produce the
desired structure ifx; p2g when commuted with the x2 term
of H0, while a term in p will produce the x term of H1. By
equating coefficients we find that

Q1 � �
p3

3�
� 2p: (14)

In order to calculate Q3 from the second of Eqs. (4) we
need the double commutator 	Q1; 	Q1; H1

. First let us
calculate the inner commutator 	Q1; H1
, which will also
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be needed for the computation of h:

	Q1; H1
 � �
p4

�
� 4p2 � 4�: (15)

The crucial point is that this is a function of p only, and
therefore commutes with Q1. Thus 	Q1; 	Q1; H1

 � 0,
which means that Q3 � 0. Then the third of Eqs. (4) shows
that Q5 � 0 and so on. Thus we have an exact solution for
Q, after setting " � 1, namely

Q � �
p3

3�
� 2p: (16)

Having obtained the metric operator Q we are in a position
to calculate the equivalent Hermitian Hamiltonian h of
Eq. (3). Because the expansion for Q has truncated, so
does that for h, namely h � H0 � h2. The commutator
required for the evaluation of h2 has already been calcu-
lated in Eq. (15), so it is straightforward to evaluate h, with
the remarkably simple result that

h �
p4

4�
�

1

2
p� �x2: (17)

We emphasize that this Hermitian Hamiltonian, defined on
the real line, has the same energy spectrum as that of the
original H of Eq. (6) defined on a complex contour. The
only unusual feature of h is that it does not have the
standard form of a quadratic kinetic term plus a potential.
However, just such a Hamiltonian results if we take the
Fourier transform. In terms of the transformed variable y,
and after a rescaling y! y

����
�
p

, we have

~h � p2
y �

1

4
�y4 �

1

2

����
�
p

y (18)
IV. DISCUSSION

Eqs. (16) and (18) constitute our main results. The latter
exhibits a standard Hermitian Hamiltonian, with a positive
quartic potential plus a linear term, shown in Fig. 3, whose
spectrum is the same as that of the original problem, with a
�z4 potential posed on a contour in the complex plane. It
constitutes the first direct, constructive proof of the reality
of the spectrum of Eq. (6). In accordance with our intro-
ductory remarks, we note that ~h is completely nonpertur-
bative, since, without a harmonic term m2x2 term in the
potential, g can rescaled to 1.

We have performed a numerical calculation of the en-
ergy eigenvalues of Eq. (18), using both Runge-Kutta
integration and the variational truncated matrix method
of Ref. [9]. Both methods give eigenvalues that are indis-
tinguishable from those cited by Bender and Boettcher
(calculated by Runge-Kutta integration along a complex
contour) in their original paper [1].

A simple extension of the above result can be obtained
when an additional harmonic term m2z2 is introduced into
Eq. (6). The only change in Eq. (17) is that h becomes
-3
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FIG. 3. The potential of Eq. (18), with � � 16 (g � 1).
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h �
�p2 � 4m2�2

4�
�

1

2
p� �x2 (19)

with corresponding scaled Fourier transform

~h � p2
y �

1

4�
��y2 � 4m2�2 �

1

2

����
�
p

y (20)

After completion of this work we were made aware of an
earlier paper by Buslaev and Grecchi [10], which showed
the spectral equivalence of the massive version of the �x4
085002
theory (their H"�ig; j�, with j � 1), formulated on the line
z � x� i�, with a Hermitian Hamiltonian that can be
identified with Eq. (20) on setting � � 4g2, m � 1=2.
Their method made use of the perturbation series for the
energy eigenvalues of the two Hamiltonians, which only
exists for m � 0. However, they were subsequently able to
go the massless limit by rescaling and taking g to1. In this
way they obtained the spectral equivalence between Eq. (6)
and (17) (see their Theorem 6, with j � 1, � � 0 after a
simple rescaling).

The present paper approaches the problem from a com-
pletely different perspective and offers a simple, explicit
and transparent derivation of these spectral equivalences,
together with the operator Q required to define the
positive-definite metric, and the observables [4], of the
non-Hermitian Hamiltonians.
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