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The evolution of multiple scalar fields in cosmology has been much studied, particularly when the
potential is formed from a series of exponentials. For a certain subclass of such systems it is possible to get
‘‘assisted‘‘ behavior, where the presence of multiple terms in the potential effectively makes it shallower
than the individual terms indicate. It is also known that when compactifying on coset spaces one can
achieve a consistent truncation to an effective theory which contains many exponential terms; however, if
there are too many exponentials then exact scaling solutions do not exist. In this paper we study the
potentials arising from such compactifications of eleven-dimensional supergravity and analyze the regions
of parameter space which could lead to scaling behavior.
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I. INTRODUCTION

Extra dimensions are ubiquitous in unified models of
gravity and particles, dating from the early work of Kaluza
and of Klein to the modern ideas of string and M theory.
This raises the question of what to do with the extra
dimensions? In a fully dynamical model we expect that
at some time these extra dimensions should evolve, possi-
bly having some impact on the Universe we observe today.
In the context of dimensional reduction, where the extra
dimensions take the form of a small, compact manifold, the
dynamics of the internal space typically manifests itself
through the dynamics of scalar fields in an effective theory.
Such scalar fields are often termed moduli and their values
describe the shape and size of the compact space. The
evolution of scalar fields in cosmology is a well established
area of study, finding applications in inflationary model
building, quintessence and many others. Indeed, cosmolo-
gists seem able to solve most problems with the introduc-
tion of a new scalar field. A particularly attractive system
of scalars is the one where the potential is formed from a
series of exponential terms; such a system can be phrased
in the form of an autonomous dynamical system whose
critical points allow for a simplified description of the
evolution [1,2]. Fortunately such a nice description does
not go to waste as exponential potentials are common in
unified gravity models with exponentials coming from
dimensional reduction, gaugino condensation and instan-
ton corrections [3–6].

The critical points of the autonomous system formed in
cosmology using scalars with exponential potentials re-
veals that tracking solutions are possible and indicate
that assisted behavior can occur. By tracking solution we
mean that the scalars evolve in such a way that their energy
density remains at a constant fraction of the total energy
density of the Universe, with the rest of the energy density
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being composed typically of a barotropic fluid. One may
also have scaling behavior, where the energy density of the
field evolves in proportion to H2 without reference to other
matter. Assisted behavior refers to the behavior of multiple
scalars, where their combined effect can be such that the
Universe expands more rapidly than one may naı̈vely ex-
pect by looking at the individual terms in the potential.

In this paper we aim to study dimensional reduction on
homogeneous manifolds, namely, those formed as a coset
of compact Lie groups G=H. In order to be concrete we
shall take eleven-dimensional supergravity to be our start-
ing point, whose bosonic field content comprises a metric
and a three-form potential. As we are aiming for a four-
dimensional effective theory we shall reduce on the seven-
dimensional cosets which have been classified in [7]. Such
coset reductions are familiar in the supergravity literature,
where the supersymmetric stationary points are well
known. Here, however, we concern ourselves with the
full effective potential and the dynamics that follow, pay-
ing particular attention to the regimes which lead to track-
ing or scaling behavior.

We shall structure the paper by first introducing the
bosonic action of eleven-dimensional supergravity, along
with the ansatz for dimensional reduction. Having done
that we shall produce the effective potentials for all the 7D
cosets classified in [7]. With these in place we are able,
after a brief introduction to scaling solutions, to study the
scaling properties of supergravity reduced on coset mani-
folds. Throughout the paper we shall be using technical
results for dimensional reduction and for cosets, the details
of which can be found in the appendices. We end the paper
with our concluding remarks and comments for future
work.
II. THE MODEL

If the Universe is fundamentally described by a higher-
dimensional theory then there must be some mechanism
whereby four spacetime dimensions are picked out at the
-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.73.084027


JOSEF L. P. KARTHAUSER AND P. M. SAFFIN PHYSICAL REVIEW D 73, 084027 (2006)
expense of others. One such mechanism is the famous
Kaluza-Klein procedure, utilizing a compact space whose
size sets the mass scale for a tower of massive modes [8,9].
These modes should be at a high enough scale that we have
not yet observed them, leaving a 4D low energy theory
effective for the moduli fields. The underlying theory
allows these moduli fields to evolve and, as scalar fields,
they are a natural source for the myriad scalars which
cosmologists require to solve various problems; the diffi-
culty lies in finding an internal space which has the requi-
site properties. The simplest type of internal manifold is a
torus [10]; however, one may also consider the internal
space to be a group manifold [11,12], an Einstein manifold,
a direct product of Einstein manifolds [13], or products of
twisted manifolds [14,15].

Here, however, we consider another case, namely, re-
ducing on homogeneous manifolds described as coset
spaces. These are particularly attractive because they main-
tain the useful properties of group manifolds while not
being as restrictive, and they do have a long history of
use in Kaluza-Klein models, with their structure providing
non-Abelian gauge groups via the Killing vectors living on
the coset [7,16]. As a way of connecting eleven-
dimensional supergravity to standard model physics in
four dimensions it was pointed out in [17] that seven is
the minimum number of dimensions for a homogeneous
manifold invariant under the action of SU�3� � SU�2� �
U�1�. Although there is a large body of work regarding
cosets as internal manifolds, the existing literature is
mostly concerned with finding stationary points of the
effective potential, corresponding to Einstein metrics on
the coset space, rather than studying the dynamics of
evolving moduli. In this paper we shall seek to resolve
this starting with a review of the framework of cosets and
then applying it to the study of the evolution of coset
spaces in cosmology, concentrating on eleven-dimensional
supergravity as the higher-dimensional theory [18]. Using
the conventions of [19] the bosonic action for the theory is

Ŝ �
1

2�2
11

Z �
�R̂�

1

2
� F ^ F�

1

6
C ^ F ^ F

�
; (1)

where R̂ is the 11D Ricci scalar. The equations of motion
following from this are

R̂ �� �
1
12�F��1�2�3

F�1�2�3
� � 1

12g��F
2� � 0; (2)

d � F	 1
2F ^ F � 0: (3)

As we are interested in the case where the internal mani-
fold is a coset, with squashing parameters that vary as a
function of spacetime, we write the metric as

ds2 � e2 �x�ds2
�4� 	 gij�x�e

i � ej; (4)

where the one-forms ei span the cotangent space of the
coset manifold (see Appendix A). We also allow there to be
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a Freund-Rubin flux [20] of the form

F � f�4; (5)

where �4 is the volume form on spacetime and f is a
function to be determined. In order to have a convenient
four-dimensional description we require an effective action
in four dimensions which reproduces the equations of
motion required to solve the full 11D system. This raises
the issue of consistent truncation which is known to impose
certain constraints on the internal manifold. In the case of
group reductions, for example, one requires the group to be
unimodular [21]; see [22] for a nice history and discussion
of this issue and see [23,24] for recent work. For coset
reduction we shall find that the effective action for the
fields from the gravity sector does actually correspond to
simply substituting the 11D metric ansatz into the 11D
action, but the coset must again satisfy a particular con-
straint. This issue is not just related to the gravity sector;
we also find it in the flux sector where in order to get the
correct sign from the flux contribution one must appeal to
the underlying equations of motion [25].

III. CHOOSING A COSET

The eleven-dimensional supergravity permits classical
solutions where the space time is partitioned as M11 �
M4 
M7 and the internal seven-dimensional part is com-
pact giving an effective theory in four dimensions. We are
interested in the case where M7 takes the form of a coset
manifold. Fortunately, such cosets have been classified in
[7] and are shown in Table I. We have not explicitly
included SO�8�=SO�7� as this is metrically equivalent to
a particular case of the SO�5�=SO�3� coset, where the
metric is proportional to the identity. Each of these de-
scribes a number of different cosets, depending upon the
exact embedding of the subgroup H in G. For instance the
group SO(5) has two orthogonal SO(3) subgroups, referred
to as A andB. We can form a coset by dividing out by either
of these, or by taking some combination of them. In this
way we find that there are three cosets which are referred to
as A, A	 B, and MAX. In the same way the M, N, and Q
spaces have their subgroup embeddings parametrized by
the integers p, q and r.

We now describe the effective theories derived from
each type of coset. With all the effective actions in hand
we shall then study their scaling behavior.

A. Equations for SO�5�=SO�3�A
The general procedure for dimensional reduction on a

coset is given in Appendix B, here we produce the results
for the various allowed cosets presented in Table I. Our first
example is one of the SO�5�=SO�3� cosets, SO�5�=SO�3�A,
presented in Appendix C, and we discover that there are
seven moduli describing the coset metric. However, we
need to make sure that the truncation is consistent, mean-
ing that the 11D Ricci tensor must satisfy (2). If we look at
-2



TABLE I. The cosets of 11D supergravity.

M7 G H Ref.

S7, J7, V5;2 SO(5) SO(3) [7]
Mpqr SU�3� 
 SU�2� 
 U�1� SU�2� 
 U�1� 
 U�1� [26]
Npqr SU�3� 
 U�1� U�1� 
 U�1� [27]
Qpqr SU�2� 
 SU�2� 
 SU�2� U�1� 
 U�1� [28]
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the components of R̂�i from (B5) and use the structure
constants relevant for this coset we find that in general one
084027
must restrict to a diagonal coset metric of the form

gab � diag�e2A; e2B; e2C; e2D; e2D; e2D; e2D�: (6)

This is an important restriction, showing that the general
metric which respects the coset symmetries does not form a
consistent truncation. This does not, however, necessarily
mean that there are no special configurations which contain
off-diagonal terms for which R̂�i happens to vanish.

For this metric we have from (B10) that
1
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2 � �rB�2 � �rC�2 � 4�rD�2

�
1

2
�r�A	 B	 C	 4D��2 	 e2 RG=H

�
; (7)
where we have introduced VG=H which is a constant vol-
ume of the unsquashed coset, defined by

VG=H �
Z
G=H

e1 ^ e2 ^ e3 . . . ; (8)

with the ei being representatives of the coset cotangent
space as in Appendix A. This allows us to define a 4D
gravitational coupling for the effective theory using

VG=H
2�2

11

�
1

2�2 : (9)

We notice from (7) that the functions A, B, C, D have
become scalar fields of the effective theory, but with non-
canonical kinetic terms. In order to reduce this to standard
form we diagonalize the gradient terms in the above ex-
pression using a Gram-Schmidt procedure and introduce
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:

(10)

Having found the action coming from the Ricci scalar we
now consider the dynamics coming from the Freund-Rubin
flux. As we are presently only concerned with flux of the
form (5) the F ^ F term in (3) vanishes to leave

d �fe�4 eA	B	C	4D� � 0: (11)
So, using (B7), our flux parameter is given by

f � f0e6 ; (12)

where f0 is an integration constant. We are now in a
position to examine the equations of motion (2) finding
that they can be derived from an effective action,
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14
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21
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(13)

We have introduced the function

V �x; y� � e
��
2
p
x	

������
2=3
p

y 	 e�
��
2
p
x	

������
2=3
p

y 	 e�2
������
2=3
p

y; (14)

as it aids our understanding of the dynamics in separate
sectors. The function V has a global minimum at ’2 �
0 � ’3 which means that these fields will evolve to zero
independently of what ’1 and ’4 are doing and we may
consider how the potential depends on ’1 and ’4 alone.
We see from Fig. 1 that there is indeed a minimum at ’2 �
’3 � 0. The figure also shows a local minimum in the
’1 � ’4 plane along with a saddle point; these, however,
depend on the value of’2 and’3, with the plot using’2 �
’3 � 0.

We can understand these extrema by studying the exist-
ing literature. In the early days of supergravity there was
-3
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FIG. 1 (color online). Contour plots of the potential for the SO�5�=SO�3�A coset.
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much interest in existence of Einstein metrics on coset
manifolds as these were known to correspond to extrema
of the effective potential. In [7] we find that for
SO�5�=SO�3�A there are two Einstein metrics on the coset,
both with A � B � C but with one taking A � D and the
other with A � D� log

���
5
p

(C7); these correspond to a
round seven sphere and a squashed seven sphere, respec-
tively, and are given by the local minimum and saddle point
of the potential. In terms of the canonical scalars the round
metric takes the values ’2 � ’3 � ’4 � 0 and the

squashed metric has ’2 � ’3 � 0, ’4 �
2
�

��
3
7

q
log

���
5
p

. At

both the round sphere and the squashed sphere one finds
that the potential has an extremum at which point the
potential is negative, allowing an AdS4 solution.

B. Equations for SO�5�=SO�3�A	B
As mentioned in Sec. III A there is another coset of

SO(5) where the SO(3) subgroup is taken to be the diago-
nal component of SO�3�A � SO�3�B. In Appendix D we
show how such a coset is constructed and derive the
general metric which is consistent with the coset symme-
tries. We restrict to a diagonal coset metric gab �
diag�e2A; e2A; e2A; e2B; e2C; e2C; e2C�, which is needed for
a consistent reduction. Following the same procedure as
before we calculate from (B10) the effective action coming
from the Ricci scalar,

1

2�2
11

Z �����������
�ĝ11

p
d11xR̂ �

VG=H
2�2

11

Z ����������
�g4
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d4x
�
R4 � 3�rA�2

� �rB�2 � 3�rC�2

�
1

2
�r�3A	 B	 3C��2

	 e2 RG=H

�
: (15)

Again we see that the parameters describing the size and
shape of the internal manifold have become scalar fields
with noncanonical kinetic terms, and in order to have
084027
standard kinetic terms we diagonalize the gradient terms
as we did before. We find that the Gram-Schmidt procedure
provides us with the following field redefinition:
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(16)

Turning our attention to the equations for the three-form
potential (3), we find that the Freund-Rubin flux must
satisfy

d �fe�4 e3A	B	3C� � 0; (17)

and so using (B7) our flux parameter is given by the same
expression as before, (12). From this one may find the
equations of motion and we discover that they can be
derived from the following effective action,
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(19)

On examining the contour plot of this potential in the ’2 �
’3 plane (Fig. 2) we observe that there is an extremum, as
is to be expected, which corresponds to the location where
-4
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FIG. 2 (color online). Contour plots of the potential for the
SO�5�=SO�3�A	B coset.
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the metric is Einstein [7]; this point is independent of the
scalar ’1. The Einstein metric is derived in Appendix D
and is given by

’2 �

���
3
p

4�
log

�
3

2

�
; ’3 � �

1���
7
p ’2; (20)

at which point the potential becomes
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1
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63
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2

�
1=7
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������
2=7
p

�’1 	
1

2
f2

0e
�
����
14
p

�’1 ;

(21)

which allows for an AdS4 solution in the minimum.

C. Equations for SO�5�=SO�3�MAX

The last coset one can construct out of SO(3) subgroups
of SO(5) is where the SO(3) subgroup is maximal. We
construct this subgroup in Appendix E finding only a single
modulus, which describes just a breathing mode for the
internal space and therefore there are no shape moduli. We
are only allowed the single parameter diagonal coset met-
ric which we parametrize as gab �
diag�e2A; e2A; e2A; e2A; e2A; e2A; e2A� and for which we cal-
culate from (B10)

1

2�2
11
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�ĝ11

p
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�g4
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63

2


 �rA�2 	 e2 RG=H

�
: (22)

These are the terms which will give us the kinetic terms for
the effective action. In order to have canonical kinetic
terms we rescale A as follows:
084027
A �
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���
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7

s
�’1: (23)

The effect of the Freund-Rubin flux is calculated as before,
with (3) giving

d �fe�4 e7A� � 0; (24)

and once again our flux parameter is given by (12). We find
that the evolution of the moduli coming from 11D equa-
tions of motion can then be described by the following
effective action:
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Z ����������
�g4
p
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and the potential is shown in Fig. 3 which has an AdS4

extremum at ’1 �
1

4�
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7
2

q
log�

10f2
0�

2

81 �.

D. Equations for Mpqr � SU�3� 
 SU�2� 

U�1�=SU�2� 
 U�1� 
 U�1�

We now consider another class of cosets, SU�3� 

SU�2� 
 U�1�=SU�2� 
 U�1� 
 U�1�, characterized by in-
tegers p, q, r, the construction of which we show in
Appendix F. A full discussion of these spaces can be found
in [7,17,29]; in particular, the curvature depends only on
the ratio p=q, and the space Mpq0 is the covering space of
Mpqr.

We parametrize the metric for this class of coset (F4) in
maximum generality as the diagonal metric gab �
diag�e2A; e2A; e2A; e2A; e2B; e2B; e2C�, and following the
same procedure as before we calculate from (B10) the
effective action coming from the Ricci scalar,
-5
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Again we see that the parameters describing the size and
shape of the internal manifold have become scalar fields
with noncanonical kinetic terms, and so in order to have
standard kinetic terms we diagonalize the gradient terms as
we did before. We find that the Gram-Schmidt procedure
provides us with the following field redefinition:
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with � �
���������������������������������
3p2 	 q2 	 2r2

p
. In these expressions we also

have shifted the fields by a constant factor to simplify the
potential.

We find that the Freund-Rubin flux must satisfy

d �fe�4 e4A	2B	C� � 0; (28)

and so using (B7), our flux parameter is given by the same
expression as before, (12). From this one may find the
equations of motion and we discover that they can be
derived from the following effective action:
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0e
�
����
14
p

�’1 : (30)
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E. Equations for Npqr � SU�3� 
 U�1�=U�1� 
 U�1�

Another class of cosets to consider are SU�3� 

U�1�=U�1� 
 U�1�, which are also characterized by inte-
gers p, q, r; the construction is shown in Appendix G, but
further details may be found in [27,30]. For this coset one
finds again that the curvature is independent of r, withNpq0

being the covering space of Npqr.
The general metric for this class of coset is again diago-

nal (G4), which by taking gab �
diag�e2A; e2A; e2B; e2B; e2C; e2C; e2D� and calculating as be-
fore from (B10) we obtain the effective action coming from
the Ricci scalar,

1

2�2
11

Z �����������
�ĝ11

p
d11xR̂�

VG=H
2�2

11

Z ����������
�g4
p

d4x
�
R4� 2�rA�2

� 2�rB�2� 2�rC�2

� 2
�
r

�
A	B	C	

1

2
D
��

2

	 e2 RG=H

�
: (31)

Introducing a constant shift in the field redefinition follow-
ing from the Gram-Schmidt process we find the following
gives canonical kinetic terms for the scalars ’i:

A � �
�
1

3

���
2

7

s
’1 �

1

2
’2 �

1���
6
p ’3 �

1������
42
p ’4

�
	

1

9
log

�
q
�

�
;

B � �
�
1

3

���
2

7

s
’1 	

1

2
’2 �

1���
6
p ’3 �

1������
42
p ’4

�
	

1

9
log

�
q
�

�
;

C � �
�
1

3

���
2

7

s
’1 	

1���
3
p ’3 �

1������
42
p ’4

�
	

1

9
log

�
q
�

�
;

D � �
�
1

3

���
2

7

s
’1 	

���
6

7

s
’4

�
�

8

9
log

�
q
�

�
; (32)

with � �
���������������������������������
3p2 	 q2 	 2r2

p
.

The flux equations of motion require the Freund-Rubin
flux to satisfy

d �fe�4 e2A	2B	2C	D� � 0; (33)

and we discover that the equations of motion can be
derived from the effective action,

S4 �
Z ����������
�g4
p

d4x
�

1

2�2 R4 �
1

2

X
i

r�’ir
�’i � V�’�

�
;

(34)
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V�’� � �
1

2�2 e
�3

������
2=7
p

�’1

�
�
�3p� q�2

8q2 e�4=
��
3
p
�’3	8

��������
2=21
p

�’4 	 3e�2=
��
3
p
�’3	

��������
2=21
p

�’4 �
1

2
e�2�’2�2=

��
3
p
�’3	

��������
2=21
p

�’4

�
1

2
e2�’2�2=

��
3
p
�’3	

��������
2=21
p

�’4 	 3e��’2	1=
��
3
p
�’3	

��������
2=21
p

�’4 	 3e�’2	1=
��
3
p
�’3	

��������
2=21
p

�’4 �
1

2
e4=

��
3
p
�’3	

��������
2=21
p

�’4

�
1

2
e2�’2	2=

��
3
p
�’3	8

��������
2=21
p

�’4 �
�3p	 q�2

8q2 e�2�’2	2=
��
3
p
�’3	8

��������
2=21
p

�’4

�
	

1

2

�
q2

3p2 	 q2 	 2r2

�
1=3
f2

0e
�
����
14
p

�’1 :

(35)
F. Equations for Qpqr � SU�2� 
 SU�2� 

SU�2�=U�l� 
 U�1�

The final class of cosets in the classification are theQpqr

spaces, given by the quotient SU�2� 
 SU�2� 

SU�2�=U�1� 
 U�1� where the integers p, q, r characterize
the different embeddings of the subgroup. This coset is
constructed in Appendix H, but further details on its struc-
ture may be found in [31].

The metric for this class of coset is the diagonal metric
gab � diag�e2A; e2A; e2B; e2B; e2C; e2C; e2D� for which we
calculate from (B10) that the effective action coming
from the Ricci scalar is

1

2�2
11

Z �����������
�ĝ11

p
d11xR̂�

VG=H
2�2

11

Z ����������
�g4
p

d4x
�
R4� 2�rA�2

� 2�rB�2� �rC�2� �rD�2

� 2
�
r

�
A	B	C	

1

2
D
��

2

	 e2 RG=H

�
: (36)

To get back to canonical kinetic terms we introduce field
redefinitions,
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A � �
�
1

3

���
2

7

s
’1 �

1

2
’2 �

1���
6
p ’3 �

1������
42
p ’4

�
	

1

9
log

�
q
�

�
;

B � �
�
1

3

���
2

7

s
’1 	

1

2
’2 �

1���
6
p ’3 �

1������
42
p ’4

�
	

1

9
log

�
q
�

�
;

C � �
�
1

3

���
2

7

s
’1 	

1���
3
p ’3 �

1������
42
p ’4

�
	

1

9
log

�
q
�

�
;

D � �
�
1

3

���
2

7

s
’1 	

���
6

7

s
’4

�
�

8

9
log

�
q
�

�
; (37)

with � �
����������������������������
p2 	 q2 	 r2

p
, and the flux equation gives us

d �fe�4 e2A	2B	2C	D� � 0: (38)

From this one may find the equations of motion and we
discover that they can be derived from the following ef-
fective action:

S4 �
Z ����������
�g4
p

d4x
�

1

2�2 R4 �
1

2

X
i

r�’ir
�’i � V�’�

�
;

(39)
V�’� � �
1

2�2 e
�3

������
2=7
p

�’1

�
�
p2

2q2 e
2�’2	2=

��
3
p
�’3	8

��������
2=21
p

�’4 	 2e�2=
��
3
p
�’3	

��������
2=21
p

�’4 	 2e��’2	1=
��
3
p
�’3	

��������
2=21
p

�’4

	 2e�’2	1=
��
3
p
�’3	

��������
2=21
p

�’4 �
1

2
e�2�’2	2=

��
3
p
�’3	8

��������
2=21
p

�’4 �
r2

2q2 e
�4=

��
3
p
�’3	8

��������
2=21
p

�’4

�

	
1

2

�
q2

p2 	 q2 	 r2

�
1=3
f2

0e
�
����
14
p

�’1 : (40)
IV. SCALING SOLUTIONS

Now that we have our set of effective actions for the full
set of cosets we move on to examine their dynamics. While
studying the different possible types of evolution a scalar
field may have it becomes clear that scaling solutions
coming from exponential potentials hold a rather promi-
nent position [1,2,32–41]. This is because systems of
exponential potentials can have attractor solutions, when
viewed from a dynamical systems perspective [1,2], where
the scalar field constitutes a fixed fraction of the energy
density in the Universe [42]. We have seen in the above
sections that coset spaces naturally give rise to exponential
potentials, a situation which is common in dimensionally
reduced theories. Another nice property of having many
scalars is that while each term in the potential may be too
steep to support an accelerating scale factor, together they
may combine in such a way as to allow inflationary be-
havior [43]. We can understand this by noting that in some
cases it is possible to perform a field redefinition such that
only one of the new fields is involved in the evolution, or
some smaller subset than was being used in the initial
formulation [2]. In this section we shall investigate how
the scalars evolve for the coset reductions discussed above,
-7
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we start with a general discussion of how scaling solutions
appear. In doing this we shall follow [36,39] by adding a
fluid component which accounts for other forms of matter/
radiation that could be present. We describe this fluid by
the following equation of state,

P� � ��� 1���: (41)

Taking the cosmological ansatz of homogeneous fields,
	�x�� � 	�t� and the Friedmann-Robertson-Walker met-
ric

d s2 � �dt2 	 a�t�2dx2; (42)

for flat spatial sections we find the usual equations

H2 �
�2

3

�X
i

1

2
_’2
i 	 V 	 ��

�
; (43)

_H � �
�2

2

�X
i

_’2
i 	 ���

�
; (44)

_� � � �3�H�� (45)

�’ i 	 3H _’	 V;i � 0: (46)

A central part of scaling solutions is that all terms in a
given equation have the same behavior. Given that, it is
easy to see the above equations require

H2 / _’2
i / V / �� / _H; (47)

which can be consistent only for exponential potentials,
and H / 1=t. A crucial point in searching for these scaling
solutions is that one cannot have more independent terms
in the potential than scalar fields, otherwise the system is
overdetermined and has no scaling solution. We see
straight away that for our system we always have more
terms than scalars and so there cannot be any true scaling
solution. That does not rule out there being regions where
the evolution is well approximated by scaling solutions,
and as pointed out in [39] this can in fact be a useful tool,
with the evolution moving from scaling solution to scaling
solution. Given that there is no true scaling solution we
shall now consider regions of parameter space where we
expect approximate scaling behavior.

As an example, consider the case of a scalar field with
potential

V � A exp��b�	�; (48)

A > 0, scale factor with a�t� � tp, and fluid density � �
~�=��2t2�. We find that

p � 2=�3��; ~� � 3p�p� 2=b2� (49)

with a fluid and

p � 2=b2 (50)
084027
without the fluid. There are also the consistency relations

b2 > 3� (51)

with a fluid and

b2 < 6 (52)

without. These come from demanding positivity of the
fluid energy density and potential V . If we were to allow
A< 0 then the scaling solution, without fluid, would have
the opposite bound for b, b2 > 6. However, in this case the
solution corresponds to the scalar field rolling up the
potential due to a large initial velocity and being an un-
stable evolution. Because of this, we shall only try to
construct scaling solutions from positive terms in the
potential.
V. SCALING REGIONS

Taking a general potential of the form [2],

V �
XN
i�1

Vi (53)

Vi � �i exp�
i:’� � �i exp
�Xn
I�1


iI’I

�
; (54)

with n scalar fields and N terms then scaling behavior can
be expected only for potentials with N � n, otherwise we
find an overdetermined system of equations as described in
the last section. In our system we have more terms than
fields; therefore, we look for directions in field space which
can support scaling solutions owing to a subset of terms
being subdominant. For term Vd to dominate over term Vs
in direction � we need


 s:�<
d:�: (55)

In order for scaling to be achieved without going to very
large field values we shall require the subdominant terms
(Vs) to die off exponentially, while the dominant terms (Vd)
increase exponentially:


 d:�> 0; 
s:�< 0: (56)

Furthermore, we guarantee that the scaling solution rolls
down the potential, rather than up, by enforcing the terms
with negative �i to be subdominant terms. We call all these
requirements the conditions for strong scaling.

A. SO�5�=SO�3�A
In order to make the procedure clearer we shall start with

a special, restricted, example by choosing the coset
SO�5�=SO�3�A, taking the restriction ’2 � 0 � ’3 (13).
Then we find the terms in the potential are given by the
following 
 vectors (13) and (54), with those contributing
to negative terms (�i < 0) indicated with 
 marks,
-8
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1 �

���
7
p

21
���9

���
2
p
; 0; 0;�3

���
3
p
�;


2 �

���
7
p

21
���9

���
2
p
; 0; 0;�10

���
3
p
�;



3 �

���
7
p

21
���9

���
2
p
; 0; 0; 4

���
3
p
�;


4 �

���
7
p

21
���21

���
2
p
; 0; 0; 0�:

(57)

The procedure now is to find a direction in field space, �,
which satisfies


 1:� � ��2; (58)


 3:� � ��2; (59)

where � and � are real constants, thereby ensuring that the
negative terms, V1 and V3, are exponentially small in the
direction �. With these conditions we now parametrize �
as

� �
21���
7
p
�
�
���
2
p
a; 0; 0;

���
3
p
b�; (60)

where the numerical factors are simply for convenience,
and we then derive that


 2:� � �2�2 	 �2; (61)


 4:� � �
4

3
�2 � �2: (62)

We therefore conclude that if the negative terms in the
potential, V1 and V3, are exponentially small then so is V4

as 
4:�< 0. However, there are regions where V2 can be
large as 
2:� will be positive if �2 > 2�2. In this example
we find that if

a	 2b > 0; 3a	 5b < 0; (63)

then the term V2 will be exponentially large with V1, V3, V4

being exponentially small. Thus, this system meets the
requirements of strong scaling as given earlier.

As an example we consider an initial condition com-
mensurate with (63) by choosing as a direction for �,

� �
1���
5
p �

���
2
p
’1 �

���
3
p
’4�; � �

1���
5
p �

���
3
p
’1 	

���
2
p
’4�;

(64)

where we have introduced the orthogonal partner � to �.
Note that as this is an SO(2) rotation the kinetic terms
remain canonical. Substituting this into the potential (13)
we find that the large � limit is described by

V �
3

2�2 exp
�
4
���
7
p

7
���
5
p ���

19
������
42
p

21
���
5
p ��

�
: (65)

Performing one more SO(2) field redefinition,
084027
 1 �
�����������
3=22

p �
4
���
7
p

7
���
5
p ��

19
������
42
p

21
���
5
p �

�
;

 2 �
�����������
3=22

p �
4
���
7
p

7
���
5
p �	

19
������
42
p

21
���
5
p �

�
;

(66)

the potential becomes

V �
3

2�2 exp�
�����������
22=3

p
� 1�: (67)

We now see that (48), (51), and (52) imply that a scaling
solution is possible, but only in the presence of a back-
ground fluid. Note that in this example whenever V2 domi-
nates over the other terms it is always possible to perform a
field redefinition so that the effective potential will take
exactly the same form as (67), showing that tracking
solutions are allowed in the region defined by (63).

If we now consider the more general case with ’2 and
’3 nonvanishing then a similar analysis shows that there
can be up to four positive terms dominant in the potential;
as there are four scalars this allows there to be scaling
solutions and the full system can meet the requirements of
strong scaling. The terms which can dominate in these
more general regions are given in Table II. This table lists
the terms which are dominant in some particular directions,
for example: there are directions in the SO�5�=SO�3�A case
where only the V2 increases exponentially; there are also
directions where both V2 and V3 increase with the rest
decreasing; there are, however, no directions where V2

and V8 increase with the rest decreasing. We shall defer
the study of these more complicated directions for future
work.

B. SO�5�=SO�3�A	B
We can perform a similar analysis for the potential (14),

for which there are three scalar fields so we are allowed at
most three dominant terms in the potential for a scaling
solution. The exponents in the potential are described by
the following seven vectors:



1 �
1���
2
p

1
���3

���
6
p
; 0;�4�;



2 �
1���
2
p

1
���3

���
6
p
;
���
7
p
; 3�;



3 �
1���
2
p

1
���3

���
6
p
;�3

���
7
p
; 3�;


4 �
1���
2
p

1
���3

���
6
p
;�4

���
7
p
;�4�;


5 �
1���
2
p

1
���3

���
6
p
; 4

���
7
p
;�4�;


6 �
1���
2
p

1
���3

���
6
p
;�2

���
7
p
; 10�;


7 �
1���
2
p

1
���7

���
6
p
; 0; 0�:

(68)
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TABLE II. Terms allowed in strong scaling directions for the cosets of 11D supergravity.

Coset Terms allowed

SO�5�=SO�3�A f2g, f3g, f4g, f8g, f9g, f10g,
f2; 3g, f2; 4g, f2; 9g, f3; 4g, f3; 8g, f4; 10g,

f2; 3; 4g, f2; 3; 8g, f2; 3; 9g, f2; 4; 9g, f2; 4; 10g, f3; 4; 8g, f3; 4; 10g,
f2; 3; 4; 8g, f2; 3; 4; 9g, f2; 3; 4; 10g

SO�5�=SO�3�A	B f4g, f5g, f6g
SO�5�=SO�3�max f2g
Mpqr f1g, f4g, f5g, f1; 4g
Npqr f1g, f3g, f4g, f7g, f8g, f9g, f10g,

f1; 3g, f1; 4g, f1; 8g, f1; 9g, f3; 9g, f3; 10g, f4; 8g, f4; 10g, f7; 8g, f7; 9g, f7; 10g, f8; 9g,
f1; 3; 9g, f1; 4; 8g, f1; 8; 9g, f7; 8; 9g, f1; 3; 8; 9g, f1; 4; 8; 9g, f1; 7; 8; 9g

Qpqr f1g, f5g, f6g, f7g, f1; 5g, f1; 6g, f5; 6g, f1; 5; 6g.
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In this case we find that a different structure appears.
Whereas the SO�5�=SO�3�A case had directions in field
space using the maximum number of terms in the potential
allowed by scaling, here we find that there can be at most
one single term. By requiring that the negative terms V1,
V2, and V3 all decrease we find there are regions where
either V4, V5, or V6 dominate and each such region gives an
exponent of b �

�����������
26=3

p
in (48). Thus SO�5�=SO�3�A	B

can satisfy strong scaling.

C. M�p; q; r�

The coset SU�3� 
 SU�2� 
 U�1�=SU�2� 
 U�1� 

U�1� leads to the potential given in (30), which we can
describe using the following vectors:

 1 �
1���
2
p

1
���3

���
6
p
; 2

���
7
p
; 8

���
2
p
�;


 
2 �
1���
2
p

1
���3

���
6
p
;�2

���
7
p
;
���
2
p
�;


 
3 �
1���
2
p

1
���3

���
6
p
;
���
7
p
;
���
2
p
�;


4 �
1���
2
p

1
���3

���
6
p
;�4

���
7
p
; 8

���
2
p
�;


5 �
1���
2
p

1
���7

���
6
p
; 0; 0�:

(69)
When looking for strong scaling regions we discover that
although there are four fields, at most there are two that
will be relevant. The terms that can dominate individually
are V1, V4, V5 for which we find the effective exponents������

10
p

,
������
14
p

, and
������
14
p

, respectively. There is also a set of
directions where both V1 and V4 dominate; the study of
these directions will be included in forthcoming work.
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D. N�p; q; r�

The directions in the potential for N�p; q; r� are given by
the following vectors:

 1 �
1���
2
p

1
���3

���
6
p
; 0;�4

���
7
p
; 8

���
2
p
�;



2 �
1���
2
p

1
���3

���
6
p
; 0;�2

���
7
p
;
���
2
p
�;


3 �
1���
2
p

1
���3

���
6
p
;�2

���
2
p

1;�2
���
7
p
;
���
2
p
�;


4 �
1���
2
p

1
���3

���
6
p
; 2

���
2
p

1;�2
���
7
p
;
���
2
p
�;



5 �
1���
2
p

1
���3

���
6
p
;�

���
2
p

1;
���
7
p
;
���
2
p
�;



6 �
1���
2
p

1
���3

���
6
p
;
���
2
p

1;
���
7
p
;
���
2
p
�;


7 �
1���
2
p

1
���3

���
6
p
; 0; 4

���
7
p
;
���
2
p
�;


8 �
1���
2
p

1
���3

���
6
p
; 2

���
2
p

1; 2
���
7
p
; 8

���
2
p
�;


9 �
1���
2
p

1
���3

���
6
p
;�2

���
2
p

1; 2
���
7
p
; 8

���
2
p
�;


10 �
1���
2
p

1
���7

���
6
p
; 0; 0; 0�:

(70)
In this case each of the positive terms V1, V3, V4, V7, V8,
V9, V10 in the potential can satisfy strong scaling individu-
ally. In these cases the effective exponent b in (48) is

������
14
p

,���
8
p

,
���
8
p

,
���
8
p

,
������
14
p

,
������
14
p

,
������
14
p

, respectively. We also find that
there can be up to three dominant terms while still main-
taining the strong scaling criteria; such terms are given in
Table II.
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E. Q�p; q; r�

The directions in the Q�p; q; r� potential are described
by the following vectors:


 1 �
1���
2
p

1
���3

���
6
p
; 2

���
2
p

1; 2
���
7
p
; 8

���
2
p
�;


 
2 �
1���
2
p

1
���3

���
6
p
; 0;�2

���
7
p
;
���
2
p
�;


 
3 �
1���
2
p

1
���3

���
6
p
;�

���
2
p

1;
���
7
p
;
���
2
p
�;


 
4 �
1���
2
p

1
���3

���
6
p
;
���
2
p

1;
���
7
p
;
���
2
p
�;


5 �
1���
2
p

1
���3

���
6
p
;�2

���
2
p

1; 2
���
7
p
; 8

���
2
p
�;


6 �
1���
2
p

1
���3

���
6
p
; 0;�4

���
7
p
; 8

���
2
p
�;


7 �
1���
2
p

1
���7

���
6
p
; 0; 0; 0�:

(71)

As in the Npqr case we find that each of the positive
terms in the potential V1, V5, V6, V7 can satisfy strong
scaling on their own, in each case we find that the effective
exponent is

������
14
p

. We also find that there can be up to three
terms in the potential which can dominate together over the
rest; these are shown in Table II.

VI. CONCLUDING REMARKS

In this paper we have given an explicit construction of
the consistent dimensional reduction of eleven-dimension
supergravity over the homogeneous spaces classified in [7].
By including a Freund-Rubin four-form flux we have seen
that this leads to an effective theory in four dimensions that
consists of Einstein gravity coupled to a series of moduli
fields and that these fields experience a potential which is
composed of a series of exponentials. Motivated by the
large body of material which studies gravity	 scalars
with exponential potentials, we studied the possibility of
scaling solutions in this setup. However, for exact scaling
solutions to exist there can be at most the same number of
terms in the potential as there are fields; if this is violated
then one finds an over constrained algebraic system for
which there is no solution. In all the cosets of the classifi-
cation we find that there are more terms in the potential
than there are moduli fields. While this rules out the
existence of exact scaling solutions, one still has the pos-
sibility that there are regions in field space where only a
subset of terms are relevant, thereby allowing approximate
scaling solutions. Having given a set of criteria for such
regions to exist we showed that it is possible to get ap-
proximate scaling in each of the coset examples. The cases
which we analyzed explicitly were only the ones where
there is a single dominant term, and we explicitly gave the
exponent of the effective potential. We also noted that there
084027
are examples where more than one term could dominate,
giving the possibility of assisted behavior in these direc-
tions; we shall leave the detailed study of such examples
for future work.

Aside from the Freund-Rubin flux that we included,
there is also the possibility that one may include internal
flux. This internal flux may take the form of a combination
of axions coming from three-form potentials as C3 �
	�x�c3�y� and nonexact flux, i.e. a four-form flux that
cannot be written globally as dc. In such a scheme, the
consistent truncation would require us to take fluxes that
matched the symmetries of the coset involved and would
lead to a finite, manageable set of scalar fields. This would
then lead to a four-dimensional effective theory containing
axions and geometrical moduli. Both of these types of
fields are to be expected in such dimensional reduction
schemes, and it remains to be seen how the presence of
such axions in coset models affects the dynamics.
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APPENDIX A: REVIEW OF INVARIANT OBJECTS
ON A COSET

Decompose the Lie algebra as G �H �K, where
H � G is a subgroup of G. We consider only compact
groups, so the coset space G=H is reductive [16] i.e.

�H a;H b� �H cfcab; �H a;Ki� �Kjf
j
ai;

�Ki;Kj� �H af
a
ij 	Kkf

k
ij:

(A1)

We use i; j; . . . indices to label elements of K and a; b; . . .
to label elements of H . Now consider the left-invariant
form onG=H, �, which we expand by introducing the one-
forms ea and ei

� � L�1dL �H ae
a 	Kie

i: (A2)

To find the algebra of these one-forms consider

d� � dL�1 ^ dL � �L�1dL ^ L�1dL � �� ^�;

(A3)

which then gives

dea � �1
2f
a
bce

b ^ ec � 1
2f
a
ije

i ^ ej;

dei � �1
2f
i
jke

j ^ ek � fiaje
a ^ ej:

(A4)

We may use these left-invariant one-forms to construct a
homogeneous, G-invariant metric on G=H,

ds2
G=H � gije

i � ej: (A5)

Homogeneity requires the parameters gij to be independent
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of the coordinates on G=H, and G invariance requires [44]

gkjf
k
ia 	 gikf

k
ja � 0: (A6)

This relation gets generalized for objects with more indi-
ces, such as form fields

Tki2i3���f
k
i1a
	 Ti1ki3���f

k
i2a
	 Ti1i2k...fki3a 	 . . . � 0: (A7)

Note that for G to be unimodular then fIIJ � 0 and for H
to be unimodular then faab � 0 and for G=H being reduc-
tive then fabi � 0, all of which show that fiij � 0 and
fiia � 0.
APPENDIX B: REDUCING THE RICCI SCALAR

We choose a higher-dimensional metric to consist of a
spacetime part and an internal coset part according to

ds2 � e2 �x�ds2
�1;d�1� 	 gij�x�e

i � ej

� e2 �x����e
� � e� 	 gij�x�e

i � ej � ĝ�̂ �̂e
�̂ � e�̂;

(B1)

with the coordinates on spacetime being represented by x
and those on the coset by y;  �x� represents a freedom to
choose the spacetime coordinates. In the following we
shall analyze this space using the frame e�̂ � �e�; ei�;
note that this is not an orthonormal frame. In order to
find the connection one-forms, !�̂

�̂, we need to solve

dĝ�̂ �̂ �!�̂
�̂g�̂ �̂ �!

�̂
�̂g�̂ �̂ � 0;

de�̂ 	!�̂
�̂ ^ e

�̂ � 0;
(B2)

and the curvature two-forms follow from

R̂ �̂
�̂ � d!�̂

�̂ 	!
�̂
�̂ ^!

�̂
�̂: (B3)

We find that the Ricci tensor is given by

R̂�� �R�d��� � �d� 2�r�r� � ���r�r� 

� �d� 2����r� r� 	 �d� 2�r� r� 

� 1
4r�g

ijr�gij �
1
2g
ijr�r�gij 	

1
2g
ij�r�gijr� 

	r�gijr� � �
1
2���g

ijr�gijr� ; (B4)

R̂�j � �
1
2g
klr�gkmf

m
lj;

R̂ij �
~Rij 	 e

�2 �12g
klr�gikr

�gjl �
1
2r�r

�gij

	 1
4gklr�g

klr�gij �
1
2�d� 2�r� r

�gij�: (B5)

In deriving this we have used the fact that compact Lie
groups are unimodular, giving fIIJ � 0 [21,22,45]. ~Rij

denotes the curvature of the coset space, treating the gij
as constant and the covariant derivatives, r� are for the
metric ds2

�1;d�1� with their indices raised by ���. Given the
Ricci curvatures above we can see one of the issues related
to the consistency of truncation, namely, that there is
084027
nothing to source R�j and so it must vanish by the 11D
equations of motion. For the cases we consider, we find
that this term does vanish.

We may now trace the above to find the following Ricci
scalar

R̂ �RG=H 	 e�2 �R�d� � 2�d� 1�r2 

� �d� 1��d� 2�r� r� � gijr2gij

� 3
4r�g

ijr�gij � �d� 2�gijr�gijr� 

� 1
4g
ijr�gijgklr�gkl�: (B6)

Making use of the gauge freedom we choose

e�d�2� ������
gij
p

� 1 (B7)

showing that the physical volume of the internal space is
given by

Vphys � VG=He
�2�d� : (B8)

This gauge choice enables us to write

R̂�� �R�d��� 	
1

2�d� 2�
gijr�r

�gij���

	
1

4
r�g

ijr�gij 	
1

2�d� 2�
���r�g

ijr�gij

�
1

4�d� 2�
gijr�gijg

klr�gkl

�R�d��� 	
1

4
r�g

ijr�gij � ���r
2 

� �d� 2�r� r� ; (B9)

R̂ij �
~Rij 	

1

2
e�2 �gklr�gikr

�gjl �r�r
�gij�;

R̂ � e�2 
�
R�d� � 2�d� 1�r2 � gijr2gij

�
3

4
r�gijr�gij �

1

4�d� 2�
gijr�gijgklr�gkl

�
	RG=H: (B10)
APPENDIX C: COSET SO�5�=SO�3�A

1. The invariant metric

The Lie algebra of SO(n) may be written in terms of one-
forms, �IJ as

d �IJ � �2�IK ^�KJ; (C1)

where �IJ � ��JI and I; J; . . . � 0; 1; . . . n� 1. Taking
N � 5 we can introduce a different basis, 
i, �i, and �a


i � �2��0i	
1
2�ijk�jk�; �i � 2��0i �

1
2�ijk�jk�;

�p � 2�p4: (C2)

In this basis we find that the 
i and �i form commuting
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so(3) subalgebras, labeled so�5�A and so�5�B, respectively.
Given these subalgebras we may construct the coset
SO�5�=SO�3�A. In order to find a G-invariant metric we
apply the techniques of Appendix A to gab using (A7) and
discover that the most general metric on the coset, consis-
tent with its symmetries, is

gab �


 	 � 0 0 0 0
	 �  0 0 0 0
�  � 0 0 0 0
0 0 0 � 0 0 0
0 0 0 0 � 0 0
0 0 0 0 0 � 0
0 0 0 0 0 0 �

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; (C3)

so there are seven allowed parameters.

2. The Ricci tensor

In order to simplify the analysis of the dynamics we
restrict the most general metric to the diagonal case, gab �
diag�
;�; �; �; �; �; ��, and find that the Ricci tensor is
given by

R 11 �

2

2��
�
�
2�
�

�
2�
	

2

�2 	 1;

R22 �
�2

2
�
�


2�
�

�
2

	
�2

�2 	 1;

R33 �
�2

2
�
�



2�
�
�
2

	
�

�2 	 1;

R44 �R55 �R66 �R77 � �


2�
�
�
2�
�
�
2�
	 3:

(C4)

When considering the dynamics one discovers that there
are special points in the moduli space given by Einstein
metrics, corresponding to stationary points of the effective
potential. This condition states that the Ricci curvature is
proportional to the metric; we find two such points given
by [7]


 � � � � � �; (C5)

R ab �
3

2

gab; (C6)

and


 � � � � � �=5; (C7)

R ab �
27

50

gab: (C8)
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APPENDIX D: COSET SO�5�=SO�3�A	B

1. The invariant metric

One may construct another SO(3) subgroup of SO(5)
based on the diagonal part of SO�3�A 
 SO�3�B, SO�3�A	B.
To see this we introduce a new basis of one-forms,

�i���ijk�jk�
1
2�
i	�i�; �i�2�0i��

1
2�
i��i�;

�4�2�04��0; �5�2�14��1; �6�2�24��2;

�7�2�34��3: (D1)

In this basis we find that the �i form a commuting so(3)
subalgebra, labeled so�5�A	B. In order to find aG-invariant
metric we apply (A7) to gab and discover that the most
general metric on the coset consistent with its symmetries
is

gab �


 0 0 0 � 0 0
0 
 0 0 0 � 0
0 0 
 0 0 0 �
0 0 0 � 0 0 0
� 0 0 0 � 0 0
0 � 0 0 0 � 0
0 0 � 0 0 0 �

0BBBBBBBBBB@

1CCCCCCCCCCA
; (D2)

and so there are four allowed parameters.

2. The Ricci scalar

Again we restrict to a diagonal metric given by gab �
diag�
;
; 
;�; �; �; �� and find that the Ricci tensor has
the following components:

R 11 �R22 �R33 �

2

2��
�
�
2�
�

�
2�
	 3;

R44 � �
3

2�
	

3�2

2
�
�

3�
2

	 3;

R55 �R66 �R77 � �



2�
�
�
2

	

�
2
�

	 3:

(D3)

We may also find the points in moduli space for which such
metrics satisfy the Einstein condition; we find [7]


 � � � 2
3�; (D4)

R ab �
9

4

gab: (D5)
APPENDIX E: COSET SO�5�=SO�3�MAX

A. The invariant metric

The final SO(3) subgroup of SO(5) is the maximal
subgroup, which we can see by introducing the following
basis of one-forms
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�1�
1���
5
p �
1	

���
3
p

�2�; �2�
1���
5
p �
2	

���
3
p

�1�;

�3�
1

2
���
5
p �
3�3�3�; �1��

1

4
���
5
p �3
1�2

���
3
p

�2�5�1�;

�2��
1

4
���
5
p �3
2�2

���
3
p

�1�5�2�; �3�
1

2
���
5
p �3
3	�3�;

�4��
1

4
�
���
3
p

1�2�2	

���
3
p
�1�;

�5�
1

4
�
���
3
p

2�2�1	

���
3
p
�2�; �6��0; �7��3:

(E1)

In this basis we find that the �i form a commuting so(3)
subalgebra, labeled so�5�MAX; we shall now consider the
coset SO�5�=SO�3�MAX. In order to find a G-invariant
metric we apply (A7) to gab and discover that the most
general metric on the coset consistent with its symmetries
is

gab �


 0 0 0 0 0 0
0 
 0 0 0 0 0
0 0 
 0 0 0 0
0 0 0 
 0 0 0
0 0 0 0 
 0 0
0 0 0 0 0 
 0
0 0 0 0 0 0 


0BBBBBBBBBB@

1CCCCCCCCCCA
; (E2)

so there is only one allowed parameter and the metric is
already diagonal. One finds that this metric is already an
Einstein metric, with the Ricci curvature being given by

R ab �
27

10

gab: (E3)
APPENDIX F: COSET Mpqr � SU�3� 
 SU�2� 

U�1�=U�1� 
 U�1�

1. The invariant metric

The generators of the Lie algebra of Mpqr may be
written as

T1��
1

2
i
4; T2��

1

2
i
5; T3��

1

2
i
6;

T4��
1

2
i
7; T5��

1

2
i�1; T6��

1

2
i�2;

T7��
i

2�
�2ry	

���
3
p
p
8	q�3�; T8��

1

2
i
1;

T9��
1

2
i
2; T10��

1

2
i
3;

T11�
i���

2
p
��
��3p2	q2�y�

���
3
p
pr
8�qr�3�;

T12��
i

2�
�
���
3
p
p�3�q
8�;

(F1)
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where �i with i 2 f1; 2; 3g are the Pauli matrices with
��i; �j� � 2i�ijk�k, and the 
i with i 2 f1::8g are the
Gell-Mann SU(3) matrices normalized such that �
i; 
j� �
2ifijk
k with the totally antisymmetric � and f given by

�123 � 1; f123 � 1;

f147 � �f156 � f246 � f257 � f345 � �f367 �
1

2
;

f458 � f678 �

���
3
p

2
; (F2)

and y is the generator of the separate U(1) factor. The three
primes p, q, and r characterize the embedding of the
U�1� 
 U�1� subgroup. For convenience we define the
following quantities:

� �
���������������������������������
3p2 	 q2 	 2r2

q
; � �

�������������������
3p2 	 q2

q
: (F3)

In order to find a G-invariant metric we apply the
techniques of Appendix A to gab using (A7) and discover
that the most general metric on the coset, consistent with
its symmetries is

gab �


 0 0 0 0 0 0
0 
 0 0 0 0 0
0 0 
 0 0 0 0
0 0 0 
 0 0 0
0 0 0 0 � 0 0
0 0 0 0 0 � 0
0 0 0 0 0 0 �

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; (F4)

so there are three allowed parameters.

2. The Ricci tensor

Taking the metric to be gab � diag�
;
;
; 
;�;�; ��,
we find that the Ricci tensor is given by

R 11 �R22 �R33 �R44 �
3

2
�

9

8

p2

�2

�


;

R55 �R66 � 1�
1

2

q2

�2

�
�
;

R77 �
�2

2�2

�
9

2

p2


2 	
q2

�2

�
:

(F5)
APPENDIX G: COSET Npqr � SU�3� 
 U�1�=U�1� 

U�1�

1. The invariant metric

The generators of the Lie algebra ofNpqr may be written
as
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T1 � �
1

2
i
1; T2 � �

1

2
i
2;

T3 � �
1

2
i
4T4 � �

1

2
i
5; T5 � �

1

2
i
6;

T6 � �
1

2
i
7; T7 � �

i
2�
�2ry	 q
3 	

���
3
p
p
8�;

T8 �
i���

2
p
��
��3p2 	 q2�y� qr
3 �

���
3
p
pr
8�;

T9 � �
i

2�
�
���
3
p
p
3 � q
8�; (G1)

where 
i with i 2 f1::8g are the Gell-Mann SU(3) matrices
normalized such that �
i; 
j� � 2ifijk
k with the totally
antisymmetric f given by

f123 � 1;

f147 � �f156 � f246 � f257 � f345 � �f367 �
1

2
;

f458 � f678 �

���
3
p

2
; (G2)

and y is the generator of the separate U(1) factor. The three
primes p, q, and r characterize the embedding of the
U�1� 
 U�1� subgroup. For convenience we define the
following quantities:

� �
���������������������������������
3p2 	 q2 	 2r2

q
; � �

�������������������
3p2 	 q2

q
: (G3)

In order to find a G-invariant metric we apply the
techniques of Appendix A to gab using (A7) and discover
that the most general metric on the coset, consistent with
its symmetries, is

gab �


 0 0 0 0 0 0
0 
 0 0 0 0 0
0 0 � 0 0 0 0
0 0 0 � 0 0 0
0 0 0 0 � 0 0
0 0 0 0 0 � 0
0 0 0 0 0 0 �

0BBBBBBBBBB@

1CCCCCCCCCCA
; (G4)

so there are four allowed parameters.

2. The Ricci tensor

Taking the metric to be gab � diag�
;
; �;�; �; �; ��,
we find that the Ricci tensor is given by

R11 �R22 �
3

2
�
q2

2�2

�


	

1

4��
�
2 � �2 � �2�;

R33 �R44 �
3

2
�
�3p	 q�2

8�2

�
�
�

1

4
�
�
2 � �2 	 �2�;

R55 �R66 �
3

2
�
�3p� q�2

8�2

�
�
�

1

4
�
�
2 	 �2 � �2�;

R77 �
�2

2�2

�
q2


2 	
�3p	 q�2

4�2 	
�3p� q�2

4�2

�
: (G5)
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084027
APPENDIX H: COSET Qpqr � SU�2� 
 SU�2� 

SU�2�=U�1� 
 U�1�

1. The invariant metric

The generators of the Lie algebra ofQpqr may be written
as

T1 � �
i
1
�1; T2 � �

i
2
�2; T3 � �

i
2

~�1;

T4 � �
i
2

~�2; T5 � �
i
2

~�1; T6 � �
i
2

~�2;

T7 � �
i

2�
�p�3 	 q~�3 	 r�̂3�;

T8 � �
i

2��
�pr�3 	 qr~�3 � �p2 	 q2��̂3�;

T9 �
i

2�
�p~�3 � q�3� (H1)

where �i, ~�i, �̂i with i 2 f1; 2; 3g are three sets of mu-
tually commuting Pauli matrices.

The three primes p, q, and r characterize the embedding
of the U�1� 
 U�1� subgroup. For convenience we define
the following quantities:

� �
����������������������������
p2 	 q2 	 r2

q
; � �

�����������������
p2 	 q2

q
: (H2)

In order to find a G-invariant metric we apply the
techniques of Appendix A to gab using (A7) and discover
that the most general metric on the coset, consistent with
its symmetries is

gab �


 0 0 0 0 0 0
0 
 0 0 0 0 0
0 0 � 0 0 0 0
0 0 0 � 0 0 0
0 0 0 0 � 0 0
0 0 0 0 0 � 0
0 0 0 0 0 0 �

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; (H3)

so there are four allowed parameters.

2. The Ricci tensor

Taking the metric to be gab � diag�
;
; �;�; �; �; ��,
we find that the Ricci tensor is given by

R 11 �R22 � 1�
1

2

p2

�2

�


;

R33 �R44 � 1�
1

2

q2

�2

�
�
;

R55 �R66 � 1�
1

2

r2

�2

�
�
;

R77 �
�2

2�2

�
p2


2 	
q2

�2 	
r2

�2

�
:

(H4)
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