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We consider the generation of thick brane configurations in a pure geometric Weyl integrable 5D
spacetime which constitutes a non-Riemannian generalization of Kaluza-Klein (KK) theory. In this
framework, we show how 4D gravity can be localized on a scalar thick brane which does not necessarily
respect reflection symmetry, generalizing in this way several previous models based on the Randall-
Sundrum (RS) system and avoiding both, the restriction to orbifold geometries and the introduction of the
branes in the action by hand. We first obtain a thick brane solution that preserves 4D Poincaré invariance
and breaks Z2-symmetry along the extra dimension which, indeed, can be either compact or extended, and
supplements brane solutions previously found by other authors. In the noncompact case, this field
configuration represents a thick brane with positive energy density centered at y � c2, whereas pairs of
thick branes arise in the compact case. Remarkably, the Weylian scalar curvature is nonsingular along the
fifth dimension in the noncompact case, in contraposition to the RS thin brane system. We also recast the
wave equations of the transverse traceless modes of the linear fluctuations of the classical background into
a Schrödinger’s equation form with a volcano potential of finite bottom in both the compact and the
extended cases. We solve Schrödinger equation for the massless zero mode m2 � 0 and obtain a single
bound wave function which represents a stable 4D graviton. We also get a continuum gapless spectrum of
KK states with m2 > 0 that are suppressed at y � c2 and turn asymptotically into plane waves.
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I. INTRODUCTION

In the present work we shall consider the formation of
thick branes in a particular generalization of Kaluza-Klein
theory in which the Riemannian structure of spacetime is
enlarged into a Weylian affine manifold where vector
lengths may be not preserved along parallel transportation.
More precisely, a Weyl geometry is an affine manifold
specified by �gMN;!M�, where gMN is the metric tensor
and!M is ‘‘gauge’’ vector involved in the definitions of the
affine connections of the manifold. The particular type of
gauge geometries in which the gauge vector is the gradient
of a scalar function is called conformally Riemann or Weyl
integrable spacetime, since a conformal transformation
maps a Riemann geometry into a Weyl integrable one. If
laws of physics were invariant under conformal transfor-
mations, the Weyl scalar function would be unobservable.
However, since this is not the case, this scalar field cannot
be discarded in principle by a convenient gauge choice;
moreover, it is enough to dynamically break the conformal
invariance of a given Weyl integrable theory to transform
the Weyl scalar function into an observable field. Thus, in
this scheme, a fundamental role in the generation of thick
brane configurations is ascribed to the scalar Weyl field,
which is not a bulk field.

On the other hand, the fact that we could live in a higher
dimensional spacetime with extended extra dimensions
turns out to be completely compatible with present time
gravitational experiments. An interesting picture arises in
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such scenarios: from the point of view of an observer
located at a 3-brane in which matter is confined, gravity
is essentially 4-dimensional, however, the world can be
higher dimensional with infinite extra dimensions and
gravity can propagate in all of them. Multidimensional
spacetimes with large extra dimensions turned out to be
very useful when addressing several problems of high
energy physics like the cosmological constant, dark matter
and the mass hierarchy problem [1–4] as well as the recent
nonsupersymmetric string model realization of the stan-
dard model at low energy with no extra massless matter
fields [5]. The striking success of these higher dimensional
scenarios motivated several generalizations in various di-
rections including thick brane configurations [6–8]. These
configurations were generalized in the framework of Weyl
geometries for Z2-symmetric manifolds in [9]. Moreover,
localization of 4D gravity on thick branes that break re-
flection symmetry was presented in [10] for a fixed self-
interacting potential of the scalar field ! (U � �e2!).

In this paper we keep working in a manifold endowed
with Weyl structure and present the realization of such a
scenario on thick brane solutions made out of scalar matter
with a self-interacting potential endowed with an arbitrary
parameter �: U � �e�1�16��!, enlarging the class of poten-
tials for which 4D gravity can be localized.

Thus, we begin by considering a 5-dimensional Weyl
gravity model in which geometrical thick branes arise
naturally without the necessity of introducing them by
hand in the action of the theory. In order to obtain solutions
which describe such configurations and respect 4D
Poincaré invariance, we implement a conformal transfor-
mation to pass from the Weyl frame to the Riemann one,
-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.73.084022


BARBOSA-CENDEJAS AND HERRERA-AGUILAR PHYSICAL REVIEW D 73, 084022 (2006)
where the Weylian affine connections become Christoffel
symbols and the field equations are simpler, solve these
equations and return to the Weyl frame to analyze the
physics of the solution. In what follows we shall refer to
this method as the conformal technique. Thus, in this way
we obtain a solution that represents a localized function
which does not necessarily respect reflection Z2-symmetry
and allows for both compact and noncompact manifolds in
the extra dimension. By looking at the energy density of
the scalar field of these solutions we interpret the field
configuration as thick branes. The structure of these brane
configurations depends on the topology of the extra dimen-
sion and the value of the parameter p���. We investigate as
well the fluctuations of the metric around the classical
background solution to understand whether 4D gravity
can be described in our setup. We show that this is the
case since the analog quantum mechanical problem with a
volcano potential for the transverse traceless sector of the
fluctuations of the metric yields a continuum and gapless
spectrum of Kaluza-Klein (KK) states with a stable zero
mode that corresponds to the 4D graviton. We finally make
our conclusions. Let us start by considering a pure geo-
metrical Weyl action in five dimensions. This non-
Riemannian generalization of the Kaluza-Klein theory is
given by

SW5 �
Z
MW

5

d5x
������
jgj

p
16�G5

e�3=2�!�R� 3 ~��r!�2 � 6U�!��; (1)

where MW
5 is a Weyl manifold specified by the pair

�gMN;!�, gMN being the metric and ! a Weyl scalar
function. The Weylian Ricci tensor reads

RMN � �AMN;A � �AAM;N � �PMN�QPQ � �PMQ�QNP;

where

�CMN �
�
C
MN

�
�

1

2
�!;M�

C
N �!;N�

C
M � gMN!

;C�

are the affine connections on MW
5 , f CMNg are the Christoffel

symbols and M, N � 0, 1, 2, 3, 5; the constant ~� is an
arbitrary coupling parameter, andU�!� is a self-interaction
potential for the scalar field !. This action is of pure
geometrical nature since the scalar field that couples to
gravity is precisely the scalar function ! that enters in the
definition of the affine connections of the Weyl manifold
and, thus, cannot be discarded in principle from our con-
sideration. Apart from the self-interaction potential, the
action (1) is invariant under Weyl rescalings

g0MN ! ��2gMN; !0 ! !� ln�2;

~�0 ! ~�=�1� @! ln�2�2;
(2)

where �2 is a smooth function on MW
5 . Thus, from these

relations it follows that the potential must undergo the
transformation U0 ! �2U in order to keep such an invari-
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ance. Thus, U�w� � �e!, where � is a constant parameter,
is the form of the potential which preserves the scale
invariance of the Weyl manifold (1). When this invariance
is broken, the Weyl scalar field transforms from a geomet-
rical object into a physically observable matter degree
of freedom which, in turn, generates the thick brane
configurations.

Since we are looking for a solution to the theory (1) with
4-dimensional Poincaré invariance we shall consider the
line element in the form

ds2
5 � e2A�y��mndxmdxn � dy2; (3)

where e2A�y� is the warp factor depending on the extra
coordinate y, and m, n � 0, 1, 2, 3. Thus, the 5-
dimensional stress-energy tensor is given by its 4-
dimensional and pure 5-dimensional components

Tmn �
3

8�G5
e2A�A00 � 2�A0�2��mn; T55 �

6�A0�2

8�G5
;

(4)

where the comma denotes derivatives with respect to the
fifth coordinate y.
II. SOLUTIONS TO THE SYSTEM

Since we shall use the conformal technique to find
solutions to our system, we perform the conformal trans-
formation ĝMN � e!gMN , mapping the Weylian action (1)
into the Riemannian one

SR5 �
Z
MR

5

d5x
������
jĝj

p
16�G5

�R̂� 3��r̂!�2 � 6Û�!��; (5)

where � � ~�� 1, Û�!� � e�!U�!� and all hatted mag-
nitudes and operators are defined in the Riemann frame. In
this frame we have a theory which describes 5-dimensional
gravity minimally coupled to a scalar field which possesses
a self-interaction potential. After this transformation, the
line element (3) yields the Riemannian metric

d̂s2
5 � e2��y��nmdxndxm � e!�y�dy2; (6)

where 2� � 2A�!. Further, by following [9] we intro-
duce the new variables X � !0 and Y � 2A0 and get the
following pair of coupled field equations from the action
(5)

X0 � 2YX�
3

2
X2 �

1

�
dÛ
d!

e�!;

Y0 � 2Y2 �
3

2
XY �

�
1

�
dÛ
d!
� 4Û

�
e�!:

(7)

In general, it is not trivial to fully integrate these field
equations. Under some assumptions, it is straightforward
to construct several particular solutions to them. However,
quite often such solutions lead to expressions of the dy-
-2
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FIG. 1. The qualitative behavior of the scalar energy density
function � for the noncompact case A) and its ‘‘rescaled’’ thin
brane limit. The thick brane with positive energy density is
centered at c2 � 2 and has c1 � 4.
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namical variables that are too complicated for an analytical
treatment in closed form.

As pointed out in [9], this system of equations can be
easily solved if one uses the condition X � kY, where k is
an arbitrary constant parameter which is not allowed to
adopt the value k � 1 because the system would be in-
compatible. It turns out that this restriction leads to a
Riemannian potential of the form Û � �e�4k�=1�k�!.
Thus, under these conditions, both field equations in (7)
reduce to a single differential equation

Y0 �
4� 3k

2
Y2 �

4�
1� k

e��4k�=1�k��1�!: (8)

Those authors noticed as well that by choosing the
parameter � � �1� k�=�4k� (while leaving the parameter
k arbitrary) the exponential function of the right hand side
of (8) disappears and the equation can be easily solved.
This case corresponds to having a fixed self-interaction
potential of the form U � �e2! in the Weyl frame which,
indeed, breaks the invariance under Weyl rescalings. It is
interesting to note that after solving Eq. (8) with such a
simplification, the obtained solution

!�y� � b ln�cosh�ay��

does not allow the value k � 4=3 (apart from k � 1) since
the constants involved in it read

a �

���������������������
4� 3k
1� k

2�

s
and b �

2

4� 3k
:

In this paper we shall consider another truncation that
leads to a further simplification and to a simple solution of
the Eq. (8). This can be done by setting k � 4=3, while
leaving � arbitrary, allowing to have a self-interaction
potential

U � �e�1�16��!

in the Weyl frame. In this sense our solution supplements
the solution obtained in [9,10]. This potential breaks the
invariance under Weyl scaling transformations for arbitrary
� � 0 and also transforms the geometrical scalar field !
into an observable one [11]. Thus, after imposing the
condition k � 4=3, the second term in the left hand side
of the Eq. (8) vanishes, yielding

Y0 � 12�e�p! � 0 or !00 � 16�e�p! � 0; (9)

where p � 1� 16�.
By solving the latter equation for ! and integrating the

relation 2A0 � 3!0=4 one gets the following solution

! �
2

p
ln
� �������������
�8�p
p

c1
cosh�c1�y� c2��

�
;

e2A �

� �������������
�8�p
p

c1
cosh�c1�y� c2��

�
3=2p

;
(10)
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where c1 and c2 are arbitrary integration constants, and we
have set to one a constant that multiplies the warp factor.

By looking at the solution, we see that for p < 0 it
constitutes a localized object which does not necessarily
preserve the reflection Z2-symmetry (y! �y) along the
fifth dimension and breaks it through nontrivial values of
the shift parameter c2. Thus, the 5-dimensional spacetime
is not restricted to be an orbifold geometry, allowing for a
more general type of manifolds. The extra coordinate can
be compact or extended depending on the signs of the
constants p and �, and the real or imaginary character of
the parameter c1 which, indeed, characterizes the width
of the warp factor �� 1=c1. Let us consider the cases of
physical interest:
(A) �
-3
> 0, p < 0, c1 > 0. In this case the domain of the
fifth coordinate is �1< y<1; thus, we have a
noncompact manifold in the extra dimension. It
turns out that in this case the warp factor is con-
centrated near y � c2 and represents a smooth lo-
calized function of width � which remarkably
reproduces the metric of the RS model in the thin
brane limit, namely, when c1 ! 1, p! �1 keep-
ing c1=p � � finite.
The energy density � of the scalar matter is given
by the null-null component of the stress-energy
tensor:

��y� �
�9c2

1

32p�G5

� �������������
�8�p
p

c1
cosh�c1�y� c2��

�
3=2p

	

�
1�

3� 2p
2p

tanh2�c1�y� c2��

�
: (11)

It represents a thick brane with positive energy
density [12] centered at c2 � 2. In Fig. 1 we display
the function � together with its thin brane limit, it
shows a positive maximum at y � c2 and a mini-
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mum at each side of the maximum, vanishing as y
approaches infinity.
The 5-dimensional curvature scalar adopts the form

R5 �
�6c2

1

p

�
1�

15� 8p
8p

tanh2�c1�y� c2��

�
;

(12)

and is always bounded, thus, we have a 5-
dimensional manifold that is nonsingular, in oppo-
sition to the RS model, where the 5-dimensional
curvature scalar is singular.
(B) �
> 0, p > 0, c1 � iq1. In this case we get a com-
pact manifold along the extra dimension with
�� 
 q1�y� c2� 
 �. The expressions for the
warp factor and the scalar field in this compact
case read

e2A�y� �

� ���������
8�p
p

q1
cos�q1�y� c2��

�
3=2p

;

! �
2

p
ln
� ���������

8�p
p

q1
cos�q1�y� c2��

�
:

(13)

The corresponding energy density of the scalar
matter is given by

��y� �
9q2

1

32p�G5

� ���������
8�p
p

q1
cos�q1�y� c2��

�
3=2p

	

�
1�

2p� 3

2p
tan2�q1�y� c2��

�
: (14)
The shape of the scalar energy density � is plotted in
Fig. 2 for p � 1=2 and p � 3=8. The structure of the thick
branes depends on the value of the parameter p���. Thus,
for instance, when 3=�2p� � 2n, �n � 2; 3; 4; 5; . . .�, the
shape of � corresponds to the case p � 3=8, a pair of
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smooth thick branes of the form displayed in Fig. 1;
whereas for 3=�2p� � 2n� 1, �n � 2; 4; 5; 6; . . .�, the
structure of � is similar to the case p � 1=2 and here we
have one thick brane of the form plotted in Fig. 1, together
with another ‘‘inverted brane’’, a fact that reflects the
change of sign in the warp factor when y � � �

2q1
� c2.

Actually, these branes live in different disconnected re-
gions of the Weyl manifold due to the fact that the 5d
curvature scalar is singular at the points y � � �

2q1
� c2:

R5 �
6q2

1

p

�
1�

8p� 15

8p
tan2�q1�y� c2��

�
; (15)

where plausibly we have null scalar energy densities.
Other cases of physical interest are contained in A) and

B), namely, the discrete cases � > 0, p < 0, c1 < 0 with
p � �3=�4n� and � < 0, p < 0, c1 < 0 (or c1 > 0) with
p � �3=�8n�, where n � 0, n 2 N, are contained in the
noncompact case A), whereas the cases � > 0, p > 0, c1 �
�iq1 with p � 3=�4n� and � < 0, p > 0, c1 � �iq1 with
p � 3=�8n� are included in the case B). The remaining
possible values of these parameters lead to unphysical
situations in which the warp factor and the scalar energy
density are singular at certain values of the fifth dimension
y and, hence, do not represent localized functions.
III. FLUCTUATIONS OF THE METRIC

Let us turn to study the metric fluctuations hmn of the
metric (3) given by the perturbed line element

ds2
5 � e2A�y���mn � hmn�x; y��dxmdxn � dy2: (16)

Even if one cannot avoid considering fluctuations of the
scalar field when treating fluctuations of the background
metric, in [6] it was shown that the transverse traceless
modes of the metric fluctuations decouples from the scalar
sector and hence, can be approached analytically.

By following this method, we perform the coordinate
transformation dw � e�Ady, which leads to a conformally
flat metric and to the following wave equation for the
transverse traceless modes hTmn of the metric fluctuations

�@2
w � 3A0@w ����hTmn � 0: (17)

This equation supports a massless and normalizable 4D
graviton given by hTmn � Cmneimx, where Cmn are constant
parameters and m2 � 0.

In [3] it was proved useful to recast Eq. (17) into
Schrödinger’s equation form. In order to accomplish this,
we adopt the following ansatz for the transverse traceless
modes of the fluctuations hTmn � eimxe�3A=2�mn�w� and
get

�@2
w � V�w� �m

2�� � 0; (18)

where we have dropped the subscripts in �, m is the mass
-4
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of the KK excitation, and the potential reads

V�w� � 3
2@

2
wA�

9
4�@wA�

2: (19)

For the particular noncompact case A) we have found
two particular cases (p � �1=4 and p � �3=4) for which
we can invert the coordinate transformation dw � e�Ady
and explicitly express y in terms of w; although the first
case is more involved, it is qualitatively equivalent to the
second one in the sense that their potential presents a
similar behavior. For the sake of simplicity we shall con-
sider just the simplest case p � �3=4. Thus, the function
A�w� adopts the form

A�w� � ln�c1=
��������������������������������������
c4

1�w� w0�
2 � 6�

q
�

which yields the following quantum mechanical potential

V�w� �
3c4

1�5c
4
1�w� w0�

2 � 12��

4�c4
1�w� w0�

2 � 6��2
: (20)

In the Schrödinger equation, the spectrum of eigenval-
ues m2 parameterizes the spectrum of graviton masses that
a 4-dimensional observer located at w0 sees. It turns out
that for the zero modem2 � 0, this equation can be solved.
The only normalizable eigenfunction reads

�0 � q�c4
1�w� w0�

2 � 6���3=4;

where q is a normalization constant. This function repre-
sents the lowest energy eigenfunction of the Schrödinger
Eq. (18) since it has no zeros. This fact allows for the
existence of a 4D graviton with no instabilities from trans-
verse traceless modes with m2 < 0. In addition to this
massless mode, there exists a tower of higher KK modes
with positive m2 > 0.

It turns out that a similar situation takes place in the
compact case B). Remarkably, the coordinate transforma-
tion dw � e�Ady can be inverted for p � 3=8 yielding

cos�q1�y� c2�� � �q1=
����������������������������������������
q2

1 � 9�2�w� w0�
2

q
;

i.e., decompactifying the fifth dimension and pushing to
infinity the singularities (an inverse effect takes place
when one compactifies the radial coordinate r in the
Schwarzschild and Kerr solutions [13], see [14]). This
mathematical fact implies that we actually have two dis-
connected regions in the Weyl manifold: the region � �

2 


q1�y� c2� 

�
2 is separated from the region �

2 
 q1�y�
c2� 


3�
2 (since we can shift the domain of the compact

dimension to � �
2 
 q1�y� c2� 


3�
2 ) by the physical sin-

gularities located at y � ���=2q1� � c2 (recall that the
curvature scalar is singular at these points). Each one of
these regions leads to

A�w� � lnf3�=�q2
1 � 9�2�w� w0�

2�g

and, hence, to the following potential
084022
V�w� � �
27�2�q2

1 � 36�2�w� w0�
2�

�q2
1 � 9�2�w� w0�

2�2
(21)

and the wave function corresponding to the zero mode

�0 � k�q2
1 � 9�2�w� w0�

2��3=2;

where k is a constant.
In Fig. 3 we display the shape of these potentials and

their respective zero mode wave functions. Both potentials
have the volcano form: a well of finite bottom and positive
barriers at each side that vanish asymptotically. The wave
functions are lumps localized aroundw0. These facts imply
that we have only one gravitational bound state (the mass-
less one) and a continuous and gapless spectrum of massive
KK states with m2 > 0 in both cases A) and B).

Thus, we have obtained Weylian thick brane general-
izations of the RS model with no reflection symmetry
imposed in which the 4D effective theory possesses an
energy spectrum quite similar to the spectrum of the thin
wall case, in particular, 4D gravity turns out to be localized
at a certain value of the fifth dimension in both cases A)
and B).

IV. CONCLUDING REMARKS

We considered the formation of thick brane configura-
tions in a geometric Weyl integrable manifold. We used the
conformal technique to obtain a solution which preserves
4D Poincaré invariance and, in particular, represents a
smooth localized function characterized by the width pa-
rameter �� 1=c1 and the constant c2 which breaks the
Z2-symmetry along the extra dimension; both of these
parameters are integration constants of the relevant field
Eq. (9), in contraposition to the solutions obtained in
[9,10], where the width parameter �� 1=a��; k� depends
on the coupling constant of the potential U�!� and the
constant k. Our field configurations correspond to thick
brane generalizations of the RS model which do not restrict
the 5-dimensional spacetime to be an orbifold geometry, a
-5



BARBOSA-CENDEJAS AND HERRERA-AGUILAR PHYSICAL REVIEW D 73, 084022 (2006)
fact that can be useful in approaching several issues like the
cosmological constant problem, black hole physics and
holographic ideas, where there is a relationship between
the position in the extra dimension and the mass scale [15].
These thick branes supplement previously found solutions
with a new family in which the self-interacting potential is
endowed with an arbitrary parameter �: U � �e�1�16��!,
enlarging the class of potentials for which 4D gravity can
be localized.

In the noncompact case A), the scalar energy density �
can be interpreted as a generic thick brane with positive
energy density centered at y � c2 and accompanied by a
small amount of negative energy density at each side; the
corresponding warp factor reproduces the metric of the RS
model in the thin brane limit, even if the matter content of
the theory does not correspond to the same brane configu-
ration. A remarkable fact is that in this case, the scalar
curvature of the Weyl integrable manifold turns out to be
completely regular in the extra dimension. In the compact
case B) the situation is different: we have several pairs of
thick brane configurations disconnected by physical singu-
larities. The structure of these branes depends on the value
of the parameter p���. In a special case (p � 3=8) we
managed to perform a coordinate transformation which
makes the metric conformally flat, decompactifies the fifth
dimension and simultaneously pushes the singularities of
the manifold to infinity!

We wrote the wave equations of the transverse traceless
modes of the linear fluctuations of the metric into the
Schrödinger’s equation form for both cases A) and B).
084022
The analog quantum mechanical potential involved in it
represents a volcano potential with finite bottom: a nega-
tive well located between two finite positive barriers that
vanish when w!�1. It turned out that for the massless
zero modes (m2 � 0) the Schrödinger equation can be
solved in both cases. As a result of this fact, in each case
we obtained an analytic expression for the lowest energy
eigenfunction of the Schrödinger equation which repre-
sents a single bound state and allows for the existence of
a stable 4D graviton since there are no tachyonic modes
with m2 < 0. Apart from these massless states, we also got
a continuum and gapless spectrum of massive KK modes
with positivem2 > 0 that are suppressed at y � c2 and turn
asymptotically into continuum plane waves in both
cases A) and B), as in [4,6,10].

The shape of the analog quantum mechanical potential
and the localization of 4D gravity on thick branes with a
continuum and gapless spectrum of massive KK modes are
quite similar to those obtained by [4,6,7].
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