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BPS black holes, quantum attractor flows, and automorphic forms
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We propose a program for counting microstates of four-dimensional BPS black holes in N � 2
supergravities with symmetric-space valued scalars by exploiting the symmetries of timelike reduction to
three dimensions. Inspired by the equivalence between the four-dimensional attractor flow and geodesic
flow on the three-dimensional scalar manifold, we radially quantize stationary, spherically symmetric BPS
geometries. Connections between the topological string amplitude, attractor wave function, the Ooguri-
Strominger-Vafa conjecture and the theory of automorphic forms suggest that black hole degeneracies are
counted by Fourier coefficients of modular forms for the three-dimensional U-duality group, associated to
special unipotent representations which appear in the supersymmetric Hilbert space of the quantum
attractor flow.
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I. INTRODUCTION

Understanding the microscopic origin of the thermody-
namic entropy of black holes is a challenge for any quan-
tum theory of gravity. In string theory a microscopic
description of certain supersymmetric black holes is
known and accounts for the expected number of micro-
states in the limit of large charges Q� 1 ([1,2] and much
subsequent work). Recently there has been some progress
in understanding the counting of microstates beyond the
strict large Q limit (see e.g. [3] for a recent review).

Strikingly, Ooguri, Strominger and Vafa (OSV) [4] have
argued that, in N � 2 compactifications of Type II string
theory on a Calabi-Yau threefold X, all subleading 1=Q
corrections to the degeneracies should be computable by
considering the squared topological string amplitude j�2

topj

as a generating function at fixed magnetic charge. A pos-
sible rationale for this phenomenon uses channel duality in
the near horizon AdS2 � S

2 [5]: the partition function with
compactified Euclidean time, which counts black hole
microstates (possibly with signs), could equivalently be
computed in radial quantization as an overlap of wave
functions at each boundary of AdS2. Provided the topo-
logical string amplitude solves the radial Wheeler-DeWitt
constraint, the general form of the OSV conjecture then
follows in analogy with open/closed string duality on the
cylinder. This equivalence, if correct, may be viewed
as a mini-superspace AdS/CFT correspondence, where
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the bulk evolution of the gravity fields is related to time
evolution in a (as yet unknown) dual conformal quantum
mechanics.

On the other hand, in theories with high N � 4 or
N � 8 supersymmetry, the exact black hole degeneracies
have long been suspected to be related to Fourier coeffi-
cients of some kind of automorphic form [6]. Indeed, the
respective four-dimensional U-duality groups G4 �
SL�2;Z� � SO�6; n;Z� or E7�7��Z� provide strong con-
straints on microscopic degeneracies (see [7] for a
U-duality review). Recently however, there have been in-
dications that the three-dimensional U-duality groups
G3 � SO�8; n� 2;Z� or E8�8��Z� may be spectrum gener-
ating symmetries for four-dimensional BPS black holes
[8–11]. This idea is partly motivated by the ‘‘quasiconfor-
mal’’ realization of G3 [9] on the space of electric and
magnetic charges �pI; qI� extended by one variable. This
is parallel to the ‘‘conformal’’ realization of G4 on
the space of black hole charges in five dimensions [8–
10]. Upon quantization, it leads to the minimal
unipotent representation of G3 [9,12], which is a crucial
ingredient in the construction of a particular automorphic
form for G3.

In this Letter, we outline a new approach to black hole
microstate counting inspired by these ideas, postponing
details to [13]. Taking the proposal in [5] literally, we study
the radial quantization of stationary, spherically symmetric
BPS black holes in four-dimensional N � 2 supergravity
theories. To avoid the complications of full-fledged N �
2 supergravity, we restrict to special cases in which the
scalars take values in a symmetric space G4=K4. For
simplicity, we further discard any higher-derivative correc-
tions to the low energy effective action. This allows us to
-1 © 2006 The American Physical Society
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jettison Calabi-Yau geometry in favor of real Lie group
representation theory, while retaining some essential fea-
tures of a realistic N � 2 supergravity. Higher N � 4 or
N � 8 supergravities are also in this category, provided
we again discard higher-derivative corrections.

Since our interest lies in stationary solutions, it is natural
to perform a reduction along the time direction, leading to
three-dimensional Euclidean gravity coupled to a nonlin-
ear sigma model with an enlarged symmetry group G3

[14]. An essential observation is that stationary, spherically
symmetric solutions of the four-dimensional equations of
motion are equivalent to geodesic trajectories on the three-
dimensional scalar manifold M�3 � G3=H3, where H3 is a
certain noncompact real form of the maximal compact
subgroup K3. As such, they carry an action of G3 relating
black hole geometries with different charges.1

This observation is key to the radial quantization
of black holes in a mini-superspace approximation.
Geodesic trajectories can be replaced by square-integrable
wave functions on M�3 (or sections of some bundle). The
action of G3 is then roughly the regular representation on
the Hilbert space L2�G3=H3�, which breaks up into a sum
of unitary irreducible representations (irreps) of G3. As we
shall see, the BPS component of the Hilbert space is a
‘‘unipotent’’ representation of unusually small functional
dimension. Furthermore, in some cases there is a distin-
guished ‘‘spherical’’ vector in this space, which appears to
play the role of a 1-parameter extension of the topological
string amplitude �top, in broad accordance with the pro-
posal of [5].

In the full quantum theory, pursuing the suggestion in
[11], we conjecture that a discrete subgroupG3�Z� remains
as a ‘‘spectrum generating’’ symmetry controlling the ex-
act degeneracies of BPS black holes. This idea is supported
by the fact that the above unipotent representations have
been exploited by mathematicians to construct modular
forms for G3. Thus it is tempting to identify the black
hole degeneracies as particular generalized Fourier coef-
ficients of these modular forms. As we shall see, the result
(17) below bears a close resemblance to the OSV conjec-
ture, albeit with striking differences.

The proposal that BPS microstates are counted by modu-
lar forms for G3 should have interesting ramifications (if it
can be verified). For example, it could provide an expla-
nation of mysterious modular properties which have been
observed in computations of the degeneracies of BPS states
in four dimensions [6,11,16–20]. More generally, we are
hopeful that understanding the spectrum generating sym-
metries of black hole degeneracies will improve our under-
standing of the conjecture of [4] and the nonperturbative
meaning of the topological string.
1We note that G3 already made an appearance as a solution-
generating symmetry in the N � 4 context [15].
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Finally, it should be mentioned that the radial quantiza-
tion of black holes has been a subject of much work
by the canonical gravity community [21–26]. While this
endeavor has so far yielded relatively little insight
into black hole entropy, embedding this idea in supergrav-
ity may justify the mini-superspace truncation, at least for
BPS black holes, and allow channel duality to teach us the
nature of black hole microstates.

The organization of this Letter is as follows: in Sec. II,
we describe a class of supergravities with symmetric scalar
manifolds where our techniques apply most directly. In
Sec. III, we interpret the radial evolution equations as
geodesic motion on a scalar manifold M�3 and determine
the conditions on geodesics required for supersymmetric
solutions. In Sec. IV, we explain our proposal for quantiz-
ing the attractor flow, and argue that the BPS Hilbert space
furnishes a particular unipotent representation of G3. In
Sec. V, we conjecture a relation between exact black hole
degeneracies and Fourier coefficients of automorphic
forms naturally associated to these representations. We
close in Sec. VI with an outlook.
II. HOMOGENEOUS SUPERGRAVITIES

The analysis we describe applies to a class of d � 4,
N � 2 supergravity theories whose scalar fields are asso-
ciated to vector multiplets and lie on a symmetric space
M4 � G4=K4. Such theories, known as ‘‘very special
supergravities’’, were first studied in [27–29]. The special
geometry of M4 turns out to be characterized by a cubic
prepotential F � N�X�=X0, with N�X� the norm function
of a degree 3 Jordan algebra J. The classification and study
of such theories is therefore closely tied to the theory of
Jordan algebras.

We also consider theories with higher supersymmetry,
N � 4 or even N � 8. Here again one finds scalar fields
living on some symmetric space M4 � G4=K4. For ex-
ample, in the N � 8 case (the low energy limit of
M-theory compactified on T7) this space is
E7�7�=�SU�8�=Z2�. We list some examples in Table I, giv-
ing the number of supercharges, the moduli space in d � 4,
and the moduli space in d � 3 after reduction along a
timelike Killing vector (see the next Section). For brevity
we omit discrete factors such as Z2. We shall refer to these
N � 2 supergravities with symmetric-space-valued sca-
lars as ‘‘homogeneous supergravities’’.

Passing to the quantum theory, the continuous symmetry
is generally broken to a discrete subgroup (the continuous
symmetry would be inconsistent with charge quantization).
In the N � 8 case it is believed that the quantum theory is
invariant under the largest subgroup consistent with this
constraint, written E7�7��Z�. For the very special supergrav-
ity theories the quantum theory is not in general known to
exist; we optimistically assume that the quantum theory
exists and is invariant under a suitably large discrete sub-
-2



TABLE I. Number of supercharges, vector fields in d � 4, moduli spaces before and after d � 4! 3 reduction along a timelike
Killing vector, and associated Jordan algebra. Real forms of exceptional groups are indicated by the notation En�m� where m is the
difference between the number of noncompact and compact generators.

nQ nv M4 M�3 J

8 1 ; U�2; 1�=
U�1; 1� � U�1�� R

8 2 SL�2;R�=U�1� G2;2=SO�2; 2� R

8 7 Sp�6;R�=�SU�3� �U�1�� F4�4�=
Sp�6;R� � SL�2;R�� JR3
8 10 SU�3; 3�=�SU�3� � SU�3� �U�1�� E6�2�=
SU�3; 3� � SL�2;R�� JC3
8 16 SO��12�=�SU�6� �U�1�� E7�	5�=
SO��12� � SL�2;R�� JH3
8 28 E7�	25�=�E6 �U�1�� E8�	24�=
E7�	25� � SL�2;R�� JO3
8 n� 2 �SL�2;R�=U�1�� � �SO�n; 2�=
SO�n� � SO�2��� SO�n� 2; 4�=
SO�n; 2� � SO�2; 2�� R 
 �n	1;1

16 n� 2 �SL�2;R�=U�1�� � �SO�n	 4; 6�=
SO�n	 4� � SO�6��� SO�n	 2; 8�=
SO�n	 4; 2� � SO�2; 6�� R 
 �n	5;5

32 28 E7�7�=SU�8� E8�8�=SO
��16� JOs
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group G4�Z�.
2 It is conceivable, but currently unproven,

that our considerations extend to general nonhomogeneous
N � 2 theories, the monodromy group of the Calabi-Yau
periods playing the role of G4�Z�.
III. ATTRACTOR EQUATIONS AND GEODESIC
FLOW

Since we are interested in stationary black hole solutions
it is natural to dimensionally reduce the d � 4 theory along
a timelike direction, using a Kaluza-Klein-type ansatz [14]

ds2
4 � 	e

2U�dt�!�2 � e	2Uds2
3: (1)

This leads to Euclidean gravity in three dimensions,
coupled to scalars, vectors and fermions; upon dualizing
the bosonic sector is described simply by the three-
dimensional metric ds2

3 and scalar fields �a. The �a

include the scalars from the d � 4 theory, plus electric
and magnetic potentials from the reduction of the gauge
fields AIt and their duals, plus the scale factor U and the
twist potential dual to the shift !; altogether they are
organized into a manifold M�3 of indefinite signature (the
analytic continuation of the Riemannian signature mani-
fold M3 from a spacelike reduction). For generic N � 2
theories, M3 is a 4nv dimensional quaternionic-Kähler
manifold known as the c-map of M4 [32]; M�3 is an asso-
ciated para-quaternionic space, studied independently in
[33]. For homogeneous supergravities, M3 � G3=K3 and
2Of the four N � 2 supergravity theories defined by simple
Jordan algebras of degree three, those with 7, 10 and 16 vector
fields in four dimensions can be obtained by a consistent
truncation of the maximal N � 8 supergravity. The theory
with 10 vector fields is known to describe the vector-multiplet
sector of type IIA superstring compactified on the CY orbifold
T6=Z3 [30]. There are indications that the 6 extra scalars in the
model based on JH3 can be considered as generalized complex
structure moduli [31]
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M�3 � G3=H3, where K3 is the maximal compact subgroup
of G3 and H3 is a noncompact real form of K3 [14,34].

Stationary black hole configurations are identified with
solutions of the nonlinear sigma model on M�3 coupled to
three-dimensional gravity. Supersymmetry requires a flat
three-dimensional slicing, so that general BPS solutions
are harmonic maps from R3 to M�3. Hence the problem of
constructing black hole geometries, and possibly also
counting their microstates, is related to the study of such
harmonic maps.

As a first step, let us restrict to spherically symmetric
configurations, whose metric on three-dimensional slices
may be written

ds2
3 � N2���d�2 � r2���
d�2 � sin2�d�2�: (2)

Considering � as a ‘‘radial time’’ the bosonic action reads

S �
Z
d�
�
N
2
�

1

2N
� _r2 	 r2Gab

_�a _�b�

�
; (3)

where �: R! M�3 describes the radial scalar field evolu-
tion and Gab is the metric on M�3. The 4-dimensional
equations of motion are thus equivalent to geodesic motion
of a fiducial particle on the real cone overM�3. The equation
of motion for the lapse N imposes the Hamiltonian con-
straint

H � p2
r 	

1

r2 G
abpapb 	 1 � 0; (4)

(where pr and pa are the canonical conjugates to r and�a)
which fixes the mass of the fiducial particle on the cone to
1. For BPS black holes, one may set N � 1, � � r, pr � 1
so that the problem reduces to lightlike geodesic motion on
M�3, with affine parameter � � 1=r. It is convenient to
retain the r variable to define observables such as the
horizon area and the ADM mass.
-3



3The attractor equations including NUT charge can also be
obtained as a special case of the analysis in [38]; they agree with
ours, although the proof is not immediate [13].

4One can see this by noting that g3 has a 5-grading induced by
the decomposition under a highest root of Sp�2;R�, and arguing
that VA1 / V

A
2 can be conjugated into the grade-1 subspace.

5The fact that the dimension of O3 is an even integer can be
traced back to the Jordan algebra origin of homogeneous
supergravities.
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The magnetic and electric charges of the black hole can
be easily read off from this description: they are Noether
charges pI, qI associated to the generators of gauge trans-
formations in the isometry group G3 acting on M�3. These
charges do not commute; rather, they generate a
Heisenberg subgroup N � G3:


pI; qJ�PB � 2�IJk; (5)

where k is the NUT charge of the black hole [11].
Configurations with k � 0 have closed timelike curves
when lifted back to four dimensions, due to the off-
diagonal term ! � k cos�d� in the metric (1); bona fide
four-dimensional black holes are only obtained in the
‘‘classical’’ limit k! 0. Nonetheless, it is advantageous
to retain this variable to realize the full three-dimensional
U-duality symmetry. In addition, the isometry associated
to rescalings of gtt leads to an additional conserved charge
m identified as the ADM mass, obeying


m;pI�PB � pI; 
m; qI�PB � qI; 
m; k�PB � 2k:

(6)

Importantly, as already noted in [24], the ADM mass does
not Poisson-commute with the charges.

For homogeneous supergravities where M�3 � G3=H3,
there exist additional conserved charges associated to the
isometric action ofG3 on M�3. The full symmetry group G3

includes the group G4 already present in 4 dimensions, the
unipotent subgroupN, and its opposite �N, corresponding to
generalized Ehlers and Harrison transformations [14,35].
The corresponding set of conserved charges can be as-
sembled into an element Q in the Lie algebra dual g�3 of
G3 (which we canonically identify with g3 via the Killing
form)—the moment map of the symplectic action ofG3 on
phase space. The space of charges Q naturally breaks up
into orbits of various dimensions under the (co)adjoint
action of G3, all equipped with a canonical Kirillov-
Kostant symplectic structure. As we shall now see, the
supersymmetry properties of the black hole solution are
simply expressed in terms of the conjugacy class of Q.

While the flatness of the three-dimensional slices is
necessary for supersymmetry, it is not a sufficient condi-
tion. For spherically symmetric stationary solutions, the
supersymmetry variation of the fermionic partners �A of
�a reads [36]

��A � VA���; (7)

where �� is the supersymmetry parameter and VA� is a
matrix linear in the velocities _�a onM�3. For general N �
2 supergravities, the indices � � 1, 2 and A � 1; . . . ; 2nv
transform as fundamental representations of the restricted
holonomy group Sp�2;R� � Sp�2nv;R� of para-
quaternionic geometry. Supersymmetry is preserved
when (7) vanishes for some nonzero ��, which implies
that the quaternionic viel-bein VA� has a zero eigenvector.
Expressing VA� in terms of the conserved charges, one may
084019
show that this amounts to the system of equations

dzi

d�
� 	eU�i�gi �j@ �jjZj (8)

dU
d�
�
i
2
k � 	2eU�i�jZj; (9)

where

Z�p; q; k� � eK=2
�qI 	 2k~	I�X
I 	 �pI � 2k	I�FI� (10)

is the central charge of the supersymmetry algebra, and the
phase� is adjusted so that dU=dt is real. The scalars ~	I; 	

I,
conjugate to the charges pI, qI, themselves evolve accord-
ing to

d	I

d�
� 	

1

2
e2U
�=N �	1�IJ
qI 	 2k~	I

	 
<N �JK�pK � 2k	K��

d~	I
d�
� 	

1

2
e2U
=N �IJ�pJ � 2k	I� 	 
<N �IJ

d	J

d�

(11)

where N IJ is the standard matrix of special geometry (we
follow the conventions from [37]). For vanishing NUT
charge3 k � 0, Eqs. (8) and (9) are recognized as the
standard attractor flow equations describing the radial evo-
lution of the scalars toward the black hole horizon [39–
42]. The isomorphism between attractor flow on the special
Kähler manifold M4 and supersymmetric geodesic motion
on the c-map of M4 was in fact independently noticed in
[43] in their study of spherically symmetricD-instantons in
five-dimensional N � 2 supergravity, and reflects mirror
symmetry between D-instantons and black holes.

For homogeneous N � 2 supergravity, the holonomy
group is further restricted to G4 � Sp�2;R�, where G4 �
Sp�2nv;R�. The matrix of velocities VA� can be viewed as
an element of p in the decomposition g3 � h 
 p, and is
conjugate to the matrix of conserved charges Q. The
condition for supersymmetry is then4


Ad�Q��5 � 0; (12)

where Ad�Q� denotes the adjoint representation of Q. In
other words, Q should be an element of a nilpotent orbit
O5. The dimension of this orbit is 4nv � 2, much smaller
than the dimension 8nv of the unconstrained phase space.
One may also consider yet smaller orbits O4, O3, O2, of
dimensions5 4nv, �10nv 	 4�=3, 2nv � 2, corresponding to
-4



7Since G3 is a noncompact group, its nontrivial unitary rep-
resentations are infinite-dimensional; nevertheless they may be
characterized by their functional (‘‘Gelfand-Kirillov’’) dimen-
sion, the number of variables needed to represent them.

8To be precise, the above construction provides a quantization
of the observables associated to the action of G3. Fortunately, the
most relevant observables pI, qI , k, m, are indeed generators of
G3. Other observables need not act within H BPS, although they
may be projected into it in the spirit of the lowest Landau level
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3-charge, 2-charge and 1-charge black holes, with zero
entropy in tree-level supergravity. All of these preserve
the same amount of supersymmetry, but belong to different
duality orbits. The minimal orbit O2 will play an important
role in the relation to the topological amplitude below.

This discussion may be repeated for theories with higher
supersymmetry: for N � 8, the fermionic variation is
��A � ����

A _A
P _A where ��, �A, P _A transform as a vector,

spinor and conjugate spinor of the R-symmetry group
SO��16�, respectively. A 1=2-BPS black hole in N � 8
preserving 16 supercharges is obtained when the velocity
P _A is a pure spinor of SO��16�, equivalently Q 2 O2: this
corresponds to the minimal orbit of E8, of dimension 58.
Similarly, a 1=4-BPS black hole corresponds to Q 2 O3,
of dimension 92, while a generic 1=8-BPS black hole
corresponds to Q 2 O5, of dimension 114. The orbit O4

of dimension 112 corresponds to 1=8-BPS black holes with
zero classical entropy, but does not enjoy any enhanced
supersymmetry [8]. Note that the dimensions of these
orbits agree with those given above for nv � 28.

IV. THE QUANTUM ATTRACTOR FLOW

Having reduced the radial evolution of stationary,
spherically symmetric solutions in 4 dimensions to geode-
sic flow on the three-dimensional scalar manifold M�3,
quantization is straightforward: Classical geodesic motion
of a particle on R� �M�3 is replaced by a wave function
� 2 L2�R� �M�3�, satisfying the quantum Hamiltonian
constraint

�
	
@2

@r2 �
�

r2 	 1
�

��r; e� � 0; (13)

where � is the Laplace-Beltrami operator on M�3 3 e. In
our case we are really dealing with the motion of a super-
particle, so � should more properly be a section of a
bundle over R� �M�3.

Furthermore, we are interested in the BPS Hilbert space,
composed of states satisfying a quantum version of (7) and
pr � 1. The latter equation takes care of the radial depen-
dence, ��r; e� � r��e�. We shall discard the r variable
from now on.

Let us first sketch the quantization of (7) for general
N � 2 supergravities. Note first that (after continuing
from M�3 to M3) �� determines a complex structure at a
point of M3. Classically, the relation (7) implies that the
holomorphic part of the velocity VA� for this complex
structure vanishes. We propose that quantum mechanically
this should translate into the statement that � belongs to a
holomorphic sheaf cohomology group H1�T;O�	h�� on
the twistor space6 T of the quaternionic-Kähler space M3.
6It may be fruitful to further extend T to the Hyperkähler cone
over M3, along the lines of [44,45]. We thank M. Rocek and
S. Vandoren for discussions on this approach.
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(In particular, � depends holomorphically on 2nv � 1
variables, giving the expected functional dimension for
the BPS Hilbert space.) So we are proposing a relation
between sections of bundles on M�3 and sheaf cohomology
on T; this is likely related to the higher-dimensional qua-
ternionic version of the Penrose transform, discussed in
[46,47].

For homogeneous N � 2 supergravities, this construc-
tion can be made more concrete as follows. We impose
constraints on the phase space by fixing the values of all of
the Casimir operators of G3 acting on the Noether charge.
After imposing these constraints, the phase space reduces
to a union of coadjoint orbits of the Noether charges. In
particular, if we impose the constraint (following from the
BPS condition) that the Casimir operators all vanish, the
reduced phase space is the union of nilpotent orbits.
Correspondingly, the BPS Hilbert space H BPS decom-
poses into a direct sum of irreducible unitary representa-
tions of G3,7 obtained by quantizing these nilpotent
coadjoint orbits.8 The orbits relevant for us are the Oi
discussed in the previous Section, corresponding to duality
orbits of the black hole charges.

Each representation ��;H � obtained by orbit quantiza-
tion can be thought of as embedded in the unconstrained
Hilbert space of sections on G3=H3:, namely, there is a
spherical H3-covariant9 vector f 2H , so given some
v 2H , we define a section �v�g� by

�v�g� � hf; ��g�vi: (14)

Note that �v�g� is well defined as a section on G3=H3

thanks to the H3-covariance of f.
So the radial quantization of supersymmetric stationary

spherically symmetric geometries, or supersymmetric geo-
desic motion onM�3, is equivalent to the quantization of the
small nilpotent orbits Oi of G3, where i � 2, 3, 4, 5
depending on the fraction of supersymmetry preserved
by the solution (or, in the N � 2 case, on the number of
independent charges carried by the black hole). This is a
problem which has been considered at some length in the
mathematics and physics literature. In particular, the mini-
mal representation, based on the quantization of O2, was
truncation in condensed matter physics.
9More precisely, the vector f transforms in a finite-

dimensional representation of H3 appropriate to the bundle
over G3=H3; it is a spherical vector if this representation is
trivial.

-5
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constructed for all simply laced Lie groups in their split
real form in [48,49], while the small representations
H 2;3;4;5 associated to O2;3;4;5 were constructed in [50] for
all simple Lie groups in their quaternionic real form. Their
construction of O5 is in fact a particular case of the twistor
construction for general N � 2 supergravity sketched
above. The quantization of O5 in the split case was also
physically realized as a quasiconformal action leaving a
quartic light-cone invariant in [9]; the quantization of O2

was obtained in [51] by ‘‘quantizing the quasiconformal
action’’; these constructions were extended to the nonsplit
case in [52,53]. The same construction of the minimal
representation in the split case was also independently
arrived at in [12], albeit with very different physical mo-
tivations. In that work the distinguished spherical vector
was also computed.

At this stage, we may try to make contact with the
proposal of [5]: are any of the H i suitable Hilbert spaces
to contain the topological string amplitude �top? Taking
[5] literally, the desired wave function must be a function
of nv variables. Alas, there is no unitary representation of
G3 on this number of variables, but the minimal represen-
tation comes very close: it has functional dimension nv �
1. Furthermore, choosing an electric-magnetic splitting
yields an explicit realization of the minimal representation
as a function space [12]; nv of the variables can be natu-
rally identified with the magnetic charges pI of the four-
dimensional black hole, while the last one can be identified
with the NUT charge k [11]. Modulo the extra variable, this
is exactly the form expected for the topological string
partition function, including the dependence on a choice
of splitting.

Moreover, there is a natural way to eliminate the extra
variable: letting H! denote the generator conjugate to the
ADM mass, one may consider the limit lim�!1e�H!�
(which may be thought of as a ‘‘4-dimensional’’ or perhaps
‘‘near-horizon’’ limit). In this limit, G3 is broken down to
G4 � R commuting with H!, and the spherical vector
computed in [12] reduces to the tree-level topological
string amplitude �top � eN�X�=X

0
. It is thus tempting to

interpret the topological string amplitude as a restriction
of the spherical vector10 of the minimal representation for
the three-dimensional duality groupG3. It would obviously
be very interesting to have a topological string interpreta-
tion of the extra variable k, and conversely to understand
how perturbative and instanton corrections modify the
notion of spherical vector.
10In particular, it is not accurate to say that �top is the wave
function for the attractor flow: rather, (a one-parameter general-
ization of) it defines a map (14) from H BPS to the unconstrained
Hilbert space; the wave function itself is determined only when a
vector v 2H BPS is specified. In the next section, we propose a
principle that selects a unique v.
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V. THE AUTOMORPHIC WAVE FUNCTION

In the last Section we discussed four unipotent repre-
sentations H i of the three-dimensional continuous
U-duality group G3, which arise upon quantization of
spherically symmetric BPS black hole attractor flows.
Mathematical interest in these representations lies in the
fact that they allow for the construction of simple modular
forms for G3; so we begin by reviewing this notion and
then explain its relevance for us.

Recall that an automorphic form for a group G is a
function on the quotient G�Z�nG, where G�Z� is a discrete
subgroup of G (see e.g. [54] for a more precise definition).
The space A of automorphic forms has a natural G-action
(by right multiplication). A modular form � is abstractly
defined as an equivariant map H !A where the space
H carries a representation � of G: H characterizes the
‘‘modular weight’’ of �, while the map encodes the precise
modular form. In other words, � denotes a particular
realization of the representation � on a space of functions
on G�Z�nG. One way to construct such a realization11 is to
find a G�Z�-invariant distribution fG�Z� in H �: then the
map

v � �v�g� � hfG�Z�; ��g�vi (15)

defines a modular form. If the representation � admits a
vector vK invariant under K � G, the resulting function
�vK is K-invariant, hence a function on the double coset
G�Z�nG=K. In some cases the invariant distribution fG�Z�
can itself be obtained as an adelic spherical vector, expres-
sible as the product over all primes p of spherical vectors
over G�Qp�, where Qp is the field of p-adic rational
numbers.

We briefly indicate how the usual modular forms for
SL�2;R� fit into this framework. Holomorphic modular
forms f��� on the upper half-plane give functions on
SL�2;Z�nSL�2;R� by12 g � �fjkg��i�. Under the action
of SL�2;R� this is a highest weight vector generating the
k-th holomorphic discrete series representation. The Jacobi
theta series also fits in this scheme via (15), upon choosing
H as the metaplectic representation, vK�x� as the ground
state of the harmonic oscillator, and fG�Z� the ‘‘Dirac
comb’’ distribution

P
m2Z��x	m�.

Now recall that given a modular form for SL�2;R� its
Fourier coefficients often have interesting number-
theoretic properties—they are integers and answer count-
ing problems. For example, for holomorphic modular
forms of SL�2;Z�, one obtains these coefficients by com-
puting

�̂�m� �
Z 1

0
f��1 � i�2�e	2
im��1�i�2�d�1: (16)
11See e.g. [55] for a physicist’s introduction to this approach.
12As usual, for g � �ac

b
d�, �fjkg���� � �c�� d�

kf�a��bc��d�:
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This can be equivalently viewed as integration over the
parabolic subgroup

�
1 x
0 1

� ��
� SL�2;R�

fixing the cusp � � i1, modulo the action of SL�2;Z�. In
favorable cases, a similar prescription can be given for
Fourier coefficients of modular forms of G, by performing
integrals over the unipotent (‘‘upper triangular’’) parts of
suitable parabolic subgroups; this procedure is not known
to work in full generality, but does at least for the N � 2
cases of interest here [56–58].

Namely, let us consider modular forms � for G � G3,
the three-dimensional U-duality group appearing in the
timelike reduction of stationary black holes, taking � to
be one of the unipotent representations H 2, H 3, H 5

which are singled out by supersymmetry. This G3 has a
maximal parabolic subgroup G3 � LN, where the Lévi
component L ’ G4 � R contains the four-dimensional
U-duality along with H!, and N is the Heisenberg group
of gauge transformations from (5). Given � one can try to
extract its Fourier coefficients. The analog of e2
inx in (16)
is now a character �: N ! C�, with ��n� � 1 for n 2
G3�Z�. Such characters are naturally parameterized by
vectors �pI; qI� of integrally quantized electric and mag-
netic black hole charges, the NUT charge k being neces-
sarily13 set to 0. The Fourier coefficients �̂�p; q� so
obtained are by construction invariant under four-
dimensional U-duality G4�Z�; importantly they are con-
strained to fit together into a modular form for a larger
group G3�Z�. Furthermore, the ‘‘smallness’’ of the under-
lying representation implies that only a subset of the
Fourier coefficients are nonzero, namely, those lying in
the appropriate orbit of the U-duality group.

In particular, let us consider the minimal representation
H 2. In this case it is believed that the modular form � is
unique. So our conjecture in this case would be that the
Fourier coefficients of this � count the microstates of 1-
charge black holes. Although these microstate counts are
not of much direct physical interest, the statement that they
fit together into a modular form of G3 is an illustration of
our general philosophy.

When G3 is a split group, the modular form attached to
the minimal representation can be understood concretely
by considering the spherical vector; its corresponding au-
tomorphic form was constructed in [59], essentially using
the formula (15). Comparing (15) and (14), we see that this
construction corresponds to a particular choice of wave
function v � fG�Z� in the corresponding BPS Hilbert
space, which we refer to as the ‘‘automorphic wave func-
tion’’. Then the Fourier coefficient associated to the given
13There exists a different unipotent subgroup of G3 whose
characters are parameterized by qI and k, but then pI � 0.
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charges �pI; qI� can be formally expressed as

�̂�p; q� �
Z
d	IeiqI	

I
f�G�Z��p

I 	 	I; 0�fK�R��p
I � 	I; 0�:

(17)

This expression strongly resembles the OSV conjecture but
differs by involving the product of the real and adelic
spherical vectors, rather than the squared modulus of the
topological string amplitude.

For the other H i, coming from quantization of the
larger Oi, the situation becomes more complicated; the
modular forms here are not expected to be unique, so some
additional input will be required to pin down the desired
ones. The OSV conjecture seems to suggest considering
the tensor product of the representation H 2 with itself and
projecting onto H 5; but this is unlikely to be the full story,
since from the results of [60] it appears that considering
nonspherically symmetric configurations requires the in-
clusion of higher powers of �top as well.
VI. SUMMARY AND OUTLOOK

In this work, motivated by recent conjectures about
exact degeneracies of BPS black holes in four dimensions,
we studied stationary, spherically symmetric solutions of
N � 2 supergravities, with emphasis on cases where the
scalar manifold is a symmetric space. By utilizing the
equivalence with geodesic motion on the three-
dimensional scalar manifold, we quantized the radial at-
tractor flow, and argued that the three-dimensional
U-duality group G3 acts as a spectrum generating symme-
try for BPS black hole degeneracies in 4 dimensions. We
suggested how these may be counted by Fourier coeffi-
cients of modular forms ofG3. Clearly much work remains
to be done in this direction. Other outstanding problems are
to understand the rôle of rotating and multicentered black
holes, as well as the effect of higher-derivative corrections,
and to understand the appearance of the extra NUT-charge
parameter k in the generalized topological string ampli-
tude. It should also be pointed out that a similar line of
reasoning may be developed for 5-dimensional black holes
and black rings, leading us to expect that the 4-dimensional
U-duality group plays a similar role in 5 dimensions.
Finally, the extension of this approach to full-fledged
N � 2 string theory, if successful, is likely to uncover
new relations between number theory, Calabi-Yau geome-
try and physics.
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