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We investigate the Gregory-Laflamme instability for black strings carrying KK momentum along the
internal direction. We demonstrate a simple kinematical relation between the thresholds of the classical
instability for the boosted and static black strings. We also find that Sorkin’s critical dimension depends on
the internal velocity and in fact disappears for sufficiently large boosts. Our analysis implies the existence
of an analogous instability for the five-dimensional black ring of Emparan and Reall. We also use our
results for boosted black strings to construct a simple model of the black ring and argue that such rings
exist in any number of space-time dimensions.
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I. INTRODUCTION

After many years of investigation, higher-dimensional
general relativity still continues to be a rich source of new
ideas and physics. It is now 80 years ago that Kaluza [1]
and Klein [2] first entertained the idea of general relativity
in higher dimensions as a route towards the unification of
gravity with the other forces in nature. Their nascent ex-
plorations laid foundations for modern superstring and M
theory. The study of higher-dimensional general relativity
provides important insights into the structure of these
theories. Further, in recent braneworld scenarios, the extra
dimensions are much larger than the Planck scale and so
the study of classical Einstein equations in higher dimen-
sions is necessary to understand the phenomenology of
these models.

While there has been a great deal of activity studying
‘‘black objects’’ in higher dimensions, particularly in string
theory [3], there is clear evidence that our four-
dimensional intuition leads us astray in thinking about
the physics of event horizons in higher-dimensional grav-
ity. For example, an interesting corollary of the early
theoretical investigations of black holes in four dimensions
was that each connected component of a stationary horizon
must have the topology of a two-sphere [4]. However, this
result is easily evaded in higher dimensions. As a simple
example, consider the four-dimensional Schwarschild met-
ric combined with a flat metric on Rm. This space-time is
an extended black hole solution of Einstein’s equations in
4�m dimensions, and the topology of the horizon is S2 �
Rm. Clearly, this straightforward construction is easily
extended to constructing many other higher-dimensional
black holes whose horizons inherit the topology of the
‘‘appended’’ manifold.1 These solutions describe extended
objects in that the geometry is not asymptotically flat in all
ress: jlhovdeb@sciborg.uwaterloo.ca
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3�m spatial directions and so one might have conjectured
that all localized black objects would have a spherical
horizon. However, this hope was eliminated by Emparan
and Reall [6] who constructed an explicit five-dimensional
metric describing a black ring with horizon topology S2 �
S1. The circle direction in these solutions is supported
against collapse by angular momentum carried in this
direction, as was anticipated much earlier in [7].

These black ring solutions also eliminated any possibil-
ity of extending the usual black hole uniqueness theorems
beyond four dimensions. In four-dimensional general rela-
tivity, work on black hole uniqueness theorems began with
the pioneering work of Israel [8]. The no-hair results are
now rigorously established for Einstein gravity coupled to
Maxwell fields and various other simple matter systems
[9]. While in string theory we study more complicated
matter field couplings (as well as space-time dimensions
beyond four), the plethora of new solutions [3] still re-
spected the spirit of the no-hair theorems in that the black
hole geometries are still completely determined by some
small set of charges. However, the black rings [6] explicitly
provided two solutions for which the mass and spin were
degenerate with five-dimensional spinning black holes [7].
This nonuniqueness was further extended to a continuous
degeneracy with the introduction of dipole charges [10].

One open question is whether or not such black rings
exist in more than five dimensions. One argument suggest-
ing that five dimensions is special comes from considering
the scaling of the Newtonian gravitational and centripetal
forces. In this sense, five dimensions is unique in that it is
only for D � 5 that these forces scale in the same way and
can be stably balanced. Of course, this is purely a classical
argument which need not be true in the fully relativistic
theory and, further, it ignores the tension of the ring. It is
part of the goal of this paper to address this question.

In considering spinning black holes and rings, four
dimensions is also distinguished from higher dimensions
by the Kerr bound. While there is an upper bound on the
angular momentum per unit mass of a four-dimensional
black hole, no such bound exists for black holes in dimen-
-1 © 2006 The American Physical Society
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sions higher than five [7]. The five-dimensional black rings
also remove this bound in higher dimensions [6].

Even more strikingly, in contrast to the stability theo-
rems proven for four-dimensional black holes [11],
Gregory and Laflamme [12,13] have shown that extended
black branes are unstable. The spectrum of metric pertur-
bations contains a growing mode that causes a ripple in the
apparent horizon. The endpoint of the instability is not
completely clear; however, a fascinating picture is emerg-
ing [14]. Interestingly, it was shown in [15] that the
Gregory-Laflamme instability dynamically enforces the
‘‘Kerr bound’’ for D � 6. Perhaps a stability criterion
will restore some of the restrictions which are seen to apply
to black holes in four dimensions.

In the present paper, we investigate the Gregory-
Laflamme instability for black strings carrying Kaluza-
Klein (KK) momentum. These solutions are easily con-
structed by boosting the static black string metrics. We
begin in Sec. II with a review of the Gregory-Laflamme
instability for static black strings. The discussion of
boosted black strings begins in Sec. III, where we first
present the solutions carrying KK momentum and then
consider their stability with global thermodynamic argu-
ments. We then adapt the usual numerical analysis of the
Gregory-Laflamme instability to these boosted solutions.
We demonstrate a simple kinematical relation between the
thresholds of the instability for boosted and static black
strings with a fixed horizon radius. Comparing the numeri-
cal results with the previous global analysis, we find that
Sorkin’s critical dimension [16] depends on the boost
velocity. In Sec. IV, we apply our results to a discussion
of the stability of the black ring solutions of Emparan and
Reall [6]. As already anticipated there, we find that large
black rings will suffer from a Gregory-Laflamme instabil-
ity. Our analysis allows us to argue that black rings will
exist in any dimension higher than five as well.
II. GREGORY-LAFLAMME INSTABILITY

The detailed calculation of the instability of the boosted
black strings will be an extension of the original analysis of
Gregory and Laflamme [12,13]. Hence we begin here by
reviewing the stability analysis for static black strings.2 For
the static string in D � n� 4 dimensions, the background
metric can be written as

ds2 � �f�r�dt2 �
dr2

f�r�
� r2d�2

n�1 � dz
2; (2.1)

where d�2
n�1 is the metric on a unit �n� 1�-sphere and
2Note, however, that our gauge fixing follows [17] which
differs from that in the original analysis of [12,13]. The present
gauge fixing [17] has the advantages that it succeeds in com-
pletely fixing the gauge and it is well behaved in the limit of
vanishing k.
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f�r� � 1�
�
r�
r

�
n
: (2.2)

The event horizon is situated at r � r� and we imagine
that the z direction is periodically identified with z � z�
2�R.

Now we seek to solve the linearized Einstein equations
for perturbations around the above background (2.1). The
full metric is written as

g�� � ~g�� � h��; (2.3)

where ~g�� is the background metric (2.1) and h�� is the
small perturbation. We will restrict the stability analysis to
the S-wave sector on the �n� 1�-sphere as it can be proven
that modes with ‘ � 0 are all completely stable. This is
apparent following the line of argument originally pre-
sented in [18]. Assume the threshold for any instability
should correspond to a time-independent mode. This mode
can then be analytically continued to a negative mode of
the Euclidean Schwarzschild solution; however, Gross,
Perry and Yaffe [19] have shown that the existence of
such a mode is unique to the S-wave sector. Hence we
write the perturbations as

h�� �Re�e�t�ikza���r�	; (2.4)

where � and k are assumed to be real and a�� is chosen to
respect the spherical symmetry, e.g., az� � 0. Hence solu-
tions with �> 0 correspond to instabilities of the static
black string. The above ansatz (2.4) can be further simpli-
fied with infinitesimal diffeomorphisms. Using a diffeo-
morphism with the same t and z dependence as above, the
perturbation may be reduced to a form where the only
nonvanishing components of a�� are

att � ht�r�; arr � hr�r�; azz � hz�r�;

atr � �hv�r�; azr � �ikhv�r�:
(2.5)

Note that even though a�� � 0 � a��, these perturbations
can cause rippling in the position of the apparent horizon
along the internal direction [13].

The linearized Einstein equations give a set of coupled
equations determining the four radial profiles above.
However, we may eliminate hv, hr and ht from these
equations to produce a single second order equation for hz:

h00z �r� � p�r�h
0
z�r� � q�r�hz�r� � �2w�r�hz�r�; (2.6)

p�r� �
1

r

�
1�

n
f�r�
�

4�2� n�k2r2

2k2r2 � n�1� n��r�r �
n

�
;

q�r� �
1

r2

�
�
k2r2

f�r�

2k2r2 � n�3� n��r�r �
n

2k2r2 � n�1� n��r�r �
n

�
;

w�r� �
1

f�r�2
:

(2.7)
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FIG. 1. Unstable frequencies and wave numbers for the static
black string.

TABLE I. Maximum wave number corresponding to the mar-
ginally unstable mode of the static black string in various
dimensions D � n� 4.

n 1 2 3 4 5

kmaxr� 0.876 1.269 1.581 1.849 2.087
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Next we must determine the appropriate boundary con-
ditions on hz�r� at the horizon and asymptotic infinity for a
physical solution. First, near the horizon, the radial equa-
tion (2.6) simplifies considerably yielding solutions

hz � Ae�r
 � Be��r
 : (2.8)

Here r
 is the tortoise coordinate defined by dr
=dr � 1=f
and with which the horizon appears at r
 ! �1. Now, in
principle, we would choose initial data for the perturbation
on a Cauchy surface extending to the future horizon and
demand that the perturbation be finite there. Hence we
require that B � 0 for physical solutions.3

Equation (2.6) also simplifies as r! 1. The asymptotic
solutions behave differently depending on whether n � 1
or n � 2. For n � 1, the regular solutions take the form

hz � e��rr2����2��2�=2�	r� ; (2.9)

where �2 � �2 � k2. For n � 2, they are

hz � e��rr�n�3�=2; (2.10)

with the same definition for �. Hence we expect that the
unstable perturbations are localized near the horizon with a
characteristic size ��1.

The instabilities can be determined as follows: For a
fixed value of k, we choose � and set the asymptotic
conditions according to Eq. (2.9) or (2.10). The radial
equation (2.6) is integrated in numerically to r  r�.
Here we match the numerical solution to the near-horizon
solution (2.8) which determines the ratio B=A for the
chosen value of �. By varying �, we may tune this ratio
to satisfy the physical boundary condition at the horizon,
i.e., B � 0. We find solutions for a range of k from 0 up to a
maximum value kmax. Figure 1 shows the resulting solu-
tions for various space-time dimensions. The critical value
kmax corresponds to the threshold of the Gregory-
Laflamme instability and is set by the only dimensionful
3While the present argument is somewhat superficial, a more
careful treatment yields the same result [12,13].
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parameter in the background, r�, up to a factor of order
one. Table I tabulates kmax for different values of n.

When the coordinate along the string is periodic, the
allowed values of k are discrete, i.e., for z � z� 2�R, k �
n=R with n an integer. Hence for small R, the system is
stable when kmax � 1=R. However, for R> 1=kmax, the
lowest wave number, allowed by periodicity, falls in the
unstable range and the black string is unstable.
III. BOOSTED BLACK STRINGS

Our focus at present is ‘‘boosted black strings,’’ i.e.,
stationary black string solutions carrying momentum along
their length. Such solutions can be obtained by simply
boosting the static solution (2.1) along the z direction,

ds2 � �dt2 �
dr2

f�r�
� r2d�2

n�1

� dz2 � �1� f�cosh2��dt� tanh�dz�2; (3.1)

where the boost velocity is given by v � tanh�, and as
before

f�r� � 1�
�
r�
r

�
n
: (3.2)

Again, we assume that in the new solution the z direction is
periodically identified with z � z� 2�R. This solution
has an event horizon situated at r� and an ergosurface at
r � r�cosh2=n�, where @t becomes spacelike.

To see quantitatively that this solution carries both mass
and momentum, we calculate the Arnowitt, Deser, and
Misner (ADM)-like stress tensor for the string with the
following asymptotic integrals [20]:

Tab �
1

16�
G
I
d�n�1r̂

n�1ni

� ��ab�@ihcc � @ihjj � @jh
j
i� � @ihab	: (3.3)

Here ni is a radial unit vector in the transverse subspace
and h�� � g��� ��� is the deviation of the asymptotic
metric from flat space. Note that the index labels a; b; c 2
ft; zg, while i, j run over the transverse directions. To apply
this formula, the asymptotic metric must approach that of
flat space in Cartesian coordinates. This is accomplished
with the coordinate transformation r � r̂�1� �r�=r̂�n=2n�
which yields
-3
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ds2 ’ �

�
1�

�
r�
r̂

�
n
cosh2�

�
dt2

� 2
�
r�
r̂

�
n

sinh� cosh�dtdz

�

�
1�

�
r�
r̂

�
n
sinh2�

�
dz2 �

�
1�

1

n

�
r�
r̂

�
n
�
dxidxi;

(3.4)

keeping only the leading order corrections. Here r̂2 �Pn�2
i�1 �x

i�2. Hence applying Eq. (3.3), we find that the stress
energy for the boosted black string is

Ttt �
�n�1

16�G
rn��ncosh2�� 1�;

Ttz �
�n�1

16�G
rn�n cosh� sinh�;

Tzz �
�n�1

16�G
rn��nsinh2�� 1�;

(3.5)

where �n�1 is the area of a unit �n� 1�-sphere. Integrating
over z, the total energy and momentum of the string are
then

EBS �
�n�1R

8G
rn��ncosh2�� 1�; (3.6)

PBS �
�n�1R

8G
rn�n cosh� sinh�: (3.7)

The limit of maximal boost �! 1 results in divergent
EBS, PBS, but these can be kept finite if r� vanishes
sufficiently fast. In particular, taking the large � limit
while holding rn�cosh2� fixed produces finite charges.
However, the limiting background has a naked null singu-
larity at the center of a finite-size ergosphere.

A. Comparing black strings and black holes

Gregory and Laflamme [12,13] originally gave a simple
argument favoring instability of the static black string by
comparing its entropy to that of a spherical black hole with
the same energy. This argument also plays a role in deduc-
ing the full phase structure of black strings and black holes
in a compactified space-time [14,21]. So we begin here by
extending this discussion of the global thermodynamic
stability to the boosted black string. The analysis for the
case at hand becomes slightly more complicated because,
as well as matching the energy, we must also explicitly
match the KK momentum along the z circle in our
comparison.

We compare the boosted black string solution (3.1) to a
D-dimensional spherical black hole of radius r0� moving
along the z axis with velocity v0 � tanh�0. At rest, the
energy of the spherical black hole is [7]

MBH �
�n� 2��n�2

16�G
r0�

n�1:
084013
Now, to a distant observer, the spherical black hole behaves
like a point particle and so, when boosted, its energy and
momentum are given by

EBH � MBH cosh�0; PBH � MBH sinh�0: (3.8)

Equating the above to those for the black string given in
Eqs. (3.6) and (3.7), the black hole must have

tanh�0 �
n cosh� sinh�

1� ncosh2�
;

r0�
n�1 � 2�rn�R

������������������������������������������
1� n�n� 2�cosh2�

p
n� 2

�n�1

�n�2
:

(3.9)

It is interesting to note that, with the usual relation v �
tanh�, the first expression above can be rewritten as

v0 � v
n

n� 1� v2 : (3.10)

Hence we always have v0 < v, with v0 approaching v
(from below) as v! 1.

We now need to calculate the horizon entropy S �
A=4G for each configuration. For the boosted string, we
find

SBS �
�R�n�1

2G
rn�1
� cosh�: (3.11)

The cosh� dependence arises here because proper length
along the z direction at the horizon expands with increasing
�, as can be seen from Eq. (3.1). In contrast, the horizon
area of the black hole is invariant under boosting. This
invariance is easily verified in the present case by explicitly
applying a boost along the z direction to the black hole
metric in isotropic coordinates. However, this is a general
result [22]. Hence for the boosted black hole, we have

SBH �
�n�2

4G
r0�

n�2: (3.12)

Setting SBH=SBS � 1 and solving for R, we find

Rmin �
r�

2� cosh�
�n� 2�n�2

�n�n� 2� � cosh�2��n=2�1

�n�2

�n�1
:

(3.13)

Hence we might expect that the boosted black string is
unstable for R> Rmin. Fixing r�, Rmin scales like 1= cosh�
for large �. It should be remembered that the large � limit
with r� fixed has divergent energy. Rescaling r� while
taking the large � limit can make the energy finite, but this
causes Rmin to vanish even more quickly. In any event, this
naive analysis suggests that the instability will persist for
�! 1. Again, note that the black string horizon becomes
a null singularity in this limit.

B. Instability of boosted strings

Turning now to the instability of boosted strings, a
natural choice of coordinates in which to perform the
-4
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analysis are those for which the string appears at rest:

~t � cosh�t� sinh�z; ~z � cosh�z� sinh�t:

(3.14)

In the following we shall refer to this as the ‘‘static frame,’’
and our original frame (3.1), having simple periodic bound-
ary conditions in z, will be called the ‘‘physical frame.’’

Let us begin in the static frame with perturbations hav-
ing functional form exp� ~� ~t�i~k ~z�. Now transforming
back to the physical frame, this becomes exp��t� ikz�
where

� � cosh� ~�� i sinh�~k; k � cosh�~k� i sinh� ~�:

(3.15)

For real ~k and ~�, the imaginary part of k induced by the
boost is inconsistent with the periodic boundary conditions
on z, which are imposed in the physical frame. Hence
consistency requires that we add an imaginary part to ~k,
i tanh� ~�, which ensures that the resulting k is real. In
practice, finding solutions also requires adding a small
imaginary part to ~�—see below. Hence, in the static
frame, our perturbations have a ~t, ~z dependence of the form

exp�� ~�� i ~!�~t� i�~k� i tanh� ~��~z	; (3.16)

where ~�, ~!, ~k are all real. In the physical frame, the t, z
dependence then becomes exp��t� expi�!t� kz� where

� � ~�= cosh�; ! � cosh� ~!� sinh�; ~k

k � cosh�~k� sinh� ~!:
(3.17)

Again, all of the above are real numbers. Provided we
ensure that k is a multiple of 1=R, this ansatz is now
consistent with the periodicity of z. As before, solutions
with �> 0 will correspond to instabilities.

Including the complex part, i ~!, in the near-horizon form
of the solution (2.8) turns the terms, respectively, into
ingoing and outgoing modes at the future-event horizon.
When ~�> 0, regularity of the solution requires that we set
B � 0, as before. For the special case that ~� vanishes,
neither solution diverges on the future-event horizon; how-
ever, the limit of the second is undefined there. In this case,
0.2 0.4 0.6 0.8
k r
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0.04

0.06

0.08

r

(a)

FIG. 2 (color online). Frequencies ~��~k� and ~!�~k� leading to i
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we continue to impose B � 0 as our boundary condition
for ~� � 0, as this corresponds to a boundary condition of
purely ingoing modes at the future-event horizon.

Hence the problem of finding instabilities of the boosted
string reduces to finding instabilities of the static string
with the complex frequencies defined by (3.16). With these
frequencies, the perturbations have a time-dependent
phase. A boundary condition must therefore be imposed
on both the real and imaginary parts of the unknown
function. This means that for each value of ~k there are
two constraints that must be solved on the horizon, pre-
cisely matching the number of free parameters ~!, ~�. Apart
from these complications, the solutions were found nu-
merically using the method outlined in Sec. II.

The numerical results for the frequencies ~� and ~! in the
static frame are displayed as a function of ~k in Fig. 2 for
n � 1. The results in other dimensions are similar. On the
left, we see that ~��~k� is almost independent of the boost
velocity v. This result might be interpreted as arising
because even when v � 0, ~� is suppressed relative to ~k
and so making v nonzero (but small) only yields a small
perturbation on the unboosted results. Further, we note that
the behavior of ~��~k� near ~k � 0 and ~kmax is essentially
independent of v—a point we return to below.

More dramatic differences are seen when the results are
transformed to the physical frame with Eq. (3.17). We
display ��k� in Fig. 3(a) for n � 1. Again, the behavior
for other values of n is similar. We might note that the
comparison is made here for boosted strings with a fixed
value of r�. Hence the total energy (3.6) increases as the
boost velocity grows and diverges with �!1.

In fact, one can predict the threshold for the Gregory-
Laflamme instability of the boosted string without the
numerical analysis above. The revised ansatz (3.16) in
the static frame was introduced to accommodate the time
dependence of these modes upon boosting to the physical
frame. However, the threshold mode is defined as that
where the time dependence (in the static frame) vanishes,
i.e., ~� � 0. Hence there is no obstruction to boosting the
threshold mode originally found by Gregory and
Laflamme. Therefore there is a simple kinematical relation
between the thresholds for the boosted and static black
0.2 0.4 0.6 0.8
k r

0.010

0.020

0.010

r

v 0

v 0.3

v 0.6

v 0.9
(b)

nstabilities, as observed in the static �~t; ~z� frame, for n � 1.
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FIG. 3 (color online). Plot of physical frequencies ��k� and !�k� leading to boosted string instabilities for fixed horizon size, at
various boost velocities and with n � 1.

4In general, the critical dimension depends on the dimension
of the black brane and the details of the compactification
geometry [23]. Further, the precise value may also depend on
the thermodynamic ensemble considered [24].
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strings. In the physical frame, this marginal mode has

kmax � cosh�~kmax; ! � sinh�~kmax (3.18)

where ~kmax is the threshold for a static black string, listed in
Table I. Hence these threshold modes are traveling waves
in the z direction having precisely the same speed as the
boosted string.

One may ask whether there are more general modes with
~� � 0, but nonzero ~!. For example, an exactly marginal
mode in the physical frame would require that ~� � 0 and
~! � � tanh�~k, but in fact such a solution is inconsistent
with the equations of motion. The linearity of (2.7) allows
us to arbitrarily choose a normalization in which hz is real
at a point. When we set ~� � 0, the real and imaginary
parts of hz decouple, implying that hz is real everywhere. If
~! is nonzero, the only choice of A and B in the near-
horizon solution (2.8) consistent with hz real is A � B
, so
that the boundary condition B � 0 is not possible. We then
conclude that the only solution with ~� � 0 is time inde-
pendent in the static frame ( ~! � 0), which is then a
traveling wave of constant amplitude in the physical frame.

To close this section, we observe that, in the static frame,
~!�~k� shows some interesting structure, as shown in
Fig. 2(b). The zeros of ~! seem to be independent of v.
The vanishing at ~kmax (and ~k � 0) is understood from the
discussion above, but there is also a fixed intermediate zero
which seems to coincide with the maximum value of ~�.
We do not have a physical explanation for the latter.

Using Eq. (3.17), the phase velocity of the unstable
modes in the physical frame can be written as

!
k
�

v� ~!=~k

1� v ~!=~k
’ v� �1� v2�

~!
~k
� � � � : (3.19)

The last approximation uses our numerical result that
generically ~!=~k� 1. Hence we see that to a good ap-
proximation all of the perturbations travel along the string
with the boost velocity—a result which is verified by the
numerical results in Fig. 3(b). However, given ~!�~k� in
Fig. 2(b), we see that the deviations from this rule are
such that the long (short) wavelength modes travel with a
084013
phase velocity that is slightly faster (slower) than v. Of
course, the threshold mode moves along the z direction
with precisely the boost velocity.

C. Comparing black strings and black holes, again

The threshold mode sets a minimum radius for the
compact circle for which the boosted black string is un-
stable. Hence, from Eq. (3.18) above, we have�

Rmin

r�

�
BS
�

1

�kmaxr��BS
�

1

cosh�~kmaxr�
(3.20)

where again ~kmax is the static string threshold, given in
Table I. This result might be compared to that in Sec. III A.
Recall that there we compared the entropy of the boosted
black string to that of a small black hole boosted along the
z direction. In this case, we found�
Rmin

r�

�
BH
�

1

�kmaxr��BH

�
1

2� cosh�
�n� 2�n�2

�n�n� 2� � cosh�2��n=2�1

�n�2

�n�1
:

(3.21)

Hence the simple scaling with 1= cosh� in Eq. (3.20) is
modified here by corrections in powers of 1=cosh2�. The
two results are plotted together in Fig. 4 for various space-
time dimensions.

Considering the static results (i.e., v � 0 or cosh� � 1),
Fig. 4 shows that �Rmin�BS > �Rmin�BH for smaller values of
D but �Rmin�BS < �Rmin�BH for larger values. Sorkin [16]
first observed that this transition occurs at a critical dimen-
sion between D � 13 and D � 14.4 This result indicates
that there is an interesting phase diagram [14,21] for D �
13, with a regime �Rmin�BS >R> �Rmin�BH where the
black string is locally stable but the black hole solution is
the global minimum. Further, these global considerations
-6
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FIG. 5 (color online). The critical boost at which nonuniform
black strings become stable in various dimensions. (The curve is
simply a guide for the eye.)
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FIG. 4 (color online). Comparison of the threshold wave num-
ber calculated numerically (3.20) (blue, solid lines) to that
predicted by global entropy considerations (3.21) (red, dashed
lines) for D � 5, 7, 10, 20.
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then suggest that, in this regime, these two solutions are
separated by an unstable solution describing a nonuniform
black string [25]—this structure was recently verified with
numerical calculations forD � 6 [26]. In contrast, forD>
13, it appears that the nonuniform black string becomes
stable but only appears as the end state of the decay of the
uniform black string in the regime �Rmin�BH >R>
�Rmin�BS [14].

Now we have observed that �Rmin�BS and �Rmin�BH in
Eqs. (3.20) and (3.21) do not have the same dependence on
the boost velocity. This leads to an interesting effect which
we observe in Fig. 4. In the regime D � 13, we start with
�Rmin�BS > �Rmin�BH for small cosh� but there is a transi-
tion to �Rmin�BS < �Rmin�BH for large boosts. Figure 5 dis-
plays the critical boost velocity (for the uniform black
strings) at which this crossover occurs in various dimen-
sions. This behavior can also be verified using the analytic
approximation for the static threshold provided in [16],
which yields�
Rmin

r�

�
BS
�

1

�kmaxr��BS
’

1

2� cosh�

�
16�a�n�4

�n� 1��n�1

�
1=n

(3.22)

where a ’ 0:47 and � ’ 0:686 are constants.
We note that the minimal radius (3.21) from the black

hole comparison will receive corrections and these may
change the final result. The analysis in Sec. III A treats the
black hole as being spherical sitting inside a fixed internal
circle. For very small black holes this is an acceptable
approximation, but as the size increases, the interactions
with the ‘‘image’’ black holes in the covering space be-
come important and lead to mass-dependent corrections for
the entropy of black holes on cylinders [27]. However, as�
increases, so too does the proper separation of the black
hole and its images (along the z direction) in their static
frame, i.e., �~z � 2�R cosh�0 where the boost factors are
084013
related as in Eq. (3.9) but for large boosts, cosh�0 ’ cosh�.
Naively, Eq. (3.9) shows that the size of the black holes
grows at a much slower rate as � increases. However, near
the boundary where SBH � SBS , one finds that r0� grows as
cosh� for large �, precisely the same rate as �~z .

However, tentatively our results show that the critical
dimension discovered in [16] depends on the boost velocity
and in fact disappears for large values of cosh�. Of course,
incorporating the compactification corrections for the
black holes [27] will allow one to produce a more accurate
value for the critical boost in various dimensions [28].
Further, following [16], the critical boost can also be
assessed using Gubser’s perturbative construction [29] of
the nonuniform black string [28].

IV. BLACK RINGS

The question of black hole uniqueness in dimensions
greater than four was answered decisively by Emparan and
Reall with the construction of an explicit counterexample
[6]. Their solution is completely regular on and outside a
horizon having topology S2 � S1, a black ring. For the
metric, we consider the form presented in [30]:

ds2 � �
F�x�
F�y�

�
dt� R

������
	�
p
�1� y�d 

�
2

�
R2

�x� y�2

�
�F�x�

�
G�y�d 2 �

F�y�
G�y�

dy2

�

� F�y�2
�
dx2

G�x�
�
G�x�
F�x�

d�2

��
; (4.1)

where

F�
� � 1� 	
 and G�
� � �1� 
2��1� �
�: (4.2)

Requiring that the geometry be free of conic singular-
ities when F or G vanish determines the periods of the
angles � and  as well as sets the value of 	 to one of two
possibilities,
-7
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FIG. 6 (color online). Reduced spin and area for the black ring
(blue, solid line) and black hole (red, dashed line) solutions
described by the metric (4.1). The large (small) ring branch
corresponds to � < 1=2 (� > 1=2).

5It is important here that the unstable mode is localized near
the horizon, which is a point we return to later.
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	 �
� 2�

1��2 black ring;
1 black hole:

(4.3)

With the former choice �x;�� parametrize a two-sphere
while  is a circle. When 	 � 1,  joins with x and � to
parametrize a three-sphere and the solution is a five-
dimensional Myers-Perry black hole [7] spinning in one
plane.

The family of black ring solutions is therefore described
by two free parameters, � and R. The first, �, can be chosen
in the range from 0 to 1 and roughly describes the shape of
the black ring. For �! 0, the ring becomes increasingly
thin and large. In the opposite limit, �! 1, the ring flattens
along the plane of rotation, becoming a naked ring singu-
larity at � � 1. R can be roughly thought of as the radius of
the ring in a manner that will become apparent shortly.

The ADM energy and spin, as well as the horizon area,
are found to be

M �
3�R2

4G
	�1� 	�

1� �
; (4.4)

J �
�R3

2G
�	��1=2�1� 	�5=2

�1� ��2
; (4.5)

A � 8�2R3 	
1=2�1� 	��	� ��3=2

�1� ��2�1� ��
: (4.6)

A more convenient set of variables for visualizing the
various phases of these solutions are the reduced spin, j2,
and area, ah, defined by

j2 �
27�
32G

J2

M3 �

� �1���3
8� black ring;

2�
1�� black hole;

(4.7)

ah �
3

16

����
3

�

s
A

�GM�3=2
�

8<
: 2

�������������������
��1� ��

p
black ring;

2
�����������
2 1��

1��

q
black hole:

(4.8)

We plot the corresponding quantities in Fig. 6. Note that

the black holes are described by ah � 2
�������������������
2�1� j2�

p
. The

black rings lie on two branches, labeled ‘‘large’’ and
‘‘small,’’ which meet at the critical point � � 1=2.

The large branch corresponds to solutions where the
radius of the ring grows more quickly than its thickness,
locally approaching the geometry of a boosted string. To
see this explicitly, we may take R! 1, �! 0 while
keeping R� fixed. In this limit, we introduce [30]

�R � r�sinh2�; 	R � r�cosh2�;

r � �R
F�y�
y

; cos� � x; z � R ;
(4.9)

and obtain precisely the metric of the boosted black string
(3.1). The similarity is in fact more than just local; compar-
ing the horizon area of the black ring in this limit we find
084013
that it matches the boosted string result (3.11), implying
that we should indeed take R as a measure of the radius of
the ring.

Given the similarity between boosted black strings and
very large black rings, Emparan and Reall expected that
the latter should be subject to a Gregory-Laflamme type
instability [6]. Using (3.18), the wave number for the
marginal mode of the five-dimensional boosted string is
kmaxr�  0:876 cosh�. Translating this result to the black
ring variables using (4.9) yields

kmax 
0:876

R
	1=2

�	� ��3=2


1:239

R�
; (4.10)

where the last expression applies only for �! 0. Now
kmax * 1=R should be the condition for the Gregory-
Laflamme instability to appear in the black ring.5 Hence,
the above result confirms that the black ring is unstable in
the vicinity of small �. Further, considering the second
expression above for arbitrary �, one finds that kmax > 1=R
everywhere which suggests that all of the black rings are
unstable. However, we should not think that these calcu-
lations are reliable for all values of �. We consider this
question in more detail below by studying a simple model
of the black ring.

A. Black strings to black rings

Here we would like to construct a simple model of the
black ring that captures its important features. To identify
these, we consider the ratio of the mass and spin of the ring
from Eqs. (4.4) and (4.5). For small �, this ratio approaches
a constant,
-8



6This vanishing occurs because rn� vanishes at these points, as
can be seen in Eq. (4.17).

BLACK RINGS, BOOSTED STRINGS, AND GREGORY- . . . PHYSICAL REVIEW D 73, 084013 (2006)
MR
J
�

3���
2
p �1� 2�� 4�2 �O��3�	

�
3���
2
p

�
1� 2

���
2
p
GJ

�R3 � 10
2G2J2

�2R6
�O

� ���
2
p
GJ

�R3

�
3
�
;

(4.11)

where implicitly we have expanded the dimensionless
quantity

���
2
p
GJ=�R3 � �� 3�2 �O��4�. Our goal is to

reproduce this expression with a simple string model. So
let us assume we have a spinning loop of string where the
loop has a radius R and the string has a linear ‘‘rest mass’’
density 	. Then we expect that, up to a boost-dependent
factor, the spin is given by J� 	R2. This allows us to
identify the origin of the most important contributions to
the energy of the black ring, by reexpressing the contribu-
tions in terms of 	 and R.

The constant term in Eq. (4.11) corresponds to a con-
tribution to the total energy 	R, linear in both factors.
Hence, remembering to include the boost dependence,
this leading term is simply a combination of the string’s
rest mass and a kinetic energy. That this term dominates
may have been expected since we are considering a limit in
which the radius of the ring is large. The next term in the
expansion gives a R-independent contribution coming
from the gravitational self-energy of the ring in five di-
mensions,�G	2. The final term in Eq. (4.11) yields a 1=R
potential which would keep the string from shrinking to
zero size when formed in a ring. We can interpret such a
contribution as due to rigidity of the string.

Rigidity has appeared before in various string models. In
particular, it was argued to be necessary to successfully
model the QCD string and was introduced by modifying
the Nambu-Goto action by a term dependent on the extrin-
sic curvature of the world sheet [31]. It was suggested that
such a term can emerge when the string is constructed as
the compactification of a higher-dimensional brane [32].
Compactifying a three-brane on a two-sphere of radius �
and forming a loop of string with radius R yields a con-
figuration where the ratio between the tension and rigidity
energies is R2=�2. Comparing this to the ratio of the first
and third terms in (4.11) implies that G	� �, whereas for
a boosted black string in five dimensions, we have GTtt �
r� from Eq. (3.5). This intriguing coincidence suggests
that the rigidity of black strings may be accommodated by
an extension of the ‘‘membrane paradigm’’ [33] to higher
dimensions.

Hence we have argued that the gravitational self-
interaction and rigidity of the black string play a minor
role in determining the configuration for large rings. Now
we would like to proceed further in modeling the behavior
of such a large black ring by approximating the latter as a
loop of black string and using our results for the energy and
momentum densities of a boosted black string given in
Eq. (3.5). For a loop of string with radius R, these yield a
mass and spin
084013
M � 2�RTtt � xnrn�R
�

cosh2�� 1�
2

n

�
; (4.12)

J � 2�R2Ttz � xnrn�R
2 sinh2�; (4.13)

where, for notational convenience, we have introduced the
constant x � �n�1=16G. Hence we see that our model has
three independent parameters: R, r� and �, which corre-
spond to the size and thickness of the loop and the tangen-
tial boost velocity which determines its angular velocity.
Given a configuration with fixed M and J, the above
equations give two relations between these parameters
but one is left free. Our approach to fixing this last pa-
rameter will be demanding that the ring configure itself to
maximize its entropy:

S �
A

4G
� 8�xrn�1

� R cosh�: (4.14)

This is a straightforward although somewhat tedious ex-
ercise. Hence we only show the salient steps below.

First, we find it useful to replace R by the dimensionless
parameter

y �
J
MR
�

sinh2�

cosh2�� 1� 2
n

(4.15)

where the last expression comes from combining
Eqs. (4.12) and (4.13). One then determines � and r� in
terms of y as

e2� �
y�1� 2

n� �
�������������������������������
1� 4

n �1�
1
n�y

2
q
1� y

; (4.16)

rn� �
M2

4xJ
y

1� 1
n

�
1�

2

n
�

����������������������������������
1�

4

n

�
1�

1

n

�
y2

s �
: (4.17)

From these expressions, one can also see that physical
solutions are restricted to the range 0 � y � 1.
Substituting these expressions into Eq. (4.14) then yields
S�y�. Plotting the entropy, one finds that it vanishes6 at y �
0 and 1 and that it has a single maximum in between. The
value of ymax can be determined analytically to be

y2
max �

����������������������������������������������������
�1� 2

n��1�
1
n�

1
4n2 �

1
2n3�

q
� 1� 1

2n�
1
n2

4�1� 1
n��1�

2
n�

:

(4.18)

Now we would like to compare our results to those for
the five-dimensional solution (4.1). For n � 1, Eq. (4.18)
yields ymax ’ 0:375 for our loop of black string while
Eq. (4.11) yields y ’

���
2
p
=3 ’ 0:471 for the large radius

limit of the exact solution. Hence our model does not
precisely reproduce the leading result for the large ring;
-9
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however, the discrepancy is only of the order of 20%.
Given the simplifying assumptions of our black string
model, it seems to work surprisingly well.

We have found another interesting verification of our
model as follows: In the limit of large n, Eq. (4.18) yields
y2

max ’ 1=2n and, further, Eqs. (4.16) and (4.17) indicate
that � ’ 1=

������
2n
p

and rn� / 1=
������
2n
p

, respectively. Hence, in
this limit (of a large space-time dimension), the string loop
is very large and thin while its tangential velocity is small.
Therefore it seems reasonable to treat the loop as a non-
relativistic mechanical string whose equilibrium configu-
ration can be analyzed with Newton’s law: pv=R � Ttot=R
where the right-hand side is the centripetal acceleration of
a small element of string with a linear momentum density
p while the force on the left-hand side is determined by the
total tension. Now applying a nonrelativistic limit to the
stress tensor of the black string (3.5) yields

Ttz � �v; Tzz � �T � �v2; (4.19)

where we distinguish the mass density � and the tension T
of the string. For the black string, Eq. (3.5) gives T �
�=n � �n�1rn�=16�G and so we note that we have T �
� for large n, as expected for a nonrelativistic string. Now
setting p � Ttz and Ttot � �Tzz, the force law yields v2 �
T=2� � 1=2n which precisely matches the model result
quoted above.

Hence, it seems that we already have a fairly reliable
model of the black string. Further this model is constructed
for an arbitrary space-time dimension and so we conclude
that black rings also exist in dimensions higher than five. In
fact, for large dimensions, it seems that a large black ring
will be spinning nonrelativistically.

Of course, our simple string model will only capture the
leading behavior of Eq. (4.11) and not the gravitational or
rigidity corrections. While we do not do so here, one could
try improving our calculations to take these effects into
account. In fact, one indication of the importance of these
effects comes from the black ring solution itself. Note that
it has been observed [30] that in the limit of large radius,
the five-dimensional black rings are fairly relativistic in
that sinh2�! 1, in contrast to our results for large dimen-
sions above. It is interesting that this boost corresponds
precisely to where the tension (3.5) of the five-dimensional
black string vanishes [30], i.e., Tzz � 0. Further, however,
looking at (4.9) more carefully, we find

sinh 2� �
1� �2

1� �2 ’ 1� 2�2 (4.20)

and the black ring actually seems to approach sinh2� � 1
from above as �! 0, where the tension of the string would
be negative. Of course, our model only results in a boost
where the black string tension is positive and so can
stabilize the spinning loop. However, the implication of
Eq. (4.20) is that the stress tensor of the black string (3.5)
must receive ‘‘rigidity’’ corrections, e.g., 1=R2 terms as in
084013
[31], when the string is drawn into a loop so that the tension
remains positive in this limit. Similarly, the gravitational
self-interaction may play a more important role here.

We can also use the black string model to extend our
results for the Gregory-Laflamme instability of boosted
black strings to black rings. In particular, the string loop
will be subject to a Gregory-Laflamme instability when
kmaxR * 1. Using Eq. (3.18) and Table I, we have kmax �

cosh�~kmax ’ 0:876 cosh�=r�. Further evaluating these
expressions with Eqs. (4.16), (4.17), and (4.18) with n �
1 gives an instability for

j2 * 0:239; (4.21)

where j2 is the reduced spin introduced in Eq. (4.7). There
we also showed that for the five-dimensional black ring,
the minimum value was j2

min � 27=32 ’ 0:844 at � � 1=2.
Hence, in accordance with the result at the end of the
previous section, these calculations seem to indicate that
all of the black ring solutions will be unstable. However,
our model calculations need not be reliable for small values
of j2, i.e., for small black rings.

Before addressing the latter question, let us consider a
slightly different approach to evaluating the threshold for
the instability of the black ring. We reconsider our model
of a loop of black string with three independent parame-
ters. As above, we fix the mass and angular momentum
which leaves one free parameter, which we take to be the
radius of the loop. Now, rather than extremizing the en-
tropy, here we require that the proper area of the horizons
be the same. Again this gives three equations determining
the model parameters, Rmodel, r�, �, now in terms of the
two free parameters of the black ring, R and �.

This system of equations fixes the rapidity to be

sinh� � 1: (4.22)

It is interesting that this corresponds to the boost for which
the five-dimensional black string becomes tensionless, i.e.,
Tzz � 0, as is appropriate for the large-ring limit. Note here
though that we have not explicitly taken such a limit. The
remaining parameters are found to be

Rmodel �
�1� ��2

1� �2 R; (4.23)

r� �

��������������
1� �2
p

1� �2 �R: (4.24)

Note that Rmodel and R agree in the large-ring limit, �! 0
but, in general, Rmodel >R.

Returning to the Gregory-Laflame instability, the string
loop will suffer from the instability when kmaxRmodel ’ 1
with

kmax � ~kmax cosh� �
1:239

�R
1� �2��������������
1� �2
p (4.25)

where again we have used the five-dimensional result for
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~kmax. Let us consider this threshold more carefully here.
The validity of this model calculation (and that above)
requires that the unstable modes are localized near the
horizon on a scale much smaller than the size of the ring.
This is, of course, because our calculations for the insta-
bility of the boosted string assumed an asymptotically flat
metric and so we may only apply these results here if the
perturbation is insensitive to the geometry at the antipodal
points on the ring. Here we are considering the character-
istic size of the modes in the direction orthogonal to the
string and hence orthogonal to the boost direction.
Therefore this profile is independent of the boost velocity
and, for the threshold mode, we can again use the results
from Sec. II. The radial falloff of this perturbation was

determined by the scale ~� �
����������������������
~�2 � ~k2

max

q
� ~kmax since ~�

vanishes for the threshold mode. Given the boost factor,
(4.22) is order one; the wavelength and the radial extent of
the threshold mode are about the same size.7 Hence, to be
confident of our calculations for the black ring instability,
the estimate above must be revised to kmaxRmodel � 1,
which is equivalent to

�
��������������
1� �2
p

�1� ��2
� 1:239: (4.26)

Notice that the expression on the left-hand side has a
maximum of 0.192 at � � 1=2 and hence we can be con-
fident that this inequality will be satisfied, in general.

To summarize then, for any black ring on either branch
in Fig. 6, one can find a corresponding black string model
that has the same energy, spin and area. This version of the
calculation again suggests that the black rings are unstable
with a Gregory-Laflamme instability for any value of the
parameters. However, we must note that this calculation is
not always reliable. Recall that our underlying assumption
was that the dominant black ring dynamics was simply
determined by the rest energy and tension of the string.
While this is indeed valid for the large black ring (small �),
Eq. (4.11) clearly shows that this assumption becomes
invalid when � grows. In particular, there is no reason
that it should be trusted when � � 1=2 where the gravita-
tional self-interaction will be important. For a conservative
bound, we might require that ignoring the gravitational
correction introduces less than a 10% error in the total
energy, which means that we require � � 0:05. Of course,
this bound is subject to the reader’s taste in the admissible
error and, in any event, it only represents a bound on one’s
confidence in the validity of our model. However, these
calculations certainly do indicate that the black rings in
Fig. 6 already experience a Gregory-Laflamme instability
when the reduced spin j2 is of order one.
7Note that we expect the threshold mode has the least radial
extent of the unstable modes.
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V. DISCUSSION

We considered the Gregory-Laflamme instability for
boosted black strings. In the static frame, the results are
largely unchanged compared to the instability of a static
black string, although the boundary conditions required a
complex frequency with a small imaginary component.
However, the instability is strongly dependent on the boost
velocity in the physical frame, as shown in Fig. 3(a) for
n � 1. Since the threshold mode is by definition time
independent, the mode found for the static black string is
also a solution satisfying the appropriate boundary condi-
tions in the static frame of the boosted string. As a result,
for a fixed horizon size, there is a simple kinematical
relation (3.18) between the threshold wave number of the
static and boosted black strings. For the boosted black
string, the threshold mode is a traveling wave moving in
the z direction with precisely the same speed as the boosted
string.

In the static case, Sorkin [16] showed that stable black
strings and small black holes on a compact circle only
coexist below a critical space-time dimension, of approxi-
mately 13. For the boosted case, in which there is internal
momentum in the circle direction, we seem to find that this
critical dimension is boost dependent and in fact vanishes
for large boosts. This result is illustrated in Fig. 4 by the
crossing of the curves for the minimal radius found from
the Gregory-Laflamme analysis and from a comparison of
the entropy of the black holes and strings.

Sorkin’s result has interesting implications for the phase
diagram for black objects in a compactified space-time
[14,21]. For 5 � D � 13, there is a regime where black
holes and stable black strings coexist. These families of
solutions are connected by a family of unstable and non-
uniform black strings. For D> 13, the stable black strings
and black holes do not coexist and the family of nonuni-
form black strings connecting these two phases is now
expected to be stable.

Interest in the nonuniform black strings alluded to above
began with the discussion of [34]. Such nonuniform solu-
tions were first constructed perturbatively by Gubser in five
dimensions [29] and this construction is straightforwardly
extended to any number of space-time dimensions.
Wiseman also used numerical techniques to find such
strings in a fully nonlinear regime in six dimensions [25].
Here we observe that these nonuniform strings can be
boosted to carry KK momentum in the internal direction.
First, note that these solutions are static and periodic in,
say, the ~z direction with period 2� ~R. Hence one can
compactify these solutions by imposing the identification

�~t; ~z� � �~t� 2� ~R tanh�; ~z� 2� ~R�: (5.1)

Now upon boosting as in Eq. (3.14), one arrives at a
boosted frame where the identification is now �t; z� �
�t; z� 2�R� where R � ~R= cosh�. Hence, in the physical
�t; z� frame, one has a nonuniform string moving with
-11
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velocity tanh� along the z direction. Note, however, that
we would not compare nonuniform and uniform black
strings with the same boost factor. As in Sec. III A, any
comparison would fix the total mass and KK momentum,
as well as the circle radius, and since the ratio of the energy
density and tension of the nonuniform and uniform strings
is different, so would be the boost factors for each.

Now our observation on the boost dependence of the
critical dimension would have interesting implications for
the nonuniform strings. As in the static case, it would seem
that for D> 13 these strings are stable for any value of the
boost. On the other hand, for 5 � D � 13, the nonuniform
strings would apparently be unstable for low values of the
boost; however, they become stable for large boosts. Note
that in contrast to the uniform string which has a contin-
uum of unstable modes, the static nonuniform string is
expected to have a single unstable mode below the critical
dimension reflecting the periodicity of the solution [14].
While imposing the ‘‘boosted’’ boundary condition (5.1)
did little to modify the spectrum of unstable modes for the
uniform black string, it seems to be enough to remove the
unstable mode in the nonuniform case. It would be inter-
esting then that these nonuniform boosted black strings
may then form the end state for the decay of the uniform
black strings with KK momentum.

We also applied our results for the instability of boosted
strings to consider the analogous instability of the black
rings of Emparan and Reall [6]. Both the naive discussion
around Eq. (4.10) and the more detailed analysis in
Sec. IVA seem to indicate that the entire branch of large-
ring solutions is unstable. However, these are both ex-
pected to be reliable for small � and so one must limit
the application of our calculations. However, our results
certainly indicate that Gregory-Laflamme instabilities will
afflict the black rings already when the reduced spin j2 is of
order one. Hence it seems that this instability will enforce a
Kerr-like bound on this particular family of solutions. This
is then similar to the results of [15] where it was argued that
the Gregory-Laflamme instability played a role in destabi-
lizing ultraspinning black holes in D � 6, i.e., the only
stable spinning black hole solutions in higher dimensions
would have Jn�1 & GMn�2, i.e., j2 & 1 for D � 5. There
it was also argued that the five-dimensional spinning black
holes may also become unstable near j2 � 1 since there
exist large black rings with the same spin and mass but a
larger horizon area. Recently, it has also been argued that
the small-ring branch is unstable using a thermodynamic
treatment [35,36]. This result may have been anticipated
since again there are always spinning black holes and large
rings with the same mass and angular momentum but a
larger horizon area.

Regarding the internal KK momentum as a charge, it is
interesting to compare our instability results with those for
black strings carrying a gauge charge [13,37], i.e., an
electric three-form charge or a magnetic �n� 1�-form.
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Consistent with the gauge-charged string, the maximum
value of the growth rate � of the unstable modes decreases
(in the physical frame) as the KK momentum is increased,
as illustrated in Fig. 3(a). However, one should actually
think of the boosted strings as becoming more unstable as
the KK momentum grows, since the physical threshold
wave number kmax grows as the boost factor is increased,
as described above. In contrast, increasing the gauge
charge makes the black string more stable by decreasing
the wave number of the threshold mode and it is expected
to be absolutely stable in the extremal limit [37]. Note that
the boosted string does not have an extremal limit as v!
1, but rather the horizon becomes a null singularity in this
limit.

We should also contrast our results with those in
[17,38,39], which consider the Gregory-Laflamme insta-
bility for various black branes in string theory with D0-
brane charge smeared over their world volume. In this case,
the D0 charge is introduced by lifting the black brane from
ten to 11 dimensions and boosting in the extra dimension.
In contrast to the present case, there the boost direction and
the directions along which the unstable modes form are
orthogonal. Then, in accordance with the discussion here,
the threshold for the boosted solution is unchanged from
that for the original solution, i.e., with and without the D0
charge [38]. Similar boosts of nonuniform black strings
have also been considered to generate new brane solutions
in string theory [40].

Both t and z remain Killing coordinates for the gauge-
charged strings and it is straightforward to consider boost-
ing these solutions to form black strings carrying both
KK momentum and gauge charge. In this case, the thresh-
old for the Gregory-Laflamme instability would again
satisfy the same kinematical relation (3.18) with that for
the static string, if we fix the positions of the inner and
outer horizons, r�. Hence the extremal string (r� � r�)
will remain stable even after boosting. One should note
that, just as boosting increases the energy density of the
static string, it also increases the gauge-charge density.

The stability of the latter is then relevant for the large
radius limit of the ‘‘dipole-charged’’ black rings [10]. The
latter are five-dimensional black rings providing a local
source of an electric three-form charge. This dipole charge
is not a conserved charge and so these solutions introduce
an infinite degeneracy of solutions with the same mass and
angular momentum [10]. Given the above comments, we
expect that introducing a dipole charge on the black rings
will make them more stable. In particular, there should be a
family of extremal rings which are exactly stable for any
radius. If one adds further monopole charges, there also
exist supersymmetric black rings [41,42] which must also
be absolutely stable.

The stable dipole-charged rings then include stable so-
lutions where J2=GM3 becomes arbitrarily large [10].
Hence, while there is a dynamical Kerr-like bound for
-12



BLACK RINGS, BOOSTED STRINGS, AND GREGORY- . . . PHYSICAL REVIEW D 73, 084013 (2006)
the vacuum solutions, as discussed above, no such bound
holds in general. Therefore, if there is such a bound in
higher dimensions, it must be a more refined version of the
Kerr bound, perhaps defined in terms of angular momen-
tum confined to a finite-size system. Certainly there is no
problem producing configurations with an arbitrarily large
(orbital) angular momentum by taking slowly moving
bodies with very large separation, even in four dimensions,
but, of course, we do not expect any such Kerr bound to
apply to such systems.

While our discussion has focused on the Gregory-
Laflamme instability affecting black rings, it is possible
that these solutions may suffer from other instabilities as
well. For example, rapidly rotating stars (as modeled by
self-gravitating incompressible fluids) are subject to non-
axisymmetric ‘‘bar-mode’’ instabilities when the ratio of
the kinetic and gravitational potential energies is suffi-
ciently large [43]. Given the discussion of Sec. IVA, large
black rings are certainly in this regime and so one may
suspect that they suffer from a similar instability. It might
be that such instabilities restore the Kerr bound for black
rings with dipole charges but they cannot play this role in
general, as again the supersymmetric black rings must be
absolutely stable.8

To consider bar-mode instabilities, one might extend the
discussion of Sec. IVA to produce a model of the black
ring which is not inherently axisymmetric. The analysis of
Sec. III yields the energy density and tension of a boosted
black string and so one might consider a model in which
the black ring is described by a loop of string with the same
mechanical properties—this is essentially our model for a
uniform spinning loop. However, this information is in-
sufficient to model general nonaxisymmetric loops.
Basically, one still requires an equation of state for the
string. For example, the mechanical string could be con-
8One can consider nonaxisymmetric deformations of the
supersymmetric black rings [42] but one finds that the resulting
solutions do not have smooth event horizons [44].
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sidered a relativistic string characterized by its fundamen-
tal tension plus some internal degrees of freedom.
However, there are many possibilities for the latter, e.g.,
massive or massless excitations, which would lead to
different equations of state but which could still match
the same properties for a uniform boosted string. Hence
progress in this direction requires a greater understanding
of the dynamical properties of the black string.

One of the interesting observations of Sec. IVA is that,
at least in the large-ring limit, the black ring configuration
is essentially determined by the energy density and tension
of the static black string. Hence this invalidates arguments
restricting black rings to five dimensions based on the
interplay of the gravitational potential and centripetal bar-
rier, which have the same radial dependence in precisely
five dimensions. Rather it shows that there should be black
ring solutions in any number of dimensions greater than
four and it confirms the original intuition presented in [7]
that the existence of black rings did not depend on the
dimension of the space-time (as long asD> 4). Of course,
explicitly constructing these solutions remains a challeng-
ing open problem. Undoubtedly, these are simply one part
of the rich multitude of solutions and physics which re-
mains to be discovered in higher dimensions.

ACKNOWLEDGMENTS

It is our pleasure to thank Toby Wiseman for his col-
laboration in the early stages of this project. We also wish
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