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In our previous work of [K. Farakos and P. Pasipoularides, Phys. Lett. B 621, 224 (2005).] we studied
the stability of the RS2 model with a nonminimally coupled bulk scalar field �, and we found that in
appropriate regions of � the standard RS2 vacuum becomes unstable. The question that arises is whether
there exists other new static stable solutions where the system can relax. In this work, by solving
numerically the Einstein equations with the appropriate boundary conditions on the brane, we find that
depending on the value of the nonminimal coupling �, this model possesses three classes of new static
solutions with different characteristics. We also examine what happens when the fine-tuning of the RS2
model is violated, and we obtain that these three classes of solutions are preserved in appropriate regions
of the parameter space of the problem. The stability properties and possible physical implications of these
new solutions are discussed in the main part of this paper. Especially in the case where � � �c (�c is the
five-dimensional conformal coupling) and the fine-tuning is violated, we obtain a physically interesting
static stable solution.
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I. INTRODUCTION

A possible extension of conventional four-dimensional
field theory models is based on the well-known brane
world scenario. According to this scenario, ordinary matter
is assumed to be trapped in a submanifold with three
spatial dimensions (brane world) that is embedded in a
multidimensional manifold (bulk). Contrary to ordinary
matter, gravitons are allowed to propagate in the bulk.
The new feature in this scenario is that the extra dimen-
sions can be large or even infinite. In addition brane world
models predict interesting phenomenology even at TeV
scale [1], and put on a new basis fundamental problems
such as the hierarchy and the cosmological constant prob-
lem (see also the reviews [2,3] and references therein).

The typical example of a brane world model with an
infinite warped extra dimension is the second Randall-
Sundrum model (RS2 model) [4]. In this scenario, we
have a single brane with a positive energy density (the
tension �), whereas the bulk has a negative five-
dimensional cosmological constant �. The corresponding
Einstein equations have a solution only if a fine-tuning
condition is satisfied (� � � �2

6 ), in units where 8�G5 �

1. This solution implies a space-time geometry of the form
of AdS5 around the brane, and Minkowski with zero ef-
fective cosmological constant on the brane. An extension
of the RS2 model with a second negative tension ��
brane, is the RS1 model [4]. In this case we have an
orbifolded extra dimension of radius rc. The two branes
are fitted to the fixed points of the orbifold, z � 0 and zc �
�rc with tensions � and ��, correspondingly. The parti-
cles of the standard model are assumed to be trapped on the
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negative tension brane, which is called visible, while the
positive tension brane is called hidden.

In this work we study the RS2 model with a nonmini-
mally coupled bulk scalar field, via an interaction term of
the form � 1

2�R�
2, where � is a dimensionless coupling.1

The motivation is to examine whether this model possesses
static solutions other than the standard one of the RS2
model (see Eq. (2) below).

In particular we show, by solving numerically the
Einstein equations with the appropriate boundary condi-
tions on the brane, that according to the value of the non-
minimal coupling � our model possesses three classes of
new static solutions: (a) for � < 0 the solutions develop a
naked singularity in the bulk, (b) for � > �c (where �c is
the five-dimensional conformal coupling) we find that the
warp factor a�z� is of the order of unity near the brane and
increases exponentially (a�z� � ekz), as z! �1, while
the scalar field ��z� is nonzero on the brane and tends
rapidly to zero in the bulk (in this case the space-time is
asymptotically AdS5), and (c) for 0< �< �c the warp
factor a�z� and the scalar field ��z� tend rapidly to infinity.
Contrary to case (b), where the scalar curvature is asymp-
totically constant, in case (c) the scalar curvature tends to
infinity. In addition we examine what happens when the
fine-tuning of the RS2 model is violated, and we obtain that
in appropriate regions of the parameters of the problem the
three classes of solutions we described above are
preserved.

This work is motivated by our previous paper [5]. In
particular in [5] we investigated the spectrum of a non-
minimally coupled bulk scalar field in the background of
1The coupling � possesses two characteristic values: (a) the
minimal coupling for � � 0 and (b) the conformal coupling for
�c � 3=16.
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the RS2 metric. We obtain that for � < 0 the spectrum of
the scalar field exhibits a unique bound state with negative
energy, or a tachyon mode. Note that the existence of a
localized tachyon mode indicates a gravity-induced Dvali-
Shifman mechanism [6] as we argue in [5]. It is worth
noting that this mechanism for the localization of gauge
field, from the point of view of lattice, has been inves-
tigated in Refs. [7,8]. In [5] we had not examined the
spectrum of the scalar field in the case of � > 0. We
complete this investigation here. In the region 0 � � �
�c we obtain that there is no tachyon mode (see
Appendix A). However the tachyon mode returns2 for � >
�c. The existence of tachyon modes for � < 0 or � > �c
implies an instability for both the RS2 metric and the scalar
field (� � 0) (see also [5]). The question that arises is
whether there exists other new static stable solutions where
the system can relax. As we discussed in the previous
paragraph this model indeed possesses static solutions
different from the standard one of the RS2 model. The
stability and possible implications of these numerical so-
lutions are discussed in the main part of this paper.

The spectrum of a nonminimally coupled bulk scalar
field in the case of RS1 model [4] has been also considered
[9,10], where it was found that the tachyon character of the
model remains in appropriate regions of �. However,
the authors of Refs. [9,10] are not interested in examining
the stability of the RS model, or solving the Einstein
equations. They mainly use this result in order to put the
standard model on the brane (negative tension brane) with
a bulk Higgs field and a gravity-induced Higgs mechanism.

In the case of four dimensions the same nonminimally
coupled model has been considered in Refs. [11,12] in the
background of de Sitter space-time. It is obtained that for a
specific range of values of � the scalar field is rendered
unstable, and this result has straightforward implications to
the cosmological constant problem.

II. RS2 MODEL WITH A NONMINIMALLY
COUPLED SCALAR FIELD

The action which describes the RS2 model, if we set
8�G5 � 1 (G5 is the five-dimensional Newton constant),
is

S �
Z
d5xLRS

�
Z
d5x

�
1

2

������
jgj

q
�R� 2�� � ���z�

�����������������
jg�brane�j

q �
; (1)

where d5x � d4xdz, and z parameterizes the extra dimen-
sion. In addition R is the five-dimensional Ricci scalar, g is
the determinant of the five-dimensional metric tensor gMN
(M;N � 0; 1; . . . ; 4), and gbrane is the determinant of the
2In this region of � the spectrum of the scalar field exhibits at
least one tachyon mode, while for larger values of � it is possible
to have two or more tachyon modes, see Appendix A.
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induced metric on the brane. We adopt the mostly plus sign
convention for the metric [13].

If the fine-tuning � � ��2

6 is satisfied, the Einstein
equations have a stable static solution of the form

ds2 � e�2kjzj��dx2
0 � dx

2
1 � dx

2
2 � dx

2
3� � dz

2; (2)

where k � ���
6 �

1=2.
In this work we aim at the studying of the RS2 model

with a nonminimally coupled bulk scalar field. The action
of this model is:

S �
Z
d5x�LRSF �L��: (3)

The gravity part of the Lagrangian is given by the equation

L RSF �
������
jgj

q
�F���R��� � ���z�

�����������������
jg�brane�j

q
; (4)

where the factor

F��� � 1
2�1� ��

2� (5)

corresponds to a nonminimally coupled scalar field with an
interaction term of the form Lint � �

1
2�R�

2, and � is a
dimensionless coupling.

The scalar field part of the Lagrangian is

L � �
������
jgj

q
��1

2g
MNrM�rN�� V����; (6)

where the potential is assumed to be of the standard form
V��� � ��4.

The Einstein equations, which correspond to the action
of Eq. (3) are

GMN ��gMN � ���z�

�����������������
jg�brane�j

q
������
jgj

p g���
�
M�

�
N � T���MN; (7)

where the energy momentum tensor for the scalar field is

T���MN � rM�rN�� gMN�
1
2g
P�rP�r��� V���	

� 2rMrNF��� � 2gMN�F���

� �1� 2F����GMN: (8)

The equation of motion for the scalar field is

���
@F���
@�

R�
@V���
@�

� 0: (9)

The above equation is not independent of the Einstein
equations (7), as it is equivalent to the conservation equa-
tion rMT���MN � 0, where T���MN is given by Eq. (8).

We are looking for static solutions of the form

ds2 � a2�z���dx2
0 � dx

2
1 � dx

2
2 � dx

2
3� � dz

2;

� � ��z�:
(10)

From Einstein equations (Eq. (7)) we obtain two indepen-
dent equations:
-2
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Gii ��gii � ���z�gii � T���ii ; (11)

Gzz ��gzz � T���zz ; (12)

where i � 0,1, 2, 3. If we set a�z� � eA�z� and use Eqs. (8)
and (10)–(12) we get

F1 � 0: 3�1� ��2�z���A00�z� � 2A0�z�2� ��

� �12� 2���0�z�2 � V���z�� � 2���z��00�z�

� 6�A0�z���z��0�z� � ���z� � 0; (13)

F2 � 0: 6�1� ��2�z��A0�z�2 ��� 1
2�
0�z�2 � V���z��

� 8�A0�z���z��0�z� � 0: (14)

From Eq. (9) for the scalar field we get

F3 � 0: ��00�z� � 4A0�z��0�z� � ��8A00�z� � 20A0�z�2�


��z� � V 0��� � 0: (15)

We can show that Eq. (15) (or equation F3 � 0) can be
found from Eqs. (13) and (14) (or equations F1 � 0 and
F2 � 0) by taking the combination �4A0�z��F1 � F2� �
F02 � 0. Note that the relation �4A0�z��F1 � F2� � F

0
2 �

0 is equivalent with the condition rMT���MN � 0.
As we have already mentioned, Eqs. (13)–(15) are not

independent. The solutions can be obtained by integrating
the second order differential equations (13) and (15). The
first order differential Eq. (14) is an integral of motion of
Eqs. (13) and (15), and acts as a constraint between A�z�,
��z� and their first derivatives.

In particular we choose to solve the second order differ-
ential equation F1 � F2 � 0 (see Eqs. (13) and (14)) and
F3 � 0 (see Eq. (15)), or

3�1� ��2�z��A00�z� � �1� 2���0�z�2 � 2���z��00�z�

� 2�A0�z���z��0�z� � ���z� � 0; (16)

��00�z� � 4A0�z��0�z� � ��8A00�z� � 20A0�z�2���z�

� V 0��� � 0: (17)

As this system is complicated we will not look for analyti-
cal solutions, but we will try to solve it numerically. For the
numerical integration of Eqs. (16) and (17) it is necessary
to know the values of A�0�, ��0�, A0�0��, and �0�0��.
These values are determined by the junction conditions
(see Eqs. (18) and (19) below) and the constraint of
Eq. (14).

The delta function in Eq. (16) implies that the first
derivatives of A�z� and��z� are discontinuous on the brane
(z � 0). If we integrate Eqs. (16) and (17) over z, in an
infinitesimal interval [� 	, 	], we get the junction con-
ditions:
084012
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 ��0�0�� ��0�0��� � � � 0; (18)

���0�0�� ��0�0��� � 8��A0�0�� � A0�0�����0� � 0:

(19)

If we take into account the Z2 symmetry we
found A0�0�� � A0�0�� � 2A0�0�� and �0�0�� �
�0�0�� � 2�0�0��, thus

6�1� ��2�0��A0�0�� � 4���0��0�0�� � � � 0; (20)

�0�0�� � 8�A0�0����0� � 0: (21)

By solving these equations with respect to A0�0�� and to
�0�0�� we obtain

A0�0�� �
��

�6� 6���0�2 � 32�2��0�2�
; (22)

�0�0�� �
8����0�

�6� 6���0�2 � 32�2��0�2�
: (23)

However, the problem has an additional constraint for the
first derivatives of A�z� and��z�, which is given by the first
order differential equation (14) (or F2 � 0). Thus if we
replace Eqs. (22) and (23) in Eq. (14) we obtain the
following sixth order algebraic equation for ��0�:

�2

�6� 6���0�2 � 32�2��0�2�
��� V���0�� � 0: (24)

Note that if we set ��0�2 � x in Eq. (24) we obtain a third
order algebraic equation (if V��� � ��4). If additionally
the fine-tuning � � ��2

6 is satisfied, the constant term of
the third order algebraic Eq. (24) is zero, and thus we have
a second order algebraic equation to solve, in order to
determine the value of ��z� on the brane.
III. NUMERICAL RESULTS

For the determination of the two unknown functions
A�z� and ��z� we can solve the system of second order
differential equations (16) and (17) for z � 0 numerically.
In order to integrate it is necessary to know the values of
A�0�,��0�, A0�0��, and �0�0��. If we assume that the warp
factor is normalized to unity on the brane (or a�0� � 1) we
find that A�0� � 0 (note that a�z� � eA�z�). The value of
��0� is obtained by solving Eq. (24), and the values of
A0�0�� and �0�0�� can be found from Eqs. (22) and (23).
Then it is an easy task to use a routine of Fortran or
Mathematica to extract the numerical solutions. Note that
the numerical results we obtain satisfy with a very good
accuracy also the first order differential equation (14).

The model we examine has four independent parameters
�, �, �, �. We will keep fixed the parameters �, �, �,
assuming that the fine-tuning � � � �2

6 is satisfied, and we
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FIG. 1. The warp factor a�z� and the scalar field ��z�, in
case (a) (� < 0), as a function of kz for �=k � 6, �=k2 � �6,
� � �0:1, �=k2 � 0:01. The values for �, � satisfy the fine-
tuning of the RS model. We see that the metric of our model
exhibits a naked singularity, as the warp factor vanishes for
kzs � 1:197.

FIG. 2. The warp factor a�z� and the scalar field ��z�, in
case (a) (� < 0), as a function of kz for �=k � 6, �=k2 � �6,
� � �0:001, �=k2 � 0:01. The values for �, � satisfy the fine-
tuning of the RS model. We see that the metric of our model
exhibits a naked singularity, as the warp factor vanishes for
kzs � 1:994.
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will vary the parameter �. As we discuss in the following
sections, depending on the value of � we find three classes
of numerical solutions with different characteristics. Also
we investigate what happens when the fine-tuning is vio-
lated, and we find that in appropriate regions of the pa-
rameter space, the three classes of solutions we described
are preserved. However, there are regions of the parameters
where there are no static solutions (or Eq. (24) has no real
solutions). A thorough investigation of these regions is
very extended and it is beyond the scope of this paper.

It is convenient in numerical analysis to perform the
rescaling y � kz where k �

��������������
��=6

p
. Then the Einstein

equations (13) and (14) remain unchanged if the parame-
ters � and � are divided by k2 and k, correspondingly.
Note that �=k2 � �6. The Eq. (15) for the scalar field
remains unchanged if the parameter � is divided by k2.

We emphasize that the system of Eqs. (16) and (17) with
the boundary conditions of Eq. (22)–(24), in the case of the
fine-tuning � � � �2

6 , has an obvious analytic solution of
the form of Eq. (10) with an exponential warp factor
a�z� � e�kjzj and scalar field vacuum equal to zero ��z� �
0. This solution is identical to the well-known solution of
Eq. (2) for the RS2 model. However, it is unstable for � <
0 and � > �c (see Ref. [5] and Appendix A), thus it is
worth investigating whether this model possesses static
solutions other than that of Eq. (2), as we do in the rest
of this section.

A. Case (a) (� < 0)

The main feature of the numerical solutions for � < 0 is
a naked singularity at finite proper distance zs in the bulk.
The scalar field ��z� is almost constant near the brane, and
tends to infinity as z tends to the singularity point in the
bulk.

In Fig. 1 we have plotted the warp factor a�z� and the
scalar field ��z� as a function of z for �=k � 6, �=k2 �
�6, � � �0:1, �=k2 � 0:01. The values for �, � satisfy
the fine-tuning of the RS model. We see that the metric of
our model exhibits a naked singularity, as the warp factor
vanishes for kzs � 1:197. Note that the warp factor for � �
�0:1 is completely different from the exponential profile
of the warp factor of the RS2 model.

However for very small absolute values of � (for ex-
ample � � �0:001), as we see in Fig. 2, the warp factor
near the brane is almost identical with the exponential
profile of Eq. (2) (a�z� � e�kz), (in Fig. 2 we have plotted
the warp factor a�z� and the scalar field ��z� as a function
of z for �=k � 6, �=k2 � �6, � � �0:001, �=k2 � 0:01,
and k � 1). However even in this case we cannot avoid a
naked singularity in the bulk at zsk � 1:994. We have
checked that a naked singularity in the bulk appears for
arbitrarily small negative values of �.

In Fig. 3 we examine the case where we have a violation
of the fine-tuning � � � �2

6 . As a consequence, the RS2
metric of Eq. (2) (exponential warp factor) is not a solution
084012
of the RS2 model with a nonminimally coupled bulk scalar
field. However, we see (Fig. 3) that this model possesses
static solutions of the form of Eq. (10) with a naked
singularity in the bulk. It is interesting to note that the
induced metric on the brane is Minkowski, even when the
fine-tuning � � � �2

6 is violated. We remind the reader
that in the case of a violation of the fine-tuning, the RS2
model (without the nonminimally coupled scalar field)
possesses solutions with an AdS4 or dS4 induced metric
-4



FIG. 4. The warp factor a�z�, in case (b) (� > �c), as a function
of z for two values of �=k � 6 and 2, �=k2 � �6, � � �c � 1,
�=k2 � 0:01. Note that the solution exists even when the values
of � and � do not satisfy the fine-tuning of the RS model.

FIG. 3. The warp factor a�z�, in case (a) (� < 0), as a function
of kz for two values of �=k � 6:5 and 5.5, �=k2 � �6, � �
�0:1, �=k2 � 0:01. The values for �, � do not satisfy the fine-
tuning of the RS model. Note that even when the fine-tuning
� � � �2

6 is violated the induced metric on the brane is
Minkowski.
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on the brane, see, for example, Ref. [14]. Of course if we
wish to construct a brane world scenario, we should put a
second brane in the bulk before the singularity. However, in
this case the tension of the second brane �0, and the
parameters � and � of the first brane should be finely
tuned suitably, if we want the Einstein equations and the
boundary conditions on the second brane to be satisfied
(see, for example, Ref. [2] and references therein).

Note that the numerical solutions we found for � < 0 are
similar to the analytic solutions in Ref. [15]. However, the
model in Ref. [15] is quite different from that we assume
here. In Ref. [15] it is argued that this kind of solution may
have physical interest even without a second brane. In
particular, there is a possibility that quantum gravity effects
near the singularity push the singularity to infinite proper
distance in the bulk. In this way, the singularity acts
effectively as a physical end to the extra dimension z (for
more details see Ref. [15]). A way to take into account
quantum gravity effects, is to add to the gravity action of
Eq. (1) a Gauss-Bonnet term. We have performed numeri-
cal computations also for this case and the answer is that
Gauss-Bonnet gravity cannot resolve the naked singularity
(see also [16]). The naked singularity remains for arbitrary
values (positive or negative) of the free parameter in front
of the Gauss-Bonnet term.

In our previous work [5] we pointed out the instability of
both the RS2 metric of Eq. (2) and the scalar field vacuum
� � 0, for � < 0. Responsible for this instability is the
existence of a unique tachyon mode localized on the brane.
By using this result in Ref. [5] we tried to guess the form of
the new static stable solution where the system is expected
084012
to relax. In particular, we supposed that the profile of the
scalar field vacuum in the bulk is proportional to the wave
function of the tachyon mode (or the scalar field vacuum is
nonzero on the brane and tends rapidly to zero in the bulk).
If we take for granted that ��z� ! 0 for jzj ! �1, the
warp factor for jzj ! �1 must be of the form a�z� �
e�kjzj or a�z� � ekjzj, as only these two functions satisfy
the Einstein equations if we set ��z� � 0. In Ref. [5] we
guess the most plausible behavior for the new static stable
metric. However in this work, by solving numerically the
Einstein equations with the appropriate boundary condi-
tions, we obtain a completely different behavior for the
warp factor and the scalar field vacuum. The scalar field
vacuum has not the profile of the tachyon mode. As we see
in Figs. 1 and 2, the warp factor vanishes in finite proper
distance in the bulk, creating a naked singularity, whereas
the scalar field vacuum tends to infinity as we approach the
naked singularity.

Another way to try to resolve the naked singularity is to
include a suitable energy momentum tensor TMN in the
right-hand side of Einstein equations (7). We have ob-
served that an energy momentum tensor of the form Tzz �
c=a�z�4, with all the other components equal to zero, is
possible to give stable solutions of the form we described
in the previous paragraph. However, we could not find a
physical explanation for an energy momentum tensor of
this form.

B. Case (b) (� > �c)

For � > �c we obtain a different class of numerical
solutions. As we see in Fig. 4, the warp factor a�z� is of
the order of unity in a small region near the brane and
-5



FIG. 6. The scalar field��z�, in case (b) (� > �c), as a function
of kz for two values of �=k � 6 and 2, �=k2 � �6, � � �c � 1,
�=k2 � 0:01. Note that the solution exists even when the values
of � and � do not satisfy the fine-tuning of the RS model.

FIG. 5. The A0�z�=k and m2
eff=k

2, in case (b) (� > �c), as a
function of kz for �=k � 6, �=k2 � �6, � � �c � 1, �=k2 �
0:01. Note that asymptotically both the derivative A0�z� and the
m2

eff tend to a constant value, or the space-time is asymptotically
AdS5.
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increases exponentially (a�z� ! ekz), as z! �1. From
this figure we can estimate that the warp factor a�z� is of
the order of unity for 0 � z < 3:5 and the pure exponential
behavior a�z� � ekz begins for z > 5. The exponential
behavior of the warp factor is confirmed with great accu-
racy by numerical computations, as in the left-hand panel
of Fig. 5 we observe that A0�z� � 1 for large values of z.
The scalar field ��z�, as we see in Fig. 6, is nonzero on the
brane (in a rather small region (0 � kz < 4), and for kz >
5 tends rapidly to zero. We have checked carefully that this
class of solutions appears even when � exceeds by a small
amount the conformal coupling �c (� � �c � �� with
��� 1).

Note that this class of numerical solutions is preserved
even when the fine-tuning � � � �2

6 is not satisfied (see the
bottom panel of Fig. 4 and the right panel of Fig. 6 (� � 2,
� � �6)). In this case also, A0�z� � 1 for large values of z.
We have checked numerically that for fixed negative3 �
there are solutions of the form of Figs. 4 and 6 only if the
brane tension � is smaller than the absolute value of the
five-dimensional cosmological constant �.

A feature of this class of solutions is that the warp factor
tends to infinity a�z� ! ekz for large z. If we wish to
construct a brane world scenario, it is necessary to include
a second positive tension brane far away from the first,
where the numerical value of the scalar field is practically
zero. In this case the tension �0 of the second brane should
satisfy the fine-tuning condition � � ��02

6 .
However the most important topic for the construction

of a realistic brane world scenario is the stability of this
class of solutions. In order to study the stability, we will
replace �! �� �̂ in the Lagrangian

L �
������
jgj

q
��1

2g
MNrM�rN��

1
2�R�

2 � V����; (25)

where �̂ is a small perturbation around the classic solution.
If we keep only second order terms of �̂, we obtain that an
effective mass m2

eff � �R� 12���z�2 arises for the scalar
field perturbation �̂. In the right-hand panel of Fig. 5 we
have plotted the effective massm2

eff � �R� 12���z�2 as a
function of z. We see that as z! �1 the square of the
effective mass tends to a constant negative value. This
result indicates4 an instability of the solutions of class (b)
against scalar field perturbation. Hence this class of solu-
tions cannot be used for the construction of realistic brane
world scenarios.
3Note that for nonnegative values of � there are no solutions
of the form we described.

4A negative mass term is not enough to establish the instability
of the model. In the case of curved space-time it is necessary for
at least one tachyon mode for the scalar field to exist. In
Appendix B we show that indeed the spectrum of the scalar
field exhibits a tachyon character. In particular, there is a
continuous spectrum of tachyon modes for � > �c.
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C. Case (c) (0 < � < �c)

For 0< �< �c the standard RS2 metric is stable, as
there are no tachyon modes for the scalar field perturba-
tions around this solution (see Appendix A). As we have
mentioned, in this case a second static solution can be
found by solving the Einstein equations numerically. This
second solution exists only if Eq. (24) has at least a nonzero
real root for ��0�. As we see in Fig. 7 for 0< �< �c the
warp factor a�z� of this solution tends rapidly to infinity
(faster than case (b)), also the scalar field ��z� is nonzero
on the brane and tends rapidly to infinity in the bulk.
Contrary to case (b), where the space-time is asymptoti-
-6



FIG. 7. The warp factor a�z� and the scalar field ��z�, in
case (c) (0< �< �c), as a function of kz for � � 6, � � �6,
� � 0:1, � � 0:01. The values for �, � satisfy the fine-tuning of
the RS model.

SECOND RANDALL-SUNDRUM MODEL BRANE WORLD . . . PHYSICAL REVIEW D 73, 084012 (2006)
cally AdS5, in this case the scalar curvature tends to
infinity. Solutions of this kind exist even when the fine-
tuning of the RS model is violated.

If we wish to construct a brane world model, we should
put a second brane in the bulk. However, in order to satisfy
simultaneously the three boundary conditions of
Eqs. (22)–(24) on the second brane, it is necessary to
assume a fine-tuning for the parameters of the model.
Moreover, as we did in case (b), we have computed the
effective mass of the scalar field around this solution and
we have seen that it is positive. This implies that this class
of solution is stable against perturbations of the scalar field.
FIG. 8. a�z�, ��z�, A0�z�=k, and m2
eff�z�=k

2, for � � �c, as a
function of kz for �=k � 5, �=k2 � �6, and �=k2 � 0:01. Note
that asymptotically both the derivative A0�z� and the m2

eff tend to
a constant value, or the space-time is asymptotically AdS5.
IV. MINIMAL COUPLING AND CONFORMAL
COUPLING

In this section we examine separately the special cases
of � � 0 and � � �c. Especially in the case of conformal
coupling, when the fine-tuning is violated, we have a
physically interesting static stable solution.

A. Minimal coupling � � 0

The algebraic Eq. (24), for ��0�, can be solved analyti-
cally for � � 0 or � � �c. If we set � � 0 or � � �c we
find the equation ���0�4 � �2=6�� � 0. In the case of
fine-tuning we obtain ��0� � 0, hence the solution of the
model we examine is the standard one with warp factor
a�z� � e�kjzj and ��z� � 0. If �2=6��> 0, the above
equation has no real roots and our model has no static
solutions. On the other hand, for �2=6��< 0 we have

two real roots ��0� � 
�������������������������������������
���1��2=6���4

p
, and in this

case the static numerical solutions for � � 0 have the same
characteristics with those of class (a) (� < 0) with a naked
singularity.
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B. Conformal coupling � � �c
In this section we examine the model when � � �c and

� � � �2

6 . As we have already discussed in Section IVA,
if �=k < 6, the algebraic Eq. (24) for ��0� has two real

roots ��0� � �0, where �0 �
�������������������������������������
���1��2=6���4

p
. In

this case, the numerical solutions of the model exhibit
the same characteristics with those of class (b) (� > �c).
In particular, the warp factor a�z� is of the order of unity
near the brane and increases exponentially (a�z� � ekjzj), as
z! 1, while the scalar field ��z� is nonzero on the
brane and tends rapidly to zero in the bulk, as we can see
in the upper panels of Fig. 8. The exponential behavior of
the warp factor a�z� � eA�z� is confirmed in the lower-left
panel of Fig. 8. The solutions in the case of conformal
coupling are of the form we described only for suitable
small values of �=k2 depending on the exact value of �
(i.e. for � � 5 we have �=k2 � 0:1). For larger values of �
we find a different class of solutions, however it is not of
physical interest.

In the lower-right panel of Fig. 8 we observe that the
effective mass of the scalar field is negative. However the
solutions for � � �c are stable, as in Appendix C we find
that the scalar field does not exhibit four-dimensional
tachyon modes. The result of stability implies that the
solutions for � � �c can be used as the background for
the construction of a brane world scenario.

Now we will try to discuss possible physical implica-
tions of the solutions in the case of conformal coupling. As
we have already mentioned, the warp factor behaves as ekjzj

for large z (see the lower-left panel of Fig. 8). It is well
known that an exponentially increasing warp factor comes
from negative tension brane with��0=k � �6. Hence, the
-7



FIG. 9. a�z�, ��z�, A0�z�=k, and T00�z�=k
2, for � � �c, as a

function of kz for � � 0, �=k2 � �6, and �=k2 � 0:01.
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positive tension brane at z � 0 (�=k � 5) together with the
negative energy density of the scalar field vacuum T���00 , act
effectively as a negative tension brane, which creates the
exponential profile ekjzj for the warp factor. Note that the
energy density of the scalar field has a finite size extension
into the bulk of the order of 1=k, as we see in the upper-
right panel of Fig. 8. The model is completed if we include
a second positive tension brane with �0=k � 6, in a posi-
tion zc where the scalar field vacuum is practically zero
(zc � 5=k). This two-brane setup is very similar to the
well-known RS1 model (see Introduction). In analogy with
the RS1 model, we will assume that the standard model
particles live in the effectively negative tension brane, or
visible brane. Note that in our case the visible brane is a
formation of the positive tension brane with �=k � 5 and
the negative energy density T���00 of the scalar field vacuum.

The advantage of this model is that it incorporates a
mechanism for the localization of standard model particles
on the visible brane. We can enrich our model with a gauge
field symmetry, i.e. SU(5) (see also [5]). We assume that
this gauge field symmetry (SU(5)) is spontaneously broken
to SUc�3� 
 SUL�2� 
 UY�1� near the brane, due to the
nonzero value of the scalar field, while it is restored in the
bulk for z� 5=k, where the value of the scalar field is
practically zero. This phase structure, Higgs phase on the
brane and confinement phase in the bulk, triggers the
Dvali-Shifman mechanism [6] for localization of gauge
fields. In this way the gauge fields of SUc�3� 
 SUL�2� 

UY�1� and the matter fields with gauge charge (see Ref. [2])
are localized on the brane, as for escaping in the bulk, it
requires energy equal to �gap, where �gap is the mass gap
emerging from the nonperturbative confining dynamics of
the SU(5) gauge field theory in the bulk.

In the case of the RS1 model, when ordinary matter is
localized on the negative tension brane, we have the

relation M2
P �

M3
�

k �e
2kzc � 1� (see Ref. [2]), where MP �

1019 GeV is the four-dimensional Planck scale, M� is the
fundamental five-dimensional gravity scale, k is the inverse
AdS5 radius, and zc is the position of the second positive
tension brane in the bulk. We have checked that the above
relation is valid approximately also for the model we
examine. If we wish to have strong gravity at TeV we
must choose M� � 1 TeV. According to this localization
mechanism the particles on the visible brane see an effec-
tive length toward the extra dimension of the order of 5=k.
If we take into account that the masses of ordinary particles
are smaller than 1 TeV, we must choose k=5� 1 TeV. For
example, if k � 100 TeV we obtain 10MP � M�e

kzc , and
thus the position of the second brane is zc � 39=k.

Note that even for a zero tension (� � 0) brane at z � 0,
we obtained solutions of the form we described in the
previous paragraphs, see Fig. 9. In this case the visible
brane is formed only from the negative energy density of
the nonminimally coupled bulk scalar field, as we see in
the lower-left panel of Fig. 9. In addition, we have found
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that the numerical solutions, for small values of �=k2

(�=k2 � 0:01), can be approximated with a very good
accuracy from the analytical expressions a�z� �
�cosh�j�j2 kjzj��

�2=j�j� and ��z� � ��0�=�cosh�j�j2 kjzj��
1=2.

These expressions satisfy the constraint Eq. (14).
However, their second derivatives are not in agreement
with the second derivatives of the numerical solutions,
hence the Eqs. (16) and (17) are not satisfied by the above
mentioned analytical expressions.
V. CONCLUSIONS AND DISCUSSION

In this work we studied for the first time the RS2 model
with a nonminimally coupled bulk scalar field, via an
interaction term Lint � �

1
2�R�

2. By solving numerically
the Einstein equations with the appropriate boundary con-
ditions on the brane, we showed that depending on the
value of the nonminimal coupling � this model possesses
three classes of new static solutions with different
characteristics.

Class (a) (� < 0) develops a naked singularity in the
bulk. Class (b) (� > �c) consists of solutions which are
characterized by an exponential warp factor a�z� � ekz, as
z! �1, and a scalar field ��z� which is nonzero on the
brane and tends rapidly to zero in the bulk. The solutions of
class (c) (0< �< �c) are characterized by a very fast
increase of the warp factor (faster than class (b)), and a
scalar field ��z� which tends rapidly to infinity for large z.
The cases of minimal and conformal coupling (� � 0 and
� � �c) have been discussed separately in Sections IVA
and IV B.

An interesting point is that these three classes of solu-
tions exist even when the standard fine-tuning of the RS
model is violated. In order to construct a brane world
model by using these solutions, it is necessary to assume
-8
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a second brane in the bulk. However, in this case we should
impose a new fine-tuning between the parameters of the
model, if we wish to satisfy the boundary conditions on the
second brane.

In addition, we have examined the stability properties of
the new solutions. The solutions of class (a) (� < 0) and
class (b) (� > �c) are unstable against scalar field pertur-
bations, as in Appendix B we have found that the spectrum
of the scalar field around these solutions exhibits a tachyon
character. The only way to render these solutions stable is
to put a second brane in the bulk before the potential for the
scalar field V�w� becomes negative (for details see
Appendix B). The solutions of class (c) are stable, as the
scalar field spectrum has no tachyon modes.

We emphasize that this work has been motivated by our
previous work of Ref. [5], where we had assumed the same
model with an additional gauge field symmetry for the
scalar field. In particular, in that work we have argued
for a gravity-induced localization mechanism for � < 0,
which is very useful for the localization of gauge fields on
the brane. In this mechanism we have a specific phase
structure: confinement phase in the bulk and Higgs phase
on the brane. Gauge fields, and more generally fermions
and bosons with gauge charge (see Refs. [2,6]), cannot
escape into the bulk unless we give them energy greater
than the mass gap �gap, which emerges from the non-
perturbative confining dynamics of the gauge field model
in the bulk. In Ref. [5] we observed that the effective mass
m2

eff � �R, for � < 0, is negative on the brane and positive
in the bulk. This result indicates a phase structure which
can trigger the Dvali-Shifman mechanism in a gravita-
tional way. We would like to emphasize that the sign of
the effective mass, in the case of curved space-time, is just
an indication for the expected phase structure and is not a
strict proof. A realistic gravity-induced localization
mechanism requires a static stable solution with a nonzero
scalar field on the brane which vanishes rapidly in the bulk.
In Ref. [5] we assumed the existence of a solution of the
form we described above. However, the correct way to find
if a solution of this kind really exists, is to solve the
complete system of Einstein equations, as we do in this
paper. We found that no static stable solution of the re-
quired form exists for � < 0. Additionally, we obtained
that for � < 0 the solutions suffer from a naked singularity
in the bulk, see Figs. 1–3. We tried to resolve this naked
singularity by adding a Gauss-Bonnet term to the gravity
action. We performed numerical computations and we
found that the naked singularity remains even in the case
of Gauss-Bonnet gravity. According to the above analysis,
it seems that no realistic gravity-induced localization
mechanism for � < 0 can be constructed.

Finally, we have examined the case of conformal cou-
pling (� � �c) when the fine-tuning of the RS model is
violated, see Section IVA. We obtain that the solutions for
� � �c have the same characteristics with those of the
084012
solutions of class (b) (� < �c). However, there is an
important difference between them, as the solutions for
� � �c are stable against scalar field perturbation (see
Appendix C), contrary to the case of second class, where
the solutions are unstable (see Appendix B). In
Section IV B we argue that this class of static stable
solutions can be used for the construction of a realistic
brane world scenario, which is very similar to the well-
known RS1 model. In this scenario, the visible brane is a
formation of the positive tension brane � at z � 0, plus the
negative energy density of the nonminimally coupled sca-
lar field. The advantage of this model is that it incorporates
a mechanism (gravity-induced Dvali-Shifman mechanism)
for the localization of standard model particles on the
visible brane together with the spontaneous breaking of a
grand unified gauge group. We would like to emphasize
that the above mentioned scenario remains even in the case
of a zero tension brane at z � 0 (� � 0). In this case, the
visible brane is formatted only from the negative energy
density of the bulk scalar field.
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APPENDIX A: SPECTRUM OF SCALAR FIELD
PERTURBATIONS AROUND THE RS2 VACUUM

In Ref. [5] we studied the spectrum of scalar field
perturbations in the background of the RS2 vacuum for
� < 0. In this appendix we complete this investigation by
including positive values for �.

If we use the transformation

w � sgn�z�
�ekjzj � 1�

k
(A1)

the RS2 metric of Eq. (2) can be put into the manifestly
conformal to the five-dimensional Minkowski space form

ds2 � 
�w�2��dx2
0 � dx

2
1 � dx

2
2 � dx

2
3 � dw

2�; (A2)

where


�w� �
1

kjwj � 1
: (A3)

The Lagrangian of the scalar field if we include an
interaction term � 1

2R�
2 is written as

L �
������
jgj

q
��1

2g
MNrM�rN��

1
2�R�

2 � V����: (A4)
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If we consider a small perturbation �̂ around the scalar
field vacuum (� � 0) we find the corresponding linearized
equation:

1������
jgj

p @M�
������
jgj

q
gMN@N�̂�x;w�	 � �R�w��̂�x;w� � 0:

(A5)

We can set

�̂�x;w� � eipx
 �w�


3=2�w�
; (A6)

where 
�w� � 1=�kjwj � 1�, and m2 � p�p� is the effec-
tive four-dimensional mass.

The function  �w� satisfies the Schrödinger like equa-
tion

� 00�w� � �V�w� �m2	 �w� � 0; (A7)

where the potential V�w� is equal to

V�w� �
�
3=2�w��00


3=2�w�
� �
2�w�R�w�: (A8)

From Eqs. (A2) and (A7) we get

V�w� � �16k��� �c�
�
���w� �

5k

4�kjwj � 1�2

�
; (A9)

where �c � 3=16 is the five-dimensional conformal
coupling.

Note that the coefficient in front of the potential change
sign when � crosses the five-dimensional conformal cou-
pling. This result implies that the potential has two char-
acteristic forms, as we see in the left-hand panel (� < �c)
and the right-hand panel (� > �c) of Fig. 10.

In the first case, where � < �c the coefficient of the delta
function is negative. In Ref. [5] we have shown that if � <
0, the spectrum of the scalar field contains a unique
FIG. 10. The potential V�w�=k2 as a function of kw, for � �
�0:1 (left-hand panel) and � � �c � 1 (right-hand panel).
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tachyon mode localized on the brane (see Eq. A7 in
Ref. [5]). It is well known that if � � 0 there is no tachyon
mode, but there is a zero mode.

For 0< � � �c the potential still has the form of the
left-hand panel of Fig. 10 (volcano form). However, in this
case the coefficient of the delta function is not large enough
in order to support a tachyon mode. We can prove this
result by solving numerically the eigenvalue equation
(Eq. A9 in Ref. [5]). We find that there is no tachyon
mode in this region of �.

For � > �c the tachyon mode returns, as we obtain from
Eq. A9 in Ref. [5]. However we cannot use Eq. A9 (of
Ref. [5]) if � > 1=5, as the index of the modified Bessel
functions in Eq. (A9)) becomes imaginary. In this case we
have solved numerically the Schrödinger equation (A6) by
using a shooting method and we have confirmed that in-
deed the spectrum of the scalar field possesses at least one
tachyon mode. In particular for � � �c � 1 we have ex-
actly two tachyon modes, and in Fig. 11 we have plotted
the corresponding wave functions. Note that for � > �c the
potential has the double-well form of the right-hand panel
of Fig. 11. In this region of � the spectrum of the scalar
field is possible to contain one or more tachyon modes
according to the depth of the double well.

In this appendix we studied the spectrum of scalar field
perturbations around the RS2 vacuum. Depending on the
value of � we obtain that: (a) for � < 0 we have unique
tachyon mode, (b) for � > �c we have at least one tachyon
mode, and (c) for 0< �< �c there are no tachyon modes.
We conclude that the RS2 vacuum is unstable against
scalar field perturbations in cases (a) and (b). For � � 0
FIG. 11. For � � �c � 1 the spectrum of the scalar field con-
tains exactly two tachyon modes with negative energies
m2

1=k
2 � �0:278 and m2

2=k
2 � �1:163. In the figure we have

plotted the wavefunctions  1 and  2 of the two tachyon modes
as a function of z.
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FIG. 12. The potential V�w�=k2 as a function of kw, for � �
�c � 0:1 in the background of second class solutions (left-hand
panel) and for � � �0:1 in the background of first class solu-
tions (right-hand panel), for �=k � 6, �=k2 � �6, �=k2 �
0:01.

FIG. 13. As a function of kz for � � 5, � � �6, k � 1, � �
0:01.
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or � � �c there are no tachyon modes, hence in these cases
the RS2 vacuum is stable.

APPENDIX B: THE TACHYON CHARACTER OF
THE SPECTRUM AROUND THE SOLUTIONS OF

FIRST AND SECOND CLASS

In this appendix we will show that the spectrum of scalar
field perturbation around the solutions of first class (� < 0)
and second class (� > �c) exhibits a tachyon character. We
can follow the analysis that is presented in the previous
appendix. The only difference is that the value of the scalar
field is nonzero in the bulk, hence the potential that appears
in the Schrödinger equation (A7) must be modified as

V�w� �
�
3=2�w��00


3=2�w�
� 
2�w���R�w� � 12��2�w��; (B1)

where w �
Rz

0 dz=a�z�.
In right-hand panel and left-hand panel of Fig. 12 we

have plotted the potential V�w� for the first class of solu-
tions � < 0, and the second class of solutions � > �c,
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respectively. As we see, the potential for both cases be-
comes negative and decreases without a lower bound. This
implies a continuous spectrum of tachyon modes, and as a
result both the first and second class of solutions are
unstable. A possible way to resolve this instability is to
put a second brane before the potential V�w� becomes
negative. In this case, a fine-tuning between the parameters
of the model is necessary.
APPENDIX C: STABLE SOLUTIONS FOR � � �c

In this appendix we show that the solutions for � � �c
are stable against scalar field perturbations. In the left-hand
panel of Fig. 13 we have plotted the potential V�w� (see
Eq. (B1)) as a function of w. We observe that the potential
is always positive and vanishes for a finite value of the
coordinate w (kw � 1 891). As we see in the left-hand
panel of Fig. 13 this finite value for w corresponds to
infinite proper distance z. Thus, from the form of the
potential V�w� in Fig. 13 we conclude that the scalar field
spectrum consists of continuous modes with positive en-
ergies, which becomes discrete in the case of a second
brane in the bulk. This result implies the stability of the
solutions for � � �c.
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