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Thermodynamics of de Sitter black holes: Thermal cosmological constant
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We study the thermodynamic properties associated with the black hole event horizon and the
cosmological horizon for black hole solutions in asymptotically de Sitter spacetimes. We examine
thermodynamics of these horizons on the basis of the conserved charges according to Teitelboim’s
method. In particular, we have succeeded in deriving the generalized Smarr formula among thermody-
namical quantities in a simple and natural way. We then show that cosmological constant must decrease
when one takes into account the quantum effect. These observations have been obtained if and only if the
cosmological constant plays the role of a thermodynamical state variable. We also touch upon the relation
between inflation of our universe and a phase transition of black holes.
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L. INTRODUCTION

Over the past three decades, quantum field theory in de
Sitter space has been a subject of growing interest. In the
1970s, the attention was due to the large symmetry group
of de Sitter space. In the 1980s, the focus was due to the
role it played during inflation, accelerated expansion in the
very early universe. Recent attention to de Sitter space and
asymptotically de Sitter spacetimes is motivated by the
following two aspects: First, recent cosmological observa-
tions are consistent with the possibility that there is a
positive cosmological constant (A > 0) in our universe.
This possibility brings forth the picture, among many
others, of some features closely related to black holes;
the existence of cosmological event horizons. These are
causal horizons which exist even in the absence of matter,
namely, in empty de Sitter space. These hide all the events
which are inaccessible for each geodesic observer. Second,
the success of the anti-de Sitter (AdS)/conformal field
theory (CFT) correspondence [1] has led to the intense
study of the quantum gravity of de Sitter space [2]. The
focus has been taken to obtain an analogue of the AdAS/CFT
correspondence in de Sitter space, i.e. dS/CFT correspon-
dence [3,4]. It has been recently suggested that there is a
dual relation between quantum gravity on de Sitter (dS)
space and Euclidean conformal field theory (CFT) on a
boundary of de Sitter space. Although there has been
considerable success along this line, some theoretical ob-
stacles exist [5,6]. We do not further discuss these prob-
lems here, but emphasize that it is very important to study
the gravitational systems with a cosmological constant for
the quantum theory of gravity.

About 30 years ago, Hawking discovered that black
holes can emit particles according to the Planck spectrum
with the temperature «/27 [7,8], where k is the surface
gravity of the black hole [9]. This means that black holes
have physical temperature, not merely a quantity playing a
role mathematically analogous to surface gravity in the law
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of black hole mechanics. The original derivation of this
Hawking effect was done by making direct use of the
formalism for calculating particle creation (i.e. quantum
field theory) in curved spacetime. His calculation revealed
that at late times expectation number of particles at infinity
is not zero, and corresponds to emission from a perfect
blackbody at temperature /2. Although his calculation
left the microscopic process of particle creation unre-
solved, it became the starting point of the study based on
thermodynamics for the laws of black hole mechanics.
After that, many gravitational systems have been elabo-
rated in the framework of thermodynamics, and various
thermodynamic relations for black holes have been derived
[10].

When the gravitational systems are investigated, the
important problem arises. It is whether or not the cosmo-
logical constant is a fixed parameter (or universal con-
stant). The approach to treat the cosmological constant as
a variable had already been done by Henneaux and
Teitelboim many years ago [11]. They have shown that it
is possible to induce cosmological constant from an anti-
symmetric three form gauge field coupled to the gravita-
tional field. When the equations for the gauge field are
satisfied, a cosmological constant appears as a constant of
integration in the equations of motion of the coupled
system. Thus the theory with the antisymmetric gauge field
and without the cosmological constant is equivalent to the
Einstein gravity theory with an arbitrary cosmological
constant and without an antisymmetric gauge field.
Henneaux and Teitelboim have shown explicitly this fact
concerning anti-de Sitter spacetimes.

Recently, some authors claimed that one should regard
cosmological constant A as a thermodynamical variable
parameter [12]. They say that it is possible to consider the
cosmological constant A = (D — 1)(D — 2)/2> as a
variable parameter and promote it to a thermodynamic
state variable, and that differential and integral mass for-
mulas can be modified to

dM = TdS + QdJ + Odl (1
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and

D=3y —rs+ar+
D—2 D-2

CIA 2)

where D is the spacetime dimensions and O is the gener-
alized force conjugate to the state parameter [. Other
authors also comment that one can regard cosmological
constant A as a thermodynamical variable [13]. Although
the above formulas express mathematical relations be-
tween A and other thermodynamic parameters, the physi-
cal meaning of A as a thermodynamical variable remains
unclear.

In the present paper, we study the thermodynamical
properties of black hole solutions in asymptotically de
Sitter spacetimes. In particular, we investigate thermody-
namical law and mass formulas of these spacetimes where
we treat cosmological constant A as a thermodynamical
state variable. Then we examine its physical meaning in
addition to how cosmological constant A changes. As
mentioned above, the cosmological constant may be ex-
actly explained by introducing an antisymmetric three
form gauge field. Here we do not consider this microscopic
behavior of the cosmological constant, but focus on the
macroscopic or semiclassical behavior. So our discussions
are restricted to a thermodynamical one. Most of our
results are equal or similar to those in the anti-de Sitter
case [13], but the interpretation of the first law of thermo-
dynamics is peculiar to asymptotically de Sitter
spacetimes.

The organization of this paper is as follows. In Sec. II,
we consider the conserved charges for black holes in
asymptotically de Sitter spacetimes. We view the black
hole horizon and the cosmological horizon as two sepa-
rated systems following the Euclidean black hole method
in de Sitter geometry [14,15] (which is closely related to
the horizon thermodynamics), because these spacetimes
are not in thermal equilibrium states. In general,
Hawking temperatures associated with the black hole event
horizon and cosmological horizon, respectively, are not
equal [16]. Therefore the spacetimes for black holes in
asymptotically de Sitter space will be unstable quantum
mechanically. When dealing with the thermodynamics of
one of two horizons, one should view the other as a
boundary. Then one can obtain the conserved charges to
discuss thermodynamics of two horizon spacetime. In this
paper, we do not consider the details of its derivation, but
give the results only. See Ref. [15] for its calculation. In
Sec. III, we consider four-dimensional Kerr-Newman de
Sitter black hole spacetime. We study thermodynamical
properties associated with black hole event horizon and
cosmological horizon separately using the results given in
Sec. II. Although Teitelboim’s method and the derived
charges are different from those used in Refs. [17-21], it
is indeed highly effectual for the Smarr formula which
plays the role of the consistency condition among thermo-
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dynamical quantities. We treat cosmological constant A as
a thermodynamical state variable and show that integral
mass formula (2) holds if and only if one treats the cos-
mological constant as a thermodynamic variable. We then
show that the cosmological constant must decrease.
Finally, principal conclusions and brief discussions of our
results are presented in the last section.

Throughout this paper, the metric signature adopted is
(=, +, +, +). The use is made of natural units, namely # =
c=G=1aswellask=1.

II. CONSERVED QUANTITIES

It has been known for a long time that there exist certain
difficulties when one has two or more sets of horizons with
different surface gravities [16]. In our case, one must
introduce separate Kruskal-like coordinate patches to
cover black hole and cosmological horizons. In general,
one cannot analytically continue these coordinate patches
because the imaginary time periods required to avoid
conical singularities at both horizons do not match. This
is physically interpreted as indicating that two horizons are
not in thermal equilibrium. From the point of view of the
action principle, this fact means that the field equations are
not satisfied everywhere. If one arranges the imaginary
time period to avoid the conical singularity at the black
hole horizon, the field equations will be satisfied there but
will not be satisfied at the cosmological horizon.
Conversely, if the role of horizons is interchanged, the field
equations will not be satisfied at the black hole horizon. For
black holes in asymptotically flat spacetimes, one may fix
the parameters in the metric at spatial infinity, for example,
mass M in the case of Schwarzschild black holes.
However, in the case of black holes in asymptotically de
Sitter spacetimes, there is no notion of spatial infinity for
observers inside the cosmological horizon, since spatial
infinity exists beyond the cosmological horizon. Even if
spatial infinity is accessible for the observer, he/she can not
avoid conical singularities of black hole horizon and cos-
mological horizon at the same time.

Following the Euclidean black hole method constructed
by Teitelboim in de Sitter geometry [14,15], we view black
hole horizon and cosmological horizon as two thermody-
namical systems. When one discusses either one of two
horizons as thermodynamical object, then the other should
be viewed as a boundary. If one chooses the cosmological
horizon as the boundary, where the parameters are fixed
and there will be no field equations to satisfy at that point,
then the problems one solves are reduced to thermodynam-
ics of the black hole horizon contained in a space of a given
cosmological horizon, which plays the analogous role of
spatial infinity in the case of the black holes in asymptoti-
cally flat spacetimes. Conversely, if one chooses the black
hole horizon as the boundary, which plays the analogous
role of coordinate origin of empty de Sitter space, then one
discusses thermodynamics of the cosmological horizon.
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In this section, we give only the results for the conserved
charges in asymptotically de Sitter spacetimes. When one
discusses thermodynamics of the black hole event horizon,
one must treat the cosmological horizon as a boundary.
Then, for Kerr de Sitter spacetime, energy and angular
momentum are given as [15]

Mh:

E

= P

where subscript “h” means that it is the physical quantity
associated with the black hole event horizon. These ex-
pressions have the same content as the standard Arnowitt-
Deser-Misner (ADM) surface integrals for asymptotically
flat spacetimes or their generalization to asymptotically
anti-de Sitter spacetimes [22]. When the roles of the hori-
zons are reversed, so one regards the black hole horizon as
a boundary and discusses thermodynamics of the cosmo-
logical horizon, the resulting expressions of energy and
angular momentum change its sign;

2
A (E=1+“—>, 3)

m ma
Mc:_?; Jc:_?- (4)

One should notice the form of energy and angular mo-
mentum. First, Eq. (3) has the same form for the case of
asymptotically anti-de Sitter spacetimes if one replaces
> — —[? [13]. This fact indicates that we can analytically
continue the conserved charges from AdS to dS, or con-
versely from dS to AdS. In the latter section we see that all
the results agree with those for the case of anti-de Sitter
spacetimes if one replaces > — —[?, with respect to ther-
modynamic quantities for the black hole event horizon.
Second, the conserved charges for the cosmological hori-
zon are different from those for the black hole horizon only
its signs. From these two facts, we can deduce that the
electric charge should take the form for the black hole case
and the cosmological case, respectively, as

O =% 0=~ &)

I <
IIU Q

By the same account, we take for the cosmological con-
stant as

A=A A=A, (©6)

where A is the parameter in the metric and A, and A, are
the physical cosmological constants which we consider as
thermodynamic variables. Though the authors of Ref. [12]
use / as a thermodynamic state variable, we use Ay, and A,
as thermodynamic ones. Similarly, we use ®, and ©, as
the conjugate variables to Aj, and A.. In the next section,
we use from Egs. (3)—(6) in order to study the thermody-
namics of each horizon. For nonrotational black holes in
asymptotically de Sitter spacetime, one finds = = 1, and,
consequently, the relations between the parameters and the
physical quantities are trivial apart from its signs. For the
rotating case, however, these relations are very
complicated.
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Finally, we remark that there are other methods to
calculate the conserved quantities in asymptotically de
Sitter spacetimes. For example, in Refs. [17-21] the au-
thors use the Balasubramanian-Boer-Minic (BBM) pre-
scription [23] to calculate the conserved quantities for
cosmological horizons and the Abbott-Deser (AD) pre-
scription [24] for black hole horizons, respectively. The
BBM prescription is the method to calculate the conserved
charges from stress energy tensor on the boundary. In this
method, one adds the counterterm to the action in order to
make the total action finite, then calculates the stress
energy tensor, and last subtracts anomalous Casimir energy
from gravitational mass in the case of odd spacetime
dimensions. On the other hand, the AD prescription is
the method to calculate by means of the deviation of metric
from empty de Sitter space. The mass obtained by this
method reduces to ADM mass when A — 0. The con-
served charges derived from these methods correspond to
those derived from Teitelboim’s method if the normaliza-
tions are changed. As we show in the latter sections, the
thermodynamical relations are satisfied if and only if the
normalizations are changed. Furthermore, for the nonrotat-
ing case Teitelboim’s charges are in full agreement with
BBM/AD charges. So it is in the rotating case that one can
decide which charges are appropriate for thermodynamics.
Thus we use the Teitelboim’s method, i.e. the Euclidean
black hole method in de Sitter geometry, and apply the
resulting charges to the rotating black hole systems.

III. THERMODYNAMIC PROPERTIES

In this section we consider the four-dimensional Kerr-
Newman black hole in asymptotically de Sitter spacetime.
This is the most general black hole solution of the Kerr
family with a positive cosmological constant. Although the
generalization to higher dimensional solutions is not diffi-
cult, it is important to get the physical image by consider-
ing the four-dimensional case. The Kerr-Newman de Sitter
metric can be expressed in the Boyer-Lindquist—type co-
ordinates as follows:

A, a . 2 dr’  do?
ds® = —ﬁ<dt - Esmzaar(z)) n R2<Ar + AT)
A,sin20 2 4 2 2
+0;;§<adz—’ - qu), )
where
2
R? =1 +dcos?9, E—=1+ ‘1’—2 (8)
A—2+21—r2—2 + ¢ 9
="+ a®) 7 mr + g-, 9)
2 1 A
Ae =1+ l—2COS20, l_2 = ? (10)
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Here m, a, and g denote the mass, rotational, and electric
charge parameters, respectively. A is the cosmological
constant parameter. We treat A as a variable parameter.
The metric (7) solves the Einstein-Maxwell field equations
with electromagnetic vector given by

qr
R*
For ¢ =0, a=0, both ¢ =0 and a = 0, this metric
evidently reduces to the Kerr de Sitter metric, the
Reissner-Nordstrom de Sitter metric, the Schwarzschild
de Sitter metric, respectively. The horizons of the Kerr-
Newman de Sitter spacetime follow from the equation
A, = 0. This algebraic equation has the four roots which
are three positive and one negative solutions in the condi-
tion that the relation

[(12 — a2 — 122 + )P > [(% — a®)® + 3612(2 — a?)
X (a® + ¢?) — 54m>I* T
(12)

Ay = asin?0. (11)

- R’E

A, =

is satisfied for the parameters m, a, g, and /. The largest
positive solution is the cosmological horizon r,., the small-
est positive solution is inner black hole horizon (i.e. inner
Cauchy horizon), and the other positive solution is the
black hole event horizon r;,. The negative solution has no
physical meaning. In this paper, we assume that Eq. (12) is
satisfied, so the metric (7) represents the Kerr-Newman
black hole in asymptotically de Sitter spacetime. Since we
do not study the internal structure of Kerr-Newman de
Sitter black holes, the horizons we are interested in here
are black hole horizon r; and cosmological horizon r,. In
the following we investigate thermodynamic properties of
the black hole event horizon and the cosmological horizon
separately.

A. Black hole event horizon

First, we discuss thermodynamics of the black hole
event horizon r;,. Then we must treat the cosmological
horizon r, as a boundary where the parameters are fixed.
The case for which the role of horizons is reversed is
discussed in the next subsection.

The physical mass M, the physical angular momentum
Jy, the physical electric charge Q,,, and the physical cos-
mological constant A, are related to the parameters m, a,
g, and A from Egs. (3)—(6) as follows:

J
m=E2M,, a="" qg=E0 A=A
h M, h h
(13)
The area of the black hole horizon is written as
47r(r* + a?)
A= [lemssolCrdodg = "TI0 s

Analytical continuation of the Lorentzian metric by t —
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—i7 and a — ia yields the Euclidean section [25], whose
regularity at r = r;, requires that we must identify 7 ~ 7 +
Brand ¢ ~ ¢ + iB, Q). This postulate of Euclidean regu-
larity determines the inverse Hawking temperature 3, and
the angular velocity () of the black hole horizon as
follows:

4alPr,(r} + a?)

- - BENGE

B 3r} + (@ — P)ri + P(a® + ¢%) (15
Q =_9= 1

h r%l + a2 (16)

The Bekenstein-Hawking entropy S, is associated with 3,
(or T},) through

a5 oM,
S s O el PO ARG
oM, I QuAy aSh, I Qn Ay

at constant angular momentum Jj, electric charge Q;,, and
cosmological constant A, which yields

2+ 2
5, = ™t a) (18)

—r
e

for entropy. Thus the so-called Bekenstein-Hawking rela-
tion between entropy and area of the horizon, i.e. S, =
A, /4, holds [26].

The angular velocity of the black hole horizon is
Eq. (16) in the present coordinates. However, this is not
appropriate for thermodynamics. The angular velocity (2,
relevant to the Kerr-Newman de Sitter black hole thermo-
dynamics is indeed defined a la Christodoulou and
Bekenstein as follows [27]:

oM aS
)l
aJy SpQnAy aJy MOy

at constant mass M, electric charge Q;,, and cosmological
constant Aj,. Then we get the thermal angular velocity of
black hole event horizon as

4 <1 - r—%> (20)

& r+a? I

This angular velocity has an extra rotation compared with
)}, in Eq. (16). It is not the relative angular velocity () —
Q! of the black hole horizon r;, relative to the cosmologi-
cal horizon r., as one might have naively expected, where
Q! is given by Eq. (38). Since Eq. (20) is written as

asz a
=TT @D
we find that Eq. (20) is the angular velocity of the rotating
black hole relative to r = oo, because the term —a/ 2 is
what one obtains if one sets r = oo in N¢ (for the definition
and detailed expression of N?, see Ref. [15]). Of course
r = o0 is not in the Euclidean section, but Eq. (20) is
precisely the analytical continuation of the case of anti-
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de Sitter spacetimes [13]. This indicates that it is possible
to analytically continue the angular velocity from the anti-
de Sitter case to the de Sitter case in a similar way for the
conserved charges.

The electric potential ®, is also defined a la
Christodoulou and Bekenstein as follows:

oM N
®, = <_h> = —Th<—h> (22)
th N th MyJy Ay

at constant mass M}, angular momentum J,, and cosmo-
logical constant A,. Then we get the electrical potential of
black hole event horizon as

ngq

b, = . 2
h r%l~|-6l2 (23)

This is consistent with A, = gr/R? which is the solution of
the Maxwell equation in the Kerr-Newman de Sitter space-
times. A, equals ®;, at the black hole horizon.

In a similar way, the variable ®, conjugate to cosmo-
logical constant A, is defined as

oM 0S
0, = ( h) = _Th<—h> (24)
aAh SudwQn aAh My, Q)

at constant mass Mj,, angular momentum J,, and electric
charge Q. Then we get

0,=- 612;Ez[mazl2 + (2 + a®) (P +ad®)] (25
To examine the meaning of this thermodynamic quantity,
we take nonrotational limit @ — 0. Then ©,, is written as
0, = —rz /6. In this limit, spacetime is spherically sym-
metric so that this corresponds to the volume of the region
which is occupied by the black hole, except to prefactor. To
show this, we consider the combination ®,A,. As the
quantity @, is conjugate to cosmological constant A,
this combination term has dimension of energy. Since the
cosmological constant has vacuum energy density A, /8,
it is reasonable that ®, has dimension of volume. If we
rewrite ®, A, as —(47r; /3)(A,/87), this corresponds to
the product between the vacuum energy density and the
volume occupied by the black hole. In this sense, we
interpret Eq. (25) as the volume inside the event horizon
of the black hole for the rotating case, except to prefactor.
Thus we call ®, (or 0,) the generalized volume with
respect to the black hole (cosmological) horizon.

As shown by Henneaux and Teitelboim [11], if the
cosmological constant is expressed by a three form gauge
field, the variable conjugate to the three form gauge field
should be a three form. Accordingly, one can expect that
the quantity ®,, is related to this conjugate three form.
Since, in this paper, we consider only the macroscopic or
semiclassical behavior of the cosmological constant as a
thermodynamical variable, we do not investigate the mi-
croscopic behavior of these three forms, any further.
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Using Egs. (13) and (18), one can obtain a simple mass
formula of the black hole event horizon as

1 S, (mQ3? S, \2
M2 =(—— |2+ 20 (2h - 20 26
h (Sh 12>h 47T< S, wl? (26)

This is the generalized Smarr formula of the black hole
event horizon. We can then claim that the present formal-
ism automatically satisfies the consistency condition a la
the Smarr formula among natural thermodynamical quan-
tities. It contains as usual all the information about the
thermodynamic state of the black hole. If we use the AD
prescription to calculate the conserved quantities [24], by
the way, we can not obtain the generalized Smarr formula
of this form. Thus we can say that Teitelboim’s method is
consistent with thermodynamics. Note that the above gen-
eralized Smarr formula has the same form for the anti-de
Sitter case [13]. If one replaces [> — —I?, Eq. (26) agrees
with the generalized Smarr formula for AdS case com-
pletely. This fact suggests that we can analytically continue
from AdS to dS, or conversely, from dS to AdS, and that at
least thermodynamically there are some relations between
anti-de Sitter spacetimes and de Sitter spacetimes. We
expect that these relations and its physical meaning will
be revealed by the quantum theory of gravity.

If we regard M, as a function of Sy, J;,, 07, and A} 1, itis
a homogeneous function of degree 1/2. Applying Euler’s
theorem we obtain

M), =TS, + QuJ, + 30,0, — O,A,. (27)

As mentioned above, the other formalism does not provide
us the generalized Smarr formula. If the form of the
generalized Smarr formula is different from Eq. (26), the
physical mass M;, may not be a homogeneous function of
degree 1/2, and consequently Eq. (27) is not derived.
Suppose that Aj is not a thermodynamical variable and
M, is not as a function of A;'. Then Eq. (27) is not
derived, even if the generalized Smarr formula takes the
form of Eq. (26). Indeed, the authors of Ref. [28] did not
consider the cosmological constant as a thermodynamic
variable and they could not get the AdS version of Eq. (27).
Therefore we assert that A, must be a thermodynamic
variable and by Eq. (6) cosmological constant A also
must be a variable parameter. This holds, however, for
only the case that one treats the black hole system quantum
mechanically or semiclassically. In general relativity, A
must be constant because the Einstein tensor is divergence-
less. As mentioned in the introduction, Eq. (27) is an
integral mass formula [see Eq. (2)]. In four dimensions,
Egs. (2) and (27) agree for the uncharged case (note that we
use A, as a thermodynamic state variable). Therefore, we
find that at least semiclassically cosmological constant A is
not constant, but a variable parameter.

One can define the quantities conjugate to Sy, J,, Oy,
and A, from the generalized Smarr formula of black hole
event horizon. These are the temperature
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1 ? 2 28,\ , 352
T, —[1—S—%(4J§+Qg)—l—2<gﬁ+—h>+ ’1}

- 87TM,, T )

(28)

the angular velocity
7TJh Sh
= 1 ——) 29

"M, < 7712> 29

the electric potential
7TQh 5 Sh S%l
D, = +—=—-—%) 30
h 2MhSh (Qh o 7T212> ( )

and the generalized volume

1 11 S S s3
n + h 2 + h\ _ h 1
[ i 67T<Qh ) 677312} Gb

®=_
h 2M, | 3 P

respectively. If we use, instead of S,, J,, Q,, and A,
horizon radius and parameters in the metric, Eqs. (28)—
(31) correspond to, of course, Egs. (15), (20), (23), and
(25). All these thermodynamic quantities are similar to
those of the anti-de Sitter case [13]. If one replaces I to
—1? in the above thermodynamic quantities, one can get
the AdS version of these thermodynamic quantities.

Let us turn our attention to the first law of thermody-
namics. From Egs. (17), (19), (22), and (24) the first law of
thermodynamics for the black hole event horizon is ex-
pressed as follows:

th = ThdSh + thjh + (I)thh + ®hdAh' (32)

This law means that total energy of the black hole system is
conserved.

We shall first consider the case of a classical process
version, where ‘“‘classical”’ means that its physics is al-
lowed to be described by general relativity only. By the
Bekenstein-Hawking entropy-area law, the first law of
thermodynamics is written as follows:

AM), + Qud(—J,) + d(—Q,) = é‘—hdAh, (33)
T

where the term ®,d A, is ignored because the cosmologi-
cal constant is treated as a fixed constant in general rela-
tivity. Equation (33) implies that energy variation follows
from the classical area increasing law for the black hole
event horizon. The first term of the left-hand side contrib-
utes to the area increasing as the black hole mass increases.
The second and third terms contribute as extraction of
rotational and electric potential energies. That is to say,
when one extracts rotational or electric energy from the
black hole, its area increases by Eq. (33), which is well
known as the Penrose process in asymptotically flat space-
times [29].

Next, we consider the case of the quantum process
version, where ‘‘quantum’” means that we take the
Hawking effect into consideration. For the sake of sim-
plicity, we consider the uncharged and nonrotating case
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only. Then the first law of thermodynamics is written as

3 87

where we have changed the signs of both sides. The left-
hand side expresses the mass loss of the black hole and the
decrease of vacuum energy inside the black hole event
horizon. (This is because black hole horizon radius r,
shrinks when black hole mass or cosmological constant
decreases.) Then Eq. (34) means that, for the observer
outside the black hole event horizon, the total energy
variation is seen as the decrease of entropy inside the black
hole event horizon. This energy (or entropy) is carried
away from inside to outside by means of Hawking radia-
tion (its temperature is 7},). Though the decrease of entropy
contradicts the second law of thermodynamics, by the
generalized second law, the possibility of this quantum
process is sustained. Now we consider the effect and its
physical meaning of the second term of the left-hand side
in Eq. (34). We assume M), is fixed. Then Eq. (34) suggests
that the decrease of vacuum energy density is equal to the
entropy decreasing of the black hole event horizon.
Because the black hole horizon radius r;, shrinks when
the cosmological constant decreases, this phenomenon can
be seen by the outside observer as if the black hole radiates
its energy and consequently generalized entropy increases.
Since the generalized second law of thermodynamics re-
quires that the generalized entropy increases for the all
physical processes, the cosmological constant must de-
crease. Therefore we can conclude that vacuum energy is
transformed quantum mechanically to the energy of radia-
tion by means of decaying cosmological constant. These
are the phenomena which do not happen classically, i.e. in
general relativity.

47r3 A
—am, + (— —”> — —TydS,  (34)

B. Cosmological horizon

In the previous subsection, we have studied the thermo-
dynamic properties associated with the black hole event
horizon r;,. In this subsection, we discuss thermodynamics
of the cosmological horizon r, along the similar line. Here
one must reverse the role of horizons. So we treat the black
hole event horizon as a boundary where the parameters are
fixed. The calculation is almost the same with the one in the
previous case, but mathematically, the signs of some equa-
tions and horizon radius are changed (r;, — r.). The physi-
cal meaning of the first law of thermodynamics is a little
modified.

From Egs. (3)—(6), the physical mass M, the physical
angular momentum J ., the physical electric charge Q., and
the physical cosmological constant A. are related to the
parameters m, a, g, and A as follows:

i
M. (35)
q = _EQC’ A = _Ac°

m=—5E’M, a=
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The area of the cosmological horizon is written as

47 (r2 + a?)
A= /|g098¢¢|l£r(.d0d¢ == (36)

Analytical continuation of the Lorentzian metric by ¢t —
—i7 and a — ia yields the Euclidean section, whose regu-
larity at » = r, requires that we must identify 7 ~ 7 + S,
and ¢ ~ ¢ + iB.L).. This postulate of Euclidean regular-
ity determines the inverse Hawking temperature 3. and the
angular velocity (). of the cosmological horizon r. as
follows:

47 lPr.(rr + a?)

= , 37

SOy ey ) ey pere) ML
az

QL =—"-. 38

¢ r% + a? (38)

The Bekenstein-Hawking entropy S.. is associated with 8,
(or T,) through

EXY oM
8= (a1 ) o L = (35 hon ] @
IM.)1.0.A, 0S¢ /1.0,

at constant angular momentum J,, electric charge Q., and
cosmological constant A, which yields

2+ 2
5, = e a) (40)

—
=

for entropy. Thus the so-called Bekenstein-Hawking rela-
tion between entropy and area of the horizon, i.e. S, =
A, /4, holds also for the cosmological horizon.

The angular velocity of the cosmological horizon is
Eq. (38) in the present coordinates. However, this is not
appropriate for thermodynamics. In the same way for the
black hole case, the angular velocity (), relevant to ther-
modynamics is defined a la Christodoulou and Bekenstein
as follows:

M :
Q=5 =2 (1-%) @
d0J. Js.o.n, Teta l

This thermal angular velocity is not the angular velocity of
cosmological horizon relative to the black hole horizon. €},
is an angular velocity relative to the coordinate origin
inside the black hole horizon because Eq. (41) is written as
az a
= mra e 2
where the second term equals N¢ at r = 0 (see Ref. [15]).
In this case, however, there exists no obvious interpretation
in terms of an analytic continuation from anti-de Sitter
spacetimes since there does not exist a cosmological hori-
zon in asymptotically anti-de Sitter spacetimes.
The electric potential @, is also defined a la
Christodoulou and Bekenstein as follows:

PHYSICAL REVIEW D 73, 084009 (2006)

oM, T
00, )s.J.A, r:+a

This is consistent with A, = gr/R? which is the solution of
the Maxwell equation in the Kerr-Newman de Sitter space-
times. A, equals @, at the cosmological horizon.

In similar way, the generalized volume 0, is defined as

oM
o= (3x.)
A, )s..0.

1
=~ amam@ P+t )P+ (44

This corresponds to the volume inside the cosmological
horizon in the same sense of Eq. (25).

Using Egs. (35) and (40), one can obtain a simple mass
formula of cosmological horizon as

T 1 S, (mQ? S.\2
MEZ(S__F>J3+ET<S +1—7le>. 45)

This is the generalized Smarr formula of cosmological
horizon. This is the same form with the generalized
Smarr formula for the case of black hole horizon. This
suggests that the present formalism automatically satisfies
the consistency condition a la the Smarr formula among
natural thermodynamical quantities in the same way as the
black hole case. If we use the BBM prescription to calcu-
late the conserved quantities [23], we cannot obtain the
generalized Smarr formula of this form. Thus we can say
that the Teitelboim’s method is consistent with thermody-
namics for the cosmological horizon also. Note that, for the
anti-de Sitter case, there exists no analogue of the above
generalized Smarr formula. It is not obvious what the
Smarr formula means when one replaces /> — —/? in the
above equation.

If we regard M, as a function of S, J., O, and A, itis
a homogeneous function of degree 1/2. Applying Euler’s
theorem we obtain

%MC =T.5, +Q.J.+ %Q)CQC - 0.A,. (46)

If A, is not thermodynamical variable and M, is not as a
function of A_ ', Eq. (46) is not derived. Therefore we
assert that A, must be a thermodynamic variable and by
Eq. (6) cosmological constant A also must be a variable
parameter. These facts are the same for the case of the
black hole event horizon. Therefore, from the viewpoint of
thermodynamics for both horizons, it is concluded that the
cosmological constant must be a variable parameter.

One can define the quantities conjugate to S., J., O,
and A, from the generalized Smarr formula of cosmologi-
cal horizon. These are the temperature

1 2 2 25,\ 382
T,=——r| 1 - @+ 0 —5( 0 +— )+ =5 |
c 87TMC|: S%( c QC) 12 <QC T ) 77_214:|
(47)
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the angular velocity
J S
Q.= T <1 ——C), 48)

the electric potential

70, S 52
D=0+ =~ 55) 4
< 2M.S, (QC T 77212> “49)
and the generalized volume
111 S, S. 53
0O =— i 7 + =< 2 + Z¢) — ¢
¢ 2M, [3 Ie 67T<QC 77) 677312} (50)

respectively. These formulas for the cosmological horizon
are similar to those for the black hole case.

Let us turn our attention to the first law of thermody-
namics. From Egs. (39), (41), (43), and (44) the first law of
thermodynamics for the cosmological horizon is expressed
as follows:

dM, = T.dS, + Q.dJ, + ®.dQ, + ©®.dA,.  (51)

This law means that the total energy inside the cosmologi-
cal horizon is conserved.

First, for simplicity, we consider the uncharged and
nonrotating case in a similar way to the case of the black
hole event horizon. The first law is then written as

dM,=T.dS. + O_.dA.. (52)
Furthermore, if one specializes to the case M. = 0 or m =
0, the first law becomes

3
47;”6 d(— A) — T.dS,. (53)

8
This is the first law of thermodynamics for the cosmologi-
cal horizon in empty de Sitter space. One should notice that
the left-hand side expresses the increase of vacuum energy
inside the cosmological horizon, and this is the increase of
vacuum energy that observer can see. Indeed, 47772 /3 is the
volume of the visible region for the observer. One may note
that for the black hole case entropy expresses the informa-
tion which the observer cannot see, i.e. the information in
the region inside the black hole. If we suppose that the
analogue of the black hole case holds for the cosmological
case, we deduce that entropy S. for the cosmological
horizon should express the information which the observer
cannot see, i.e. the information in the region outside the
cosmological horizon (r. < r). Equation. (53) indicates
that the entropy increase of the cosmological horizon
results from the energy increase of the visible region (0 <
r < r.). This is different from the black hole case because
the energy increase inside the cosmological horizon con-
tributes to the entropy increase. But the information out-
side the cosmological horizon does not contribute. One can
deduce, however, that at the outside of cosmological hori-
zon the energy density decreases, because the cosmologi-
cal constant is independent of spacetime coordinates. If A
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decreases inside the cosmological horizon, it should de-
crease at the outside also. Although the detailed mecha-
nism for the decrease of vacuum energy still remains
mysterious, we can expect that the cosmological constant
must decrease in order to hold the second law of thermo-
dynamics which says entropy S, never decreases. From
Eq. (53), one finds that entropy increases if and only if
cosmological constant A decreases. Therefore cosmologi-
cal constant A decreases through the quantum mechanical
effect. We attribute the origin of Hawking radiation from
the cosmological horizon to the decay of the cosmological
constant, at least semiclassically.

One may note that the quantum process version consid-
ered above is similar to the classical one for the cosmo-
logical horizon, because the entropy (horizon area)
decreasing process is forbidden by the generalized second
law of thermodynamics (by the area theorem). In general
relativity, the cosmological constant must be constant.
Thus, the area increasing process does not happen for
empty de Sitter space. So we have no need to consider
the classical process version.

Next, we return to the case M, # 0. If a little modifica-
tion is added to Eq. (52), the first law is written as follows:

dar (AN 4w Ay
i) ()|

4w 1 A
+ | g~ 20— am, | =T.dS,.  (54)
3 87

The first square bracket of the left-hand side corresponds to
the increase of vacuum energy inside the cosmological
horizon but outside the black hole horizon (because r.
increases and r;, shrinks when A decreases, total vacuum
energy in the region r, < r <r, increases). The second
square bracket expresses the radiational energy from the
black hole in the sense of Eq. (34). Although in the
Euclidean black hole geometry method when one discusses
the black hole horizon as a boundary, the region which
corresponds to the inside of the black hole horizon is
removed from the manifold, thermodynamical law holds
if and only if one considers as if the removed region exists.
If the second bracket is written by the entropy of the black
hole event horizon, the first law of thermodynamics takes
the form where the physical meaning is more explicit,

4713 A 477r2 A
cdl ——1|— d| ——)—T,dS, = T,dS..
3 ( 877) 3 < 87T> nt5n = Tedde

(55)

This equation implies that increase of the entropy for the
cosmological horizon is due to the thermal radiation from
two event horizons, i.e. black hole horizon and cosmologi-
cal horizon. The first and second terms of left hand side are
the increase of vacuum energy in the region r, <r <r..
On the other hand, —7,dS, represents the entropy loss
inside the black hole horizon. That is to say, the origins of
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entropy increase are the increase of vacuum energy in the
visible region and Hawking radiation from black hole. As a
whole, entropy must increase by the generalized second
law of thermodynamics. Equation (55) indicates these
phenomena explicitly. Therefore we find that S. expresses
the generalized entropy in the visible region, and that S,
increases if and only if A decreases. We can say again that
A must decrease through the quantum effect.

It is straightforward to include the effects of electric
charge and angular momentum. If electric charge is taken
into account, the first law of thermodynamics becomes as
follows

Amrd A 47Trfl A
) )

. ( q_ i>dq — T,dS, = T.dS,. (56)

re T'n

The first square bracket of the left-hand side corresponds to
the increase of vacuum energy. The second bracket ex-
presses the electric potential difference between the cos-
mological horizon and the black hole horizon. This term
implies that electric energy is extracted from the inside to
the outside of the black hole horizon, because it is inter-
preted, by the factor dg, as the increase of electric energy
in the visible region. —T,dS,, represents the entropy loss of
the black hole. In addition to the electric charge, when the
effect of angular momentum is included, the first law is
written as

(O, — 0,)d(—A.) + (Q, — Qp)d(—J,)
+ ((I)L - (I)h)d(_Qc) - ThdSh = TCdSC‘ (57)

The first term of the left-hand side corresponds to the
increase of vacuum energy. Here ®, and ®, have the
rotational effects. The second term expresses the extracted
rotational energy. The angular velocity is the one of the
black hole horizon relative to the cosmological horizon.
Similarly, the third term represents the extracted electric
energy. Finally, the last term is due to Hawking radiation
from the black hole. These express explicitly that both the
energy decrease inside the black hole and the energy
increase in the visible region contribute to the increase of
entropy for the cosmological horizon. Thus it is confirmed
that S, expresses the generalized entropy in the visible
region (r, <r<r.).

IV. CONCLUSION AND DISCUSSION

In the present paper, we have studied the thermodynamic
properties associated with the black hole event horizon and
the cosmological horizon for black hole solutions in
asymptotically de Sitter spacetimes. Principal results are
as follows.

First of all, it must be emphasized that we have consid-
ered the black hole horizon and the cosmological horizon
as two thermodynamical systems. We have then found that
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each horizon can be treated as a thermodynamical object in
spite of the fact that black hole solutions in asymptotically
de Sitter spacetimes are not in thermodynamical equilib-
rium as a whole system. We have made use of the
Euclidean black hole method in de Sitter geometry accord-
ing to Teitelboim [14,15] to calculate the conserved quan-
tities. One of the features of the conserved quantities in
asymptotically de Sitter spacetimes is that the parameters
in the metric and the physical (conserved) quantities are
complicatedly related to each other for the case of rotating
black holes in the same way as for the case of black holes in
anti-de Sitter spacetimes. The other feature is that these
conserved charges correspond to those for the case of anti-
de Sitter spacetimes, if one replaces I> to —/[>. This fact
indicates that we may be able to analytically continue from
AdS to dS, or from dS to AdS. There are certain differences
for the cosmological horizons, however. Since black hole
solutions in asymptotically anti-de Sitter spacetimes have
no cosmological horizons, one cannot discuss the con-
served quantities of cosmological horizons in the similar
fashion as for asymptotically de Sitter spacetimes.
Second, we have studied thermodynamics of black hole
and cosmological horizons separately. The results obtained
from these considerations indicate that one can discuss
black hole horizons and cosmological horizons of black
hole solutions in asymptotically de Sitter spacetimes on the
basis of thermodynamics. The macroscopic entropy-area
law S = A/4 which relates thermodynamic entropy to the
area of event horizon is universally valid for any types of
black holes belonging to the Kerr family. Understanding
the microscopic origin of this law is undoubtedly a key step
towards understanding the fundamental nature of space-
time. We have then built up a set of natural thermodynam-
ical quantities. These thermodynamical quantities
(temperature, entropy, angular velocity, and electric poten-
tial) are similar to those for the case of black holes in anti-
de Sitter spacetimes with respect to the black hole hori-
zons. If one replaces [> to —[? for the black hole cases,
these quantities correspond to those for the case of black
holes in anti-de Sitter spacetimes [13]. Again, it may be
possible to analytically continue from AdS to dS, or con-
versely from dS to AdS with respect to the black hole
horizons. Furthermore, we have succeeded in establishing
the generalized Smarr formula for the mass as a function of
entropy, angular momentum, electric charge, and cosmo-
logical constant in the sense of the consistency condition
among these natural thermodynamical quantities. This fact
implies that thermodynamical quantities mentioned above
surely satisfy the first and second laws of thermodynamics
associated with the black hole horizons and cosmological
horizons, respectively. The generalized Smarr formula for
the black hole event horizon in asymptotically de Sitter
spacetimes has a similar form to the one in asymptotically
anti-de Sitter spacetimes. Indeed, the generalized Smarr
formula derived in this paper can be obtained by replacing
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I? to —I? for the one of the AdS case [13]. Thermodynamic
relations of both horizons are really assured to be consis-
tent if and only if the cosmological constant is considered
as a variable parameter. If one treats the cosmological
constant as a fixed constant, one cannot obtain an integral
mass formula. Suppose one uses the BBM/AD prescrip-
tions, instead of Teitelboim’s method, to calculate the
conserved quantities. Even if one considers the cosmologi-
cal constant as a variable, then, the full set of natural
thermodynamical quantities are not obtained and conse-
quently the generalized Smarr formula is not assured.

Finally, we have investigated the first law of thermody-
namics not only for the black hole horizon but also for the
cosmological horizon. We have revealed that the cosmo-
logical constant must decrease if the quantum mechanical
effect is taken into account. The decrease of the cosmo-
logical constant explains the increase of vacuum energy in
the region which the observer can see. We find that this is
the energy content of radiation from the cosmological
horizon, and that this is consistent with the generalized
second law of thermodynamics. In other words, thermody-
namic laws are valid if and only if the cosmological
constant decreases. When the cosmological constant de-
creases, the energy increases inside the cosmological hori-
zon; on the other hand, the energy outside the cosmological
horizon decreases. This is because energy density de-
creases everywhere. The detailed mechanism of the energy
decreasing outside the cosmological horizon still remains
unresolved, however. We can only claim that this results
from the decrease (or the decay) of the cosmological
constant. Our result yields an antipodal viewpoint against
the conventional dS/CFT correspondence which claims
quantum gravity in de Sitter space with fixed cosmological
constant in the sense of dual representation as a confor-
mally invariant Euclidean field theory on the boundary of
de Sitter space [3,4]. Since even semiclassical theory con-
sidering the background spacetimes as classical geometry
makes the cosmological constant decrease, it is question-
able that quantum gravity with a fixed cosmological con-
stant can be established.

In the precedent paragraphs, we have summarized the
most important prospects of our thermodynamical inves-
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tigation of black hole event horizons and cosmological
horizons. Let us now briefly touch upon the further ther-
modynamical aspects beyond the scope of the present
investigation. Hawking temperatures associated with the
black hole event horizon and cosmological horizon are not
equal to each other, in general. Therefore, the spacetime
for black holes in asymptotically de Sitter space is not in
thermal equilibrium. It will be possible to expect that
thermal equilibrium is eventually brought to realization
in the future. Thus we will be led to suspect that the phase
transition of black holes arises in a similar fashion as for
the anti-de Sitter spacetimes [30] in which black holes
evaporate into a hot gas, or equivalently, event horizons
of black holes disappear at critical temperature through the
so-called Hawking-Page phase transition. We are now in-
vestigating whether or not the Hawking-Page—like phase
transition is really materialized in de Sitter black hole
spacetimes, in general. Recently, Carlip and Vaidya [31]
have afforded qualitative confirmation to the realization of
the Hawking-Page—like phase transition in Reissner-
Nordstrom de Sitter spacetimes. The detailed phase struc-
ture of the black hole in asymptotically de Sitter space-
times is left totally unresolved, however. Next, one may
remember that black hole horizons and cosmological hori-
zons thermodynamically resemble each other. We can then
expect that if black holes in asymptotically de Sitter space-
times undergo the Hawking-Page—like phase transition,
the cosmological horizons will also undergo something
like the Hawking-Page phase transition. If cosmological
horizons undergo the Hawking-Page—like phase transition,
then, the cosmological horizons will disappear. This phe-
nomenon is the phase transition of vacuum and means that
exponential expansion (inflation) through which one can
not see far distant region will stop. Any observer can see
spatial infinity, in principle, after this phase transition.
These tantalizing enigmata are highly expected to be re-
solved in the future investigation.
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