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We discuss the cosmological evolution of the inflationary gravitational wave background in the
Randall-Sundrum single-brane model. In braneworld cosmology, in which the three-dimensional space-
like hypersurface that we live in is embedded in five-dimensional anti–de-Sitter (AdS5) spacetime, the
evolution of gravitational wave (GW) modes is affected by the nonstandard expansion of the universe and
the excitation of the Kaluza-Klein modes. These are significant in the high-energy regime of the universe.
We numerically evaluate these two effects by solving the evolution equation for GWs propagating through
the AdS5 spacetime. Using a plausible initial condition from inflation, we find that the excitation of
Kaluza-Klein modes can be characterized by a simple scaling relation above the critical frequency fcrit

determined from the length scale of the fifth dimension ‘. The remarkable point is that this relation
generally holds as long as the matter content of the universe is described by the perfect fluid with the
equation of state p � w� for 0 � w � 1. The resultant scaling relation is translated into the energy
spectrum of the inflationary gravitational wave background as �GW / f

�3w�1�=�3w�2� for f > fcrit. This
indicates that in the radiation dominant case (w � 1=3), the two high-energy effects accidentally
compensate each other and the spectrum becomes almost the same as the one predicted in the four-
dimensional theory, i.e., �GW / f

0.
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I. INTRODUCTION

Gravitational waves (GWs) are ultimate probes of the
untouched region of the universe. Currently, large-scale
ground-based interferometers (TAMA300 [1], LIGO [2],
VIRGO [3], GEO600 [4]) are enthusiastically trying to
detect the signals emitted from stellar objects with relativ-
istic motion—supernovae explosions, coalescence of neu-
tron star binaries, and so on. Among numerous types of
GWs, the gravitational wave background (GWB) may
possess much interesting information on the cosmology,
though its detection is expected to be challenging [5]. In
particular, the inflationary GWB (IGWB), generated dur-
ing the inflationary epoch by the quantum fluctuations of
the spacetime [6–14], is thought to be one of the most
fundamental predictions of the inflationary scenario [15–
18]. Since the history of the cosmological expansion is
imprinted in the power spectrum of the IGWB, it helps us
to understand the extremely early universe if we can detect
the signals by the future space-based experiments, such as
DECIGO [19] and BBO [20,21].

As an ultimate cosmological tool, the IGWB may also
be useful to probe the presence of extra-dimensional
spaces. Recent developments in particle physics suggest
that we live in a higher-dimensional spacetime. In particu-
lar, braneworld scenarios have recently attracted much
attention theoretically and observationally (for a review,
see [22]). According to these scenarios, we live in a three-
dimensional hypersurface (brane) embedded in the higher-
dimensional spacetime (bulk). While gravity can propagate
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in the bulk with the curvature scale ‘, the standard model
particles are confined to the three-dimensional brane. In the
low-energy regime of the universe (H‘� 1), four-
dimensional general relativity is successfully recovered
and the extra-dimensional effects should be fairly small.
On the other hand, in the high-energy regime (H‘� 1),
the localization of gravity is not always guaranteed and a
significant deviation of the time evolution of GWs from the
standard four-dimensional theory is expected. If this sce-
nario is true, the spectrum of the IGWB may be signifi-
cantly modified by the high-energy effects, which can
provide a direct probe of the extra dimensions.

The goal of this paper is to investigate the high-energy
effects on the evolution of the IGWB and quantify the
power spectrum. During the inflationary epoch, the wave-
length of the GWs exceeds the Hubble horizon scale due to
the exponential expansion of the universe and the ampli-
tude of GWs becomes frozen. After the end of inflation, the
universe enters the decelerated expansion phase and wave-
lengths of GWs soon become shorter than the Hubble
scale. When the Hubble horizon scale becomes compa-
rable or smaller than the characteristic size of the extra
dimension, the high-energy effects may significantly affect
the evolution of GWs. There are two main high-energy
effects: (i) peculiar cosmological expansion due to the
high-energy correction of the Friedmann equation, which
enhances the spectrum in the high-frequency region and
(ii) excitation of Kaluza-Klein modes (KK modes) freely
escaping from the brane to the bulk spacetime, which may
suppress the amplitude of the GWs on the brane. While the
former effect is simply estimated from the expansion rate
of the universe, the amount of the latter effect requires the
-1 © 2006 The American Physical Society
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knowledge of the wave propagation in the bulk. Focusing
on the Randall-Sundrum (RS) single-brane model, in
which the three-dimensional hypersurface (brane) is em-
bedded in the five-dimensional anti–de-Sitter (AdS5)
spacetime [23], many authors have tried to estimate these
effects in an analytic way. However, these analyses were
restricted to the idealistic situations [24–26] or low-energy
cases in the Friedmann universe [27,28], since the analytic
study of the wave equation is generally intractable due to
the complicated form of the equation as well as the bound-
ary condition. Thus, in this paper, we numerically solve the
wave equation and try to estimate the observed IGWB
spectrum.

Concerning numerical studies, several authors have used
different numerical techniques and coordinate systems to
solve the wave equation of GWs [29–34]. In our previous
studies [29,30], numerical simulations were carried out in
the two types of coordinate systems. One is the Gaussian
normal coordinate system in which we found the suppres-
sion of the amplitude of the IGWB on the brane.
Unfortunately, the coordinate singularity appears in the
bulk and this restricts our analyses to a relatively low-
energy scale [29]. On the other hand, another coordinate
system we used is the Poincaré coordinate system in which
we observed that the two high-energy effects compensated
each other and the spectrum became the same one as
predicted in the four-dimensional theory [30].

In this paper, we first show that the spectrum of the
IGWB estimated in Ref. [30] is robust against several
numerical artifacts, such as the dependence of the regulator
brane and initial time. Next, we study the dependence of
the spectra on the equation of state (EOS) of the universe to
clarify how the two high-energy effects change with the
expansion rate of the universe.

This paper consists of seven sections. In Sec. II, we
discuss how the spectrum of the IGWB is affected by the
presence of the extra dimensions. In Sec. III, we introduce
the Poincaré coordinate system and derive the evolution
equation of GWs. After briefly discussing the details of the
numerical simulations and initial conditions in Sec. IV, we
check our numerical scheme by solving a simple case in
Sec. V. In Sec. VI, we present the numerical results in the
case that the IGWB reenters the Hubble horizon during the
radiation-dominated (RD) universe. Also in Sec. VI, the
results in cases with other EOS are shown. Finally, Sec. VII
is devoted to the summary and conclusions.

In this paper, we use units in which c � @ � 1. Mpl

represents the four-dimensional Planck mass/energy.
II. GRAVITATIONAL WAVE BACKGROUND FROM
INFLATION

A. Standard four-dimensional prediction

The standard inflation model predicts that GWs are
generated by the quantum fluctuations of spacetime. In
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this section, we briefly review how to evaluate the power
spectrum of IGWB (see also Ref. [14]).

In the left panel of Fig. 1, a sketch of the evolution
histories of GWs with various wavelengths is shown. The
vertical and the horizontal axes represent the wavelength of
GWs and the cosmic time, respectively. In this figure, the
solid line represents the Hubble horizon scale H�1, and we
have labeled three regimes as ‘‘Inflation,’’ ‘‘RD,’’ and
‘‘MD’’ for the inflationary epoch, the radiation-dominated
epoch, and the matter-dominated epoch, respectively.
During the inflation, the universe experiences accelerated
expansion and the wavelength of GWs eventually exceeds
the Hubble horizon scale. Then the oscillatory behavior
ceases to exist and the amplitudes of GWs become frozen.
After inflation, these GWs reenter the horizon in the decel-
erated expansion phase (regions RD and MD). Inside the
horizon, the wavelengths are redshifted and the amplitudes
are reduced by the cosmological expansion. Since the
horizon reentry time depends on the comoving wave num-
ber for each GW mode, the resultant energy spectrum of
the IGWB observed at present simply reflects the expan-
sion rate at the horizon reentry time.

To evaluate the spectrum of IGWB, we first consider the
characteristic frequencies of the GWB associated with the
cosmic history. We define three characteristic frequencies
according to the standard four-dimensional cosmology:
(i) the lowest frequency fh; (ii) the frequency of GWs
reentering the horizon just at the matter-radiation equality
time, feq; and (iii) the cutoff frequency by the inflation,
finf . First, the largest wavelength of IGWB observed today
is definitely the horizon length which corresponds to the
frequency

fh 	 2:3
 10�18 Hz
�

H0

72 km=s �Mpc

�
; (1)

where H0 denotes the present value of the Hubble parame-
ter. Second, the frequency of large-scale GWs which came
into the Hubble horizon at the matter-radiation equality
time teq can be calculated as

feq �
1

2�

aeq

a0
Heq

	 2:1
 10�17 Hz
�

H0

72 km=s �Mpc

��
1� zeq

3200

�
1=2
;

(2)

where a denotes the scale factor and z the redshift. The
subscripts ‘‘0’’ and ‘‘eq’’ represent the quantities evaluated
at the present time t0 and at the matter-radiation equality
time teq, respectively. Finally, the highest frequency ob-
served today is determined from the Hubble horizon at the
end of the inflation, which can be calculated in the same
way as (2):
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FIG. 1 (color online). Schematic diagrams of the evolution histories of GWs. Left panel: four-dimensional case. Right panel: five-
dimensional case. In the high-energy RD regime of the latter case (denoted by ‘‘H’’), the �2 term in the Friedmann equation changes
the time dependence of the Hubble parameter. This fact yields a new characteristic frequency fcrit.
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finf 	
1

2�
ainf

aeq

aeq

a0
Hinf

� 1:1 GHz
�

Hinf

6
 10�5Mpl

�
1=2
�

H0

72 km=s �Mpc

�
1=2




�
1� zeq

3200

�
�1=4

; (3)

whereHinf means the energy scale of the inflation, which is
constrained by the COBE observation as Hinf < 6

10�5Mpl [14]. As a consequence, the GWs with fh < f <
feq reenter the Hubble horizon during the MD phase, while
for feq < f < finf , GWs reenter during the RD phase.
These characteristic frequencies are shown in Fig. 1.

Let us focus on the shape of the IGWB spectrum.
Conventionally, the power spectrum of the GWB is char-
acterized by the energy density instead of its amplitude. We
introduce the quantity �GW defined as [14]

�GW�f� �
1

�c

d�GW

d logf
; (4)

where �c � 3H2
0=8�G � 9:8
 10�30 g=cm3 means the

critical density of the universe and �GW the energy density
of the GWB. Denoting the characteristic amplitude by h,
the above quantity is related to

h2
0�GW �

�
h

1:263
 10�18

�
2
�
f

1 Hz

�
2
: (5)

The frequency dependence of the power spectrum can be
derived from the fact that the amplitude of the GWs
evolves as h / 1=a inside the horizon. Assuming the scale
factor evolves as a / tn near the horizon reentry time t,
the GW amplitude observed today is related to t as

h0 �
a
a0
h / tnfnT=2: (6)
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Here h denotes the amplitude of GWs evaluated at the
time t. The amplitude h is primarily determined by the
quantum fluctuations generated during the inflation, whose
spectral dependence is given by h2

 / fnT (see, e.g.,
Sec. 6.5 of Ref. [35]). In a single-field model of slow-roll
inflation, the spectral index nT can be expressed by the
slow-roll parameter � as nT 	 �2� [35,36]. In the pure de-
Sitter expansion, nT � 0.

In the power-law expansion, the Hubble parameter at
t � t scales as

H / t
�1
 : (7)

Hence the observed frequency f is related to t as

f �
k

2�a0
�
aH
2�a0

/ tn�1
 ; (8)

where k � aH denotes the comoving wave number of
the GW with which we are concerned. From (6) and (8),
the power spectrum of the IGWB becomes

�GW / h
2
0f

2 / f��4n�2�=�n�1���nT : (9)

Particularly in cases with the matter content in the universe
satisfying the EOS,

p � w�; (10)

the power-law index of the scale factor, n, is rewritten with

n �
2

3�1� w�
: (11)

Then the energy spectrum (9) becomes

�GW / f��6w�2�=�3w�1���nT : (12)

Now, simply assuming nT � 0 and applying this formula
to the standard history of the universe [RD (w � 1=3)
phase and MD (w � 0) phase], the energy spectrum of
the IGWB observed at present becomes [13]
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FIG. 2 (color online). A schematic diagram of the spectrum of
IGWB. The four-dimensional prediction is shown as long-
dashed lines. Considering the modification due to the nonstan-
dard cosmological expansion, the spectrum behaves as �GW /
f4=3 shown as the short-dashed line, which may appear upon the
detection limit of advanced LIGO (dot-dashed line). Moreover,
KK-mode excitations modify the spectrum as solid lines. The
main issue in this paper is to clarify whether the resultant
spectrum (solid lines) exceeds the four-dimensional prediction
(long-dashed lines).
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�GW /

�
f0 �feq < f < finf�;
f�2 �fh < f < feq�:

(13)

The resultant spectrum in the four-dimensional cosmology
is shown as long-dashed lines in Fig. 2. The normalization
of the spectrum is weakly constrained from the observation
of cosmic microwave background (CMB) by COBE, which
leads to �GW < 10�14 [14]. This figure shows that the
IGWB widely exists over the frequencies which span
approximately 30 orders of magnitude. Furthermore,
most of the frequency region comes from the GWs which
reenter the horizon during the RD phase.

B. High-energy effects in the braneworld cosmology

In a braneworld scenario, the propagation of gravity may
be modified by the presence of extra-dimensional spaces,
which affects the observed spectrum of IGWB. In this
paper, we consider the Randall-Sundrum single-brane
model [23]. In this model, a three-dimensional brane is
embedded in five-dimensional anti–de-Sitter spacetime
(AdS5 bulk) with the curvature scale ‘. Here we consider
the flat Friedmann-Robertson-Walker (FRW) universe on
the brane. In general, the RS model may possess a black
hole in the bulk, but we do not consider it.

1. Cosmological expansion on the brane

In the RS model, the Z2 symmetry (mirror symmetry) is
imposed on the brane, whose physical meaning comes
from the S1=Z2 orbifold compactification in heterotic M
theory. This symmetry provides the junction condition
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which gives a relation between the extrinsic curvature
K�� at the brane and the energy density of matter on the
brane. From the junction condition, the Friedmann equa-
tion on the brane and the conservation law become [37–42]

H2�t� �
�

_a
a

�
2
�
�2

4

3
�
�
1�

�
2�

�
; _� � �3��� p�H;

(14)

where �2
4 represents the gravity constant defined as �2

4 �

8�G � 8�=M2
pl and � denotes the tension of the brane.

The tension is related with the bulk curvature scale ‘ as
�2

4�‘
2 � 6 if we require that the cosmological constant on

the brane �4 vanishes. For later convenience, we define a
dimensionless energy density normalized by the tension
��t� by ��t� � ��t�=�.

From (14), we can separate the regime into two parts: the
high-energy regime (H‘ > 1) and the low-energy regime
(H‘ < 1). The critical energy density satisfying the rela-
tion H‘ � 1 is given by

�crit �
���
2
p
� 1: (15)

Thus, when ��t� � �crit, the high-energy correction char-
acterized by the �2 term in (14) significantly modifies the
cosmological expansion.

In the cosmology with perfect fluid, the exact solutions
for the scale factor a�t� and the normalized energy density
��t� are known. These solutions are expressed as (see, e.g.,
[38,39])

a�t� �
�
�crit

�

�
1=3�1�w�

;

��t� �
2

f3�1� w�t=‘� 1g2 � 1
;

(16)

where the scale factor is normalized to unity at the critical
energy, �crit. In cases with w � 0 (MD), w � 1=3 (RD),
and w � 1, the energy densities become, respectively,

��t� �

8>><
>>:

2‘2

9t2�6t‘ for w � 0;
‘2

8t2�4t‘
for w � 1=3;

‘2

18t2�6t‘
for w � 1:

(17)

Using the above relations, we will consider how the high-
energy regime of the universe can modify the spectrum of
the IGWB.

2. High-energy effects on GWs

As we mentioned in Sec. I, there are two important
effects on the spectrum in the high-energy regime. Let us
first consider the nonstandard cosmological expansion in
the presence of the �2 term. From (16), the power-law
index of the scale factor in the high-energy regime (‘‘H’’ in
the right panel of Fig. 1) is related to the EOS parameter w
as
-4
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n �
1

3�1� w�
for t� ‘: (18)

On the other hand, at the late-time phase (�� �crit), the
power-law index just coincides with the four-dimensional
result (11). As a result, the energy spectrum (9) is modified
to

�GW �

�
f�6w�2�=�3w�1� for f� fcrit;
f�6w�2�=�3w�2� for f� fcrit;

(19)

where fcrit denotes the critical frequency given by

fcrit �
1

2�‘
acrit

aeq

aeq

a0

� 5:6
 10�5 Hz
�

‘
0:1 mm

�
�1=2

�
H0

72 km=s �Mpc

�
1=2




�
1� zeq

3200

�
�1=4

: (20)

That is, the wavelength at the horizon reentry time just
coincides with the curvature scale, namely, H � ‘�1

(cf. [43]). Note that the curvature radius ‘ is constrained
to ‘ < 0:1 mm by tabletop experiments on the Newton
force law [44,45]. For the frequency f > fcrit, GWs reenter
the horizon during the RD phase of the �2-term dominated
epoch (right panel of Fig. 1). In the high-energy RD phase,
the spectrum of the IGWB is modified to

�GW / f
4=3 �fcrit < f < finf�; (21)

which is shown as short-dashed lines in Fig. 2.
Additionally, the inflationary cutoff frequency (3) is modi-
fied to

finf 	
1

2�
ainf

acrit

acrit

aeq

aeq

a0
Hinf

� 4:7
 106 GHz
�

Hinf

6
 10�5Mpl

�
3=4




�
H0

72 km=s �Mpc

�
1=2
�

‘
0:1 mm

�
1=4
�
1� zeq

3200

�
�1=4

:

(22)

Notice that the above estimate neglects another remark-
able high-energy effect caused by the excitation of KK
modes. The KK modes can propagate into the bulk and
may be observed on the brane as massive gravitons. In
contrast, the GW propagating on the brane is called the
‘‘zero mode,’’ and it behaves like a massless graviton on
the brane. Strictly speaking, the KK modes and zero mode
are coordinate-dependent concepts and are mathematically
well defined only in the case of the Minkowski brane and
the de-Sitter brane. Nevertheless, we keep these terms in
the FRW case to distinguish these propagation features.

As we will see in the next section, the brane is generally
moving in the bulk spacetime. From the analogy of the
moving mirror problem [46], even if only the it is gener-
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ated in the inflationary epoch, the zero mode is partially
transferred to KK modes with the arbitrary masses. If this
is true, the amplitude of the zero mode observed on the
brane may be suppressed in comparison with the result
neglecting the KK modes, i.e., (21). The envisaged spec-
trum involving the two effects is schematically shown as
solid lines in Fig. 2. Unfortunately, we cannot fully esti-
mate the KK-mode effects in an analytic way. Thus, in
order to construct the IGWB spectrum including the KK-
mode effects, we must directly solve the evolution equa-
tions of GWs in the five-dimensional cosmology.

In the next section, we present the formalism to solve the
evolution equations for GWs numerically.
III. EVOLUTION EQUATION AND INITIAL
CONDITIONS

A. Evolution equation of GWs

Let us consider the tensor perturbations in the AdS5

spacetime. In the Poincaré coordinate ��;x; z�, the per-
turbed metric of the AdS5 spacetime is given by

ds2 �

�
‘
z

�
2
f�d�2 � �	ij � hij�dx

idxj � dz2g;

�i; j � 1; 2; 3�;

(23)

where hij satisfies the transverse-traceless (TT) condition,

@ih
i
j � hii � 0: (24)

While this coordinate system is free from the coordinate
singularities, the brane is nonstatic, moving in the AdS5

spacetime [41,42]. The trajectory of the moving brane is
determined from the scale factor on the brane, which is
described as ��b; zb�:

�b � T�t�; zb �
‘
a�t�

; (25)

where we use the cosmic time t on the brane as a parameter
of the trajectory. The function T�t� is given by [47]

_T�t� �
1

a

���������������������
1� �H‘�2

q
: (26)

In Fig. 3, we show the trajectory denoted by ‘‘Friedmann
brane’’ in the conformal chart where the surfaces of � �
const and z � const are plotted as dashed lines. One can
check that this trajectory induces the metric of the four-
dimensional flat Friedmann-Robertson-Walker model on
the brane: dsb � �dt

2 � a2�t�	ijdx
idxj. Note that, in the

case of the de-Sitter brane, the scale factor becomes a�t� �
eHt and the Hubble parameter H is constant. Hence the
trajectory becomes

�dS
b � �

���������������������
1� �H‘�2

p
H

e�Ht; zdS
b � ‘e�Ht; (27)
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FIG. 3 (color online). The motion of the de-Sitter and
Friedmann brane in the AdS5 bulk in the Poincaré coordinate
system.
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which yields the straight trajectory in the bulk; that is, �dS
b

becomes proportional to zdS
b .

Let us focus on the evolution of the tensor perturbations
hij. For convenience, we decompose the quantity hij into
the three-dimensional spatial Fourier modes as

hij��;x; z� �
X
P

Z
hPk ��; z�e

ik�xêPijd
3k; (28)

where êPij denotes a transverse-traceless polarization ten-
sor. In terms of the Fourier modes, the evolution equation
for the perturbations is given by [48]

�AdS5
h �

@2h

@�2 �
@2h

@z2 �
3

z
@h
@z
� k2h � 0; (29)

where �AdS5
denotes the d’Alembertian operator in the

AdS5 spacetime. Hereafter we omit subscripts of hPk and
simply write h. The equation (29) must be solved with the
junction condition imposed on the brane. In the Poincaré
coordinate, the explicit form of the junction condition
becomes [48]

@h
@n
jbrane �

�
@h
@�
�

��������������������
1�H2‘2
p

H‘
@h
@z

�
z�zb�t�

� 0; (30)

where @=@n denotes the normal vector of the brane. While
there is generally a contribution from the tensor part of the
anisotropic stress tensor on the brane �T

ij, we neglect it for
simplicity and set �T

ij � 0 hereafter.
It is important to note that the evolution equation (29)

can be written in a separable form and, by using this fact,
one obtains the general solutions (see, e.g., [24,48])
084008
h��; z� �
Z 1

0
dmf~h1�m�z

2H�1�2 �mz�e
i!�

� ~h2�m�z2H�2�2 �mz�e
�i!�g; (31)

where !2 � m2 � k2. The functions H�1�2 and H�2�2 denote,
respectively, the Hankel functions of the first and second
kinds, and ~h1�m� and ~h2�m� represent arbitrary coeffi-
cients. The above expression implies that the GWs prop-
agating in the bulk are described as a superposition of the
zero mode (m � 0) and the KK modes (m> 0). Solving
the wave equation (29) with the junction condition (30) is
the equivalent task to determining the coefficients ~h1;2�m�
that satisfy the junction condition [48]. In the very high-
energy case, technical difficulties hinder efforts to calcu-
late these analytically because of the significant contribu-
tion from the massive modes (m‘� 1). For this reason,
we solve numerically the wave equation (29) with the
junction condition (30).

B. Initial conditions

In order to correctly estimate the effects of the KK
modes, we must specify the initial conditions for the
perturbed quantity h after the inflation. In this paper, we
specifically consider a brane inflation model in which the
exponential expansion takes place on the brane. According
to Ref. [40], the Gaussian normal (GN) coordinate system
�t;x; y� provides a useful spatial slicing in the inflationary
epoch. With this coordinate, the perturbed metric of the
AdS5 spacetime becomes

ds2 � �N2�y; t�dt2 � A2�y; t��	ij � hij�dxidxj � dy2;

(32)

where A�t; y� � eHtN�y� and N�t; y� � N�y� �
cosh�y=‘� � �1� �=�� sinh�y=‘�. Note that the perturba-
tion hij satisfies the TT conditions (24). In this coordinate,
our brane is located at a fixed point y � 0.

During de-Sitter inflation, the solution of the evolution
equation of GWs, �AdS5

h � 0 [see Eq. (29)], can be
obtained in a separable form, h�t; y� � u�y�
�t�.
Introducing the separation constant m which represents
the mass of KK modes, the mode functions u and 
 satisfy
the following equations [40]:

d2
m

dt2
� 3H

d
m

dt
�

�
m2 �

k2

a2

�

m � 0; (33)

d2um
dy2

� 4
N0

N
dum
dy
�
m2

N2 um � 0; (34)

where a prime denotes a derivative with respect to y.
Picking up the normalizable modes from the solutions of
the equation (34), one notices that a large mass gap arises
between the lightest KK mode (m � 3H=2) and the zero
mode (m � 0) [40]. From the point of view of the quantum
-6
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theory, the large mass gap highly suppresses the excitation
of KK modes during inflation. Consequently, the zero-
mode solution in the GN coordinates gives a dominant
contribution to the metric fluctuation [40]. Solving the
equations (33) and (34) with m � 0, the zero mode is
described explicitly as

h��; y� � C��k��3=2H�1�3=2��k��; (35)

where C is a normalization constant and � is the conformal
time � � �1=aH.

To see what the solution (35) looks like in the Poincaré
coordinates, we rewrite the general solution (31) in the GN
coordinates. In the de-Sitter case, the coordinate transfor-
mation between the GN coordinates and the Poincaré
coordinates is explicitly given as [24,25]

z � �� sinh�y=‘�; � � � cosh�y=‘�: (36)

Substituting them into the general solution (31), we obtain

h��; z� �
Z 1

0
dmf� sinh�y=‘�g2


f~h1�m�H
�1�
2 �m� sinh�y=‘��e�i!� cosh�y=‘�

� ~h2�m�H
�2�
2 �m� sinh�y=‘��ei!� cosh�y=‘�g: (37)

Comparing (35) with (37), we see that the zero-mode
solution given in the inflationary epoch cannot be simply
expressed in terms of the zero-mode solution in the
Poincaré coordinates, which indicates that a mixture of
KK modes is required to express the zero-mode solution
in the inflationary epoch. Nevertheless, in the long-
wavelength limit k! 0, both the zero-mode solutions
become constant over the time and the bulk space, and
they coincide with each other. Since we are specifically
concerned with the evolution of long-wavelength GWs
after inflation, the constant mode, i.e., h � const and
dh=d� � 0, seems a natural and a physically plausible
initial condition for our numerical calculation in the
Poincaré coordinate. Strictly speaking, however, this is
valid only in the long-wavelength limit k! 0. This point
will be discussed in detail in Sec V B.
IV. NUMERICAL SIMULATION

A. Numerical scheme

On the basis of the formalism presented in the previous
section, we now discuss the numerical treatment used to
solve the wave equation (29) with the junction condition
(30). First of all, the computational domain should be
finite. We introduce an artificial cutoff (regulator) bound-
ary in the bulk at z � zreg (shown in Fig. 3) and impose the
Neumann condition at the regulator boundary, i.e.,�

@h
@z

�
z�zreg

� 0: (38)
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In this paper, numerical calculations were carried out by
employing the pseudospectral method [49]. The amplitude
of GWs h��; z� is decomposed in terms of Tchebychev
polynomials, defined as

Tn��� � cos�ncos�1���� for � 1 � � � 1; (39)

which yields a polynomial function of � of order n. For
example,

T0��� � 1; T1��� � �; T2��� � 2�2 � 1; . . . :

(40)

Here the variable � is related to the Poincaré coordinate z.
To implement the pseudospectral method, instead of using
the Poincaré coordinates ��; z� directly, we use the new
coordinates �t; ��:

� � T�t�; z � 1
2�fzreg � zb�t�g�� fzreg � zb�t�g�

(41)

so that the locations of both the physical and the regulator
branes are kept fixed, and the spatial coordinate z is pro-
jected to the compact domain �1 � � � 1. Adopting this
coordinate system, the amplitude h�t; �� is first trans-
formed into the Tchebychev space through the relation

h�t; �� �
XN
n�0

~hn�t�Tn���; (42)

where we set N � 2048 or 4096. We then discretize the �
axis to the N � 1 points (collocation points) using the
inhomogeneous grid �n � cos�n�=N� called Gauss-
Lobatto collocation points. With this grid, fast Fourier
transformation can be applied to perform the transforma-
tion between the amplitude h�t; �� and the coefficients
~hn�t�. Then the wave equation (29) rewritten in the new
coordinates is decomposed into a set of ordinary differen-
tial equations (ODEs) for ~hn�t�. For the temporal evolution
of ~hn�t�, we use the Adams-Bashforth-Moulton method
with the predictor-corrector scheme. Further technical
details of the numerical scheme is summarized in
Appendix A.

B. Setup and parameters

We are especially concerned with the late-time evolution
of GWs after the inflation. For this purpose, we focus on
the evolution equation (29) in the RD phase. In order to
quantify high-energy effects, we define a useful parameter
� which represents the normalized energy density at the
horizon reentry time t of the GWs with which we are
concerned, namely, � � ��t�. From the Friedmann equa-
tion (14) and the definition of the scale factor (16), the
comoving wave number of GWs is rewritten in terms of the
parameter � as

k � aH �
�
�crit

�

�
1=�3�1�w�� �������������������

�2
 � 2�

q
: (43)
-7



TAKASHI HIRAMATSU PHYSICAL REVIEW D 73, 084008 (2006)
For higher frequency GWs, � becomes larger. One thus
expects that the high-frequency GW modes tend to be
significantly affected by the high-energy effects.

Notice that the location of the regulator brane is another
important parameter. Here, the location of the boundary is
set to zreg � 25–200‘, which is far enough away from the
physical brane to avoid artificial suppression of light KK
modes. Further, we must stop the numerical calculations
before the influence of the boundary condition at z � zreg

reaches the physical brane zb. The arrival time of the
influences of the regulator brane can be estimated by
drawing a null line from the initial position of the regulator
boundary ��0; zreg� toward the physical brane. With these
treatments, we have checked that the amplitude of GWs on
the brane is fairly insensitive to the location of regulator
boundaries. Thus, all the results presented in Secs. V and
VI are free from the effect of the regulator boundary.

In the situation considered here, the initial time tinit is
also an important parameter, which turns out to have an
important effect on the GWs in the bulk [30]. We parame-
trize the initial time as
sinit �
a�tinit�H�tinit�

k
; (44)
which represents the wavelength of GWs normalized by
the Hubble horizon scale at the initial time tinit. In order to
get a reliable estimate, we set sinit � 1 and run the simu-
lations until ��t� � 1, when the high-energy effects on the
GWs become negligible.

Finally, we adopt the constant mode h�tinit; �� � 1 as an
initial condition according to the discussion in Sec. III B.
Although it is plausible, the validity of the constancy of the
superhorizon modes must be checked. This point will be
carefully discussed in Sec. V B.
FIG. 4 (color online). The behavior of a test wave with m‘ � k‘ �
panel depicts the projection of the three-dimensional waves of the l
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V. CODE CHECK AND QUALITATIVE BEHAVIOR
OF GWS

A. Code check

In order to check our numerical code, we first consider
the simplest case in which the location of the brane is given
by z � zb � const. This is the so-called Minkowski brane
embedded in the AdS5 bulk. The solution of the evolution
equation (29) is given as [23,24,50]

hexact��; z� � z2Z2�mz�E�!��; (45)

where ! �
�����������������
k2 �m2
p

. The functions Z2 and E, respec-
tively, denote linear combinations of the Bessel functions
of order 2 and the sinusoidal functions. Imposing the
junction condition (30) at zb � ‘, we obtain

hexact��; z� �
�
z
‘

�
2
fY1�m�J2�mz� � J1�m�Y2�mz�g cos�!��:

(46)

According to the analytic solution (46), we set h �
hexact�0; z� and _h � @hexact=@�j��0 � 0 for the initial con-
dition of numerical simulation and compare the numerical
results with the analytic solution.

Figure 4 shows the behavior of GWs in the AdS5 bulk.
The right panel of the figure is the projection of the left
panel. In this simulation, we chose parameters as zreg �

20‘, m‘ � k‘ � 2, and N � 1024. The left panel of Fig. 5
shows the snapshot of the waveform at � � �1 � 10‘,
which illustrates that the numerical result accurately re-
covers the exact solution (46) in the interval between zb �

z � zreg � �1. Outside this region, the numerical simula-
tion is contaminated by the boundary condition of the
regulator brane. In the right panel of Fig. 5, the fractional
error of the amplitude j�hnum � hexact�=hexactj evaluated at
the time � � �1 is plotted as a function of the bulk coor-
dinate. We found that the error is suppressed to the order of
10�3 near the physical brane. Note that there appear sev-
2 in the bulk. The Minkowski brane is located at z � ‘. The right
eft panel.
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z � zreg. The right panel shows the numerical errors j�hnum � hexact�=hexactj estimated at that time, which is suppressed by 10�3 near
the physical brane. The spike shapes reflect the cancellation of significant digits because of hexact�10; z� 	 0.
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eral sharp spikes, whose locations roughly match those of
the zero-point hexact��; z� � 0. Thus, the cancellation of
significant digits occurs. These numerical errors can be
reduced when the number of collocation points N is
increased.

B. Behavior of GWs in the bulk and the validity check of
the initial condition

Having checked the reliability of our numerical scheme,
we now focus on the cosmological evolution of GWs. As
we mentioned in Sec. III B, we must first clarify the
validity and the sensitivity of the initial condition, namely,
the constancy of the superhorizon modes. It should be
stressed that, only in the long-wavelength limit k! 0
during the inflationary phase, the constant mode coincides
with the zero-mode solution [see Eq. (37)]. Therefore, the
constancy of GW amplitudes after inflation cannot be
FIG. 6 (color online). The evolution of a GW in the bulk in the cas
with �sinit; zreg� � �10; 20�. The right panel depicts the projection o
image in 0 � z=‘ � 3. The empty corner in the surface represents
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guaranteed even on superhorizon scales. Depending on
the choice of the parameters sinit and �, the mode h �
const may not be a good approximation of the initial
condition for numerical simulations in the RD epoch.

Figure 6 shows the time evolution of GWs in the
Poincaré coordinate system in the de-Sitter case. In this
simulation, we set sinit � 100 and H‘ �

���
3
p

. The universe
on the brane experiences accelerated cosmological expan-
sion and the wavelength of GWs becomes longer than the
Hubble horizon. Figure 6 indicates that the amplitude of
GWs on initially superhorizon scale remains constant not
only on the brane but also in the bulk. The right panel of
this figure, which depicts the projection of the left panel,
shows that a very slight change of the amplitude is ob-
served (a fraction of the original amplitude of � 1%) and
the amplitude finally converges to a fixed value. In this
sense, the constant mode h � const is suitable for the
e of a de-Sitter brane. We set the Hubble parameter to H‘ �
���
3
p

f the three-dimensional waves of the left panel, zooming in the
the motion of the brane [see Eq. (27)].
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FIG. 7 (color online). The evolution of a GW in the bulk in the case of a Friedmann brane. We set the comoving wave number to
k �

���
3
p
=‘ or � � 1:0 with �sinit; zreg� � �200; 80�. The right panel depicts the projection of the three-dimensional waves of the left

panel. The empty corner in the surface represents the motion of the brane [see Eq. (25)].
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initial condition of the superhorizon-scale GWs in the RD
phase if we impose the initial condition just after the
inflation.

Adopting this initial condition, we then performed simu-
lations in the radiation-dominated FRW case �w � 1=3�
with same parameters, � � 1:0 and sinit � 100. This result
is shown in Fig. 7. We found that the constancy of the GW
amplitude no longer holds in the bulk even before � 	 0,
where the wavelength of the GW on the brane just reenters
the Hubble horizon. In particular, GWs emanating from the
physical brane are observed, which propagate into the bulk
spacetime almost along a null line. This indicates that the
excitation of KK modes occurs near the brane even if the
wavelength of GWs is still outside the Hubble horizon.

It is noteworthy that the different behaviors of GWs in
the AdS5 bulk may be caused by the difference in the
motion of the brane [see Eqs. (25) and (27)]. In the moving
mirror problem in an electromagnetic field, the accelera-
tion or deceleration of the mirror yields the creation of
photons due to vacuum polarization (see, e.g., Sec. 4.4 of
Ref. [46]). A similar phenomenon may occur in the AdS5
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FIG. 8 (color online). Snapshots of the GW amplitudes in the
bulk for various choices of initial time. The snapshots were taken
when the wavelength of GWs became 5 times longer than the
Hubble horizon, i.e., aH=k � 5.
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bulk, that is, the KK modes (massive gravitons) are excited
by the deceleration of the brane which is depicted by an arc
with a nonzero curvature d2zb=d�2 < 0.

Figures 6 and 7 reveal that the constant mode
h�tinit; �� � const can be used as the initial condition if
we set this just after the end of inflation, but the constancy
of the long-wavelength mode would not be guaranteed in
the RD epoch even on superhorizon scales. This implies
that the choice of the initial time tinit (or sinit) defined in
(44) is crucial when setting the initial condition at the RD
epoch.

In Figs. 8 and 9, the dependence of the evolution of GWs
on the initial time is shown by varying the parameter sinit in
low-energy (� � 0:1) and high-energy (� � 10) cases.
Figure 8 plots the snapshots of the amplitude h��; z� in the
bulk when the wavelength of GWs becomes 5 times larger
than the Hubble horizon, i.e., aH=k � 5. Clearly, in the
bulk, the amplitude of GWs is very sensitive to the choice
of the parameter sinit, or equivalently, the initial time tinit.
The resultant waveform away from the physical brane does
not show any convergence even in the low-energy case
�� � 0:1�. This behavior may be caused by the fact that
the constant mode with the comoving wave number k in the
-0.4

0

0.4

0.8

1.2

-5  0  5  10  15  20  25  30  35

am
pl

itu
de

 : 
h

τ / l τ / l

ε∗= 0.1 ε∗= 10

sinit=10
sinit=20
sinit=50

sinit=100
sinit=200

-4 -2  0  2  4

am
pl

itu
de

 : 
h

τ / l τ / l

ε∗= 0.1 ε∗= 10

FIG. 9 (color online). Evolved results of GWs projected on the
brane starting with the various initial times.
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RD epoch immediately starts to oscillate as h��; z� / eik�,
which is the massless (m! 0) limit of Eq. (31).

On the other hand, in Fig. 9, the GW amplitudes tend to
converge on the brane if we set the initial time tinit early
enough. This convergence property might be due to the
presence of the junction condition (30). Therefore, as long
as we choose sinit * 50 for our interest of the energy scale
0:01 & � & 100, we do not need to care about the initial
time, when we estimate the IGWB spectra on the brane. In
Appendix B, quantitative aspects of the convergence prop-
erties of the amplitude are discussed. Moreover, Seahra
addressed these points in an analytic way in Ref. [34].
brane in low-energy (left panel) and the high-energy (right
panel) regimes. In both panels, solid lines represent the numeri-
cal solutions of the wave equation (29). The dashed lines are the
amplitudes of the reference wave href obtained from Eq. (47).
VI. IGWB SPECTRA

A. Comparison with reference waves

Keeping the results in Sec. V in mind, let us now
quantitatively estimate the high-energy effects of the
GWs and evaluate the energy spectra of the IGWB on
the brane. To quantify these, it might be helpful to dis-
criminate the influence of KK-mode excitation in the bulk
from the nonstandard cosmological expansion caused by
the �2 term in the Friedmann equation (14). For this
purpose, we introduce the reference wave href , which is a
solution of the four-dimensional evolution equation of the
amplitude obtained by replacing the scale factor and the
Hubble parameter derived from the standard Friedmann
equation with those from the modified Friedmann equation
(14). The resultant equation is given by

�h ref � 3H _href �

�
k
a

�
2
href � 0; (47)

which is just the Klein-Gordon equation for a scalar field in
the FRW background (see, e.g., [12,14]) and is the same as
(33) form � 0. Comparing the numerical simulations with
the solution of the wave equation (47), the effect of the KK-
mode excitation can be quantified separately.

Figure 10 shows the squared amplitude of the GWs, h2
5D

and h2
ref as functions of the scale factor a. The left panel

shows the low-energy case (� � 0:1), while the right
panel depicts the result in the high-energy regime (� �
50). As we increase the energy scale at the horizon reentry
time, the GW amplitude h5D becomes considerably re-
duced compared to the reference wave, href . Since the
late-time evolution of GWs simply scales as h / 1=a in
both h5D and href , the suppression of the amplitude h5D is
caused by the excitation of KK modes around the horizon
reentry time. Notice that the normalized energy density at
the horizon reentry time � is related to the observed proper
frequency 2�f � k=a0 � �a=a0�H as

f
fcrit

�

�
a
acrit

�
‘H �

�
�crit

�

�
1=3�1�w� �������������������

�2
 � 2�

q
; (48)

where the critical frequency fcrit is defined in (20) as
2�fcrit � �acrit=a0�‘�1, and w � 1=3 in this case. From
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this relation, one expects that the KK-mode excitation is
essential in the high-energy regime and the deviation from
the standard four-dimensional prediction for the spectrum
of IGWB becomes more prominent above the critical
frequency, f > fcrit.

B. IGWB spectrum in the five-dimensional cosmology

We are in the position to estimate the influence of KK-
mode excitation on the shape of the spectrum. To do so, we
ran simulations for the parameters listed in Table I (the
w � 1=3 case) and estimated the ratio of amplitudes
jh5D=hrefj for a different set of parameters. Note that in
the simulations with � & 1, the location of the regulator
brane zreg should be set far away from the physical brane.
This is because the long-term evolution is needed to follow
the oscillatory behavior.

We show the frequency dependence of the ratio in
Fig. 11. The ratio is evaluated at the low-energy regime
long after the horizon reentry time and is plotted as a
function of the frequency f=fcrit. Clearly, the ratio
jh5D=hrefj monotonically decreases with the frequency
and the suppression of amplitude h5D becomes significant
above the critical frequency fcrit. Using the data points in
the asymptotic region � � 5, we try to fit the ratio of
amplitudes with sinit � 200 to a power-law function.
Employing the least-squares method, the result becomes

��������h5D

href

��������� 
�
f
fcrit

�
��

(49)

with  � 0:76� 0:01 and � � 0:67� 0:01 (dashed line
in Fig. 11). In Appendix B, we calculate the ratios for
various sinit for each combination ��; zreg� to check the
robustness of this result.

The power-law fit (49) can be immediately translated to
the energy spectrum of IGWB, �GW. The spectrum taking
account of the KK-mode excitations is calculated as
-11
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TABLE I. Numerical parameters used for the simulations to estimate the frequency depen-
dence of the ratio of amplitudes jh5D=href j.

w ��; zreg� sinit N

0 �0:1200‘� � �100; 50‘� 50, 100, 200, 400 2048 or 4096
1=3 �0:01 200‘� � �100; 25‘� 50, 100, 200, 400, 800 2048 or 4096
1 �0:1500‘� � �50; 50‘� 200, 400, 800, 3200, 12 800 2048 or 4096

TAKASHI HIRAMATSU PHYSICAL REVIEW D 73, 084008 (2006)
�GW �

��������h5D

href

��������
2
�ref ; (50)

where we used the fact that �GW / h2f2. As discussed in
Sec. II B 2, if we neglect the effect of the KK-mode exci-
tation, the spectrum becomes �ref / f

4=3 [See Eq. (21)].
Then, combining it with the result (49), the IGWB spec-
trum becomes nearly flat above the critical frequency:

�GW / f0; (51)

which is shown as filled squares in Fig. 12. In this figure,
the spectrum calculated from the results of the reference
waves �ref is also shown as filled circles. Note that the
normalization factor of the spectrum is determined so as to
be �GW � 10�14 according to the constraint from the
CMB observation. The short-dashed line and the solid
line represent each asymptotic behavior in the high-
frequency region. The spectrum taking account of the
two high-energy effects seems almost indistinguishable
from the standard four-dimensional prediction shown as
the long-dashed line in the figure. In other words, while the
effect due to the nonstandard cosmological expansion lifts
up the spectrum, the KK-mode effect reduces the GW
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FIG. 11 (color online). Frequency dependence of the ratio of
amplitudes jh5D=href j between the numerical simulation of the
wave equation (29) and the reference wave (47). The vertical
solid line represents the critical frequency. The dashed line
indicates the fitting result (49), where fitting was examined using
the data with sinit � 200 at the asymptotic region � � 5.
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amplitude, which results in the same spectrum as the one
predicted in the four-dimensional theory. Additionally,
notice that the amplitude taking account of the two effects
near f 	 fcrit is slightly decreasing, which agrees with the
results in our previous study for � � 0:3 using the GN
coordinates [29].

At this point, however, it is unclear whether the result
obtained here is generic or accidental for a certain range of
the model parameters. To clarify the cosmological depen-
dence of the KK-mode excitations in a more quantitative
way, we next study the cases with a different EOS parame-
ter w.

C. Dependence on equation of state

To quantify the EOS dependence, we ran simulations for
the MD case w � 0 and the somewhat stiff matter case
w � 1, which might be realized by introducing the kineti-
cally driven scalar field (e.g. the quintessential inflation
[51,52]). Varying the EOS parameter changes the accel-
eration of the brane. One naively expects that the different
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FIG. 12 (color online). The energy spectrum of the IGWB
around the critical frequency. The filled circles represent the
spectrum caused by the nonstandard cosmological expansion of
the universe. Taking account of the KK-mode excitations, the
spectrum becomes the one plotted as filled squares. Particularly,
in the asymptotic region depicted in the solid line, the frequency
dependence becomes almost the same as the one predicted in the
four-dimensional theory (long-dashed line).
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motion of the brane may suppress or enhance the KK-mode
excitation.

With the same procedure as in the previous subsection,
we calculated the ratio of amplitudes jh5D=hrefj for various
� in the case of w � 0 and w � 1. The results are sum-
marized in Fig. 13, where the horizontal axis represents��������������������

1�H2
‘2

p
. Fitting the power-law function to all cases

shown in the figure, we found that the ratios universally
scale as��������h5D

href

��������� ~�1�H2
‘

2��0:24 	 ~�1�H2
‘

2��1=4; (52)

where ~ � 0:75, 0.81, and 0.83 for w � 0, 1=3, and 1,
respectively, which indicates that the quantity ~ may be
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FIG. 14 (color online). The energy spectrum of the IGWB in the b
panel). The amplitude is normalized by the value of the four-dimen
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related to w as ~ � �0:155w2 � 0:241w� 0:748 by sim-
ply fitting the quadratic function. An important point to
emphasize is that this scaling property does not depend on
the parameter w or the acceleration of the brane.
Combining the scaling relation with (50), the IGWB spec-
tra can be estimated as

�GW � ~2�1�H2
‘2��1=2�ref : (53)

In particular, in the high-frequency region f� fcrit, the
prefactor of the right-hand side behaves as

�1�H2
‘2��1=2 	 H‘ / f��3�w�1�=�3w�2�� (54)

from Eqs. (7), (8), and (18). Combining the result (19), the
energy spectrum of the IGWB behaves as

�GW / f�3w�1�=�3w�2� for f� fcrit: (55)

Owing to these calculations (19) and (55), for w � 0
(MD), we obtain

�GW /

�
f�1=2 for f� fcrit;
f�2 for f� fcrit;

(56)

and for the w � 1 case,

�GW /

�
f2=5 for f� fcrit;
f1 for f� fcrit:

(57)

These results imply that the spectrum generally changes
from the four-dimensional prediction. Indeed, transform-
ing the numerical results (52) to the energy spectra shown
in Fig. 14 in the cases with w � 0 and w � 1, the fre-
quency dependence of the spectra including the two high-
energy effects (solid lines) clearly differs from each four-
dimensional prediction (long-dashed lines).

Taking these results into account, one may conclude that
the cancellation of the high-energy effects in the RD epoch
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ackground EOS with w � 0 (left panel), and with w � 1 (right
sional prediction at the critical frequency.
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is accidental and the KK-mode excitation dominates over
the nonstandard cosmological expansion when w> 1=3.
VII. CONCLUSION

We have investigated the power spectrum of the IGWB
in the five-dimensional cosmology based on the Randall-
Sundrum model. In the braneworld scenario, the two high-
energy effects affect the shape of the spectrum above the
critical frequency fcrit defined in (20). One is the non-
standard cosmological expansion on the brane caused by
the high-energy correction of the Friedmann equation. The
analytical estimate taking account of this effect reveals that
the effect makes the spectrum steeply blue [see Eq. (21)].
In contrast, another important effect is the excitation of KK
modes which escapes from our brane into the five-
dimensional bulk, leading to the suppression of the spec-
trum. In order to quantify these two effects, we solved the
wave equation of each Fourier mode of GWs numerically
for various EOS parameters w.

The systematic survey of numerical simulations with
various parameter sets reveals that the universal scaling
law may exist for the KK-mode excitation in the high-
energy regime [Eq. (52)]:

��������h5D

href

��������/ �1�H2
‘2��1=4:

Using the universal scaling law, we constructed the power
spectrum of the IGWB in the cases with w � 0 (MD
universe), w � 1=3 (RD universe), and w � 1 (stiff matter
dominant universe). From the results (12) and (55), the
frequency dependence of the spectrum in the high-
frequency region f > fcrit becomes

�GW /

8><
>:
f�2�4D�; f�1=2�5D� for w � 0;
f0; f0 for w � 1=3;
f1; f2=5 for w � 1:

(58)

Particularly, in the RD case, the accidental cancellation of
the two high-energy effects occurs, which yields the same
spectrum as the one predicted in the four-dimensional
theory. This scaling law might be understood in the context
of moving mirror problems. The discussion about the
analytic derivation of the scaling law is work in progress.

Finally, we briefly comment on the other numerical
works using the different schemes. Recently, Seahra solved
numerically the wave equation in the null coordinate sys-
tem based on the Poincaré coordinates using a sophisti-
cated numerical scheme [34]. He observed the agreement
between his numerical results and our results for the same
choice of the EOS parameters with the same initial con-
ditions as ours. In addition, it is observed that, even if a
constant initial condition on the initial null hypersurface is
chosen, the amplitude of GWs on the brane is almost
084008
identical to our results. Moreover, the numerical calcula-
tion based on the quantum theory has been performed by
Kobayashi and Tanaka [33]. They reported the same spec-
trum in the RD case as ours, even if KK modes are taken
into account in the initial de-Sitter phase. On the other
hand, Ichiki and Nakamura have obtained a tilted spectrum
�GW / f

�0:46 [31]. While their early results have included
errors associated with numerical accuracy, the new calcu-
lation using the revised code did not converge to the flat
spectrum either. Currently, we do not know the reason why
the result by Ichiki and Nakamura is different from ours. In
order to understand these numerical results well, the ana-
lytical study of the scaling relation (52) is essential, which
is definitely our next task.
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APPENDIX A: THE PSEUDOSPECTRAL METHOD

In this appendix, we briefly describe the implementation
of the pseudospectral method in our numerical scheme.

From the coordinate transformation (41), the wave equa-
tion (29) is expressed as

@2h

@t2
� Kt�

@2h
@t@�

� K��
@2h

@�2 � Kt
@h
@t
� K�

@h
@�
� Kh � 0;

(A1)

where the coefficients Kt�, K��, Kt, K�, and K are func-
tions of t and �. We use the predictor-corrector method for
the temporal evolution. To implement this, we introduce an
auxiliary variable ��t; �� satisfying the equation

@h
@t
� �� Kt�

@h
@�
� F��; h0; t; �n�; (A2)

where the prime denotes the derivative with respect to �
[see Eq. (41)]. With this definition, the time evolution of �
satisfying (29) is formally written as

@�
@t
� G��; h; h0; h00; t; �n�: (A3)

Notice that the function G does not contain the derivative
@�=@�. Empirically, the presence of this derivative causes
numerical instability. The functions F and G are evaluated
at each collocation point �n. Then, transforming to the
Tchebychev space by Eq. (42), we obtain a set of ordinary
differential equations:
-14
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d~hn
dt
� ~Fn�t�;

d~�n
dt
� ~Gn�t�: (A4)

With the reduced equations (A4), the predictor-corrector
method based on the Adams-Bashforth-Moulton scheme
can be used to obtain the time evolution of ~hn�t� and ~�n�t�.

At each time step, while the boundary conditions (30)
and (38) are used to evaluate ~hN�1 and ~hN , we put addi-
tional conditions on ~�N�1 and ~�N as

~�N�1 � ~�N � 0: (A5)

Owing to the definition of the function F containing no
derivatives of � [see Eq. (A2)], this empirically based
treatment of boundary conditions suppresses the numerical
error caused by finite truncation of the Tchebychev trans-
formation (42).

In summary, we first evaluate the functions F and G in
the physical space at the time t. Then, transforming them
into the Tchebychev space by (42), we obtain ~hn and ~�n at
the next time step t� �t by solving the reduced equations
(A4) for 0 � n � N � 2, and imposing the boundary con-
ditions and the additional conditions (A5) onto ~hn and ~�n
for n � N � 1; N. The spectral coefficients of the deriva-
tives h0 and h00 can be computed in decreasing order by the
recurrence relations [49]

cn ~h�1�n � ~h�1�n�2 � 2�n� 1�~hn�1; ~h�1�n�N � 0; (A6)

and then

cn ~h�2�n � ~h�2�n�2 � 2�n� 1�~h�1�n�1; ~h�2�n�N � 0; (A7)

where cn is defined as

cn �
�

2 for n � 0; N;
1 for 1 � n � N � 1:

(A8)

Finally, we obtain h�t� �t; �� and its derivatives h0�t�

HIGH-ENERGY EFFECTS ON THE SPECTRUM OF THE . . .
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FIG. 15 (color online). Convergence of the ratio of amplitudes
employing the nonlinear least-squares method. Long-dashed lines d

084008
�t; �� and h00�t��t; �� by the inverse Tchebychev
transformation.
APPENDIX B: INITIAL TIME DEPENDENCE

As seen in Sec. V B, the amplitudes on the brane become
insensitive to the choice of the initial time as long as sinit is
large enough. In this appendix, we show that the ratios of
amplitudes discussed in Sec. VI B tend to converge to a
fixed value in the low-energy and high-energy cases. This
validates the estimation of the power spectrum of the
IGWB using the results obtained from the simulations
with sinit � 200.

Figure 15 shows the dependence of the ratios h5D=href

on the parameter sinit. The left and right panels show the
high-energy (� � 50) and the low-energy (� � 0:1)
cases, respectively. In both cases, the ratios clearly con-
verge to certain asymptotic values as increasing sinit. Using
the nonlinear least-squares method, we tried to fit these
values to the function��������h5D

href

��������� AsBinit � C; (B1)

where A, B, C are fitting parameters depending on �. Then
we obtained

�A;B;C� �
�
�0:566;�0:573; 0:772� for � � 0:1;
�0:456;�0:880; 0:118� for � � 50;

(B2)

which are shown as solid curves in Fig. 15. Note that C
represents the asymptotic values shown as long-dashed
lines in each panel.

Picking up the values at sinit � 200 in both cases, one
can see that the deviations from the asymptotic values C
remain less than a few percent. From this fact, we use the
ratios with sinit � 200 to construct the power spectra of the
IGWB without deriving the asymptotic values for each �.
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h5D=href . Solid lines represent the fitting curve calculated by
enote the asymptotic value of the ratio.
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