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Evaporation induced traversability of the Einstein-Rosen wormhole
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Suppose the Universe comes into existence (as classical spacetime) already with an empty spherically
symmetric macroscopic wormhole present in it. Classically the wormhole would evolve into a part of the
Schwarzschild space and thus would not allow any signal to traverse it. I consider semiclassical
corrections to that picture and build a model of an evaporating wormhole. The model is based on the
assumption that the vacuum polarization and its backreaction on the geometry of the wormhole are weak.
The lack of information about the era preceding the emergence of the wormhole results in appearance of
three parameters which—along with the initial mass—determine the evolution of the wormhole. For
some values of these parameters the wormhole turns out to be long-lived enough to be traversed and to
transform into a time machine.
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I. INTRODUCTION

The question as to whether there are traversable worm-
holes in the Universe is at present among the most impor-
tant problems of classical relativity. The reason is that in
the course of its evolution a spacetime with such a worm-
hole is apt to develop the Cauchy horizon [1]. At one time
it was believed that closed timelike curves must lurk
beyond the horizon and it was commonplace to tie exis-
tence of wormholes with possibility of time machines.
Later it has become clear that the two phenomena are not
directly connected—the spacetime always can be ex-
tended through the Cauchy horizon in infinitely many
ways, all these extensions being equal (since none of
them is globally hyperbolic), and always some of them
are causal [2]. Nevertheless, the fact remains that having a
wormhole one can (try to) force the spacetime to choose
between a number of continuations and we have no idea as
to the criteria of the choice.1 That is the existence of
traversable wormholes would possibly imply the existence
of an unknown classical (though nonlocal) law governing
the evolution of the Universe.

The process of emergence of the classical spacetime
from what precedes it is not clear yet (to say the least).
So, it is well possible that the whole problem is spurious
and there are no traversable wormholes just because they
have never appeared in the first place. In principle, one can
speculate that there is a mechanism suppressing formation
of any topological ‘‘irregularity‘‘ at the onset of the clas-
sical universe. However, at present nothing suggests the
existence of such a mechanism and it seems reasonable to
pose the question: assuming a wormhole did appear in the
y horizons are also expected inside the black holes,
tected from whatever is beyond them by the event
he same time a wormhole enables a mad scientist
ources to destroy the Universe, as is romantically
3]. For discussion on quantum effects that may, or
the Universe, see [4].

06=73(8)=084006(11)$23.00 084006
end of the Planck era, what would happen with it? Would it
last for long enough to threaten global hyperbolicity?

Traditionally in searching for traversable wormholes one
picks a stationary (and hence traversable) wormhole and
looks for matter that could support it. However, in none of
the hitherto examined wormholes the required matter looks
too realistic. In some cases it is phantom matter with a
prescribed equation of state [5], in some others—classical
scalar field [6]. True, two wormholes are known [7,8] the
matter content of which is less exotic in that it at least
obeys the weak energy condition (all necessary [1,9] vio-
lations of the latter being provided by the vacuum polar-
ization). However, the first of them has the throat 67lPl

wide and therefore, being nominally a wormhole, can
scarcely be called traversable. The second is macroscopic
(arbitrarily large, in fact), but needs some classical matter.
Though this matter does satisfy the weak energy condition,
nothing at the moment is known about how realistic it is in
other respects. In this paper I take a different approach:
first, I fix the initial form and the matter content of the
wormhole trying to choose them as simple as possible (the
hope is that the simpler is the model the better are the
chances that it reflects general properties of the real worm-
holes). Then I subject it to the (semiclassical) Einstein
equations

G�� � 8�Tc
�� � 8�T��

(here T�� is the expectation value of the quantum stress-
energy tensor and Tc

�� is the contribution of the classical
matter) and trace the evolution of this presumably realistic
wormhole testing it for traversability.

The wormhole under consideration—I shall denote it
Mwh—comes into being in the end of the Planck era as the
Schwarzschild space with mass m0 (to be more precise, as
a three-dimensional subspace S thereof), hence the name
Einstein-Rosen wormhole. The form of S is defined by
trans-Planckian physics that gives birth to the wormhole. I
set three conditions on S, of which only one seems to lead
-1 © 2006 The American Physical Society
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to noticeable loss in generality. Each of the allowed S is
characterized by three numbers—�R, �L, and $. For a
given mass$ is related to the minimal possible radius of S
and, when $ is fixed, �R�L� loosely speaking measures the
delay between the end of Planck era near the throat and in
the remote parts of the right (left) asymptotically flat region
(I mostly consider an ‘‘interuniverse wormhole’’ [10], i.e. a
spacetime with two asymptotically flat regions connected
by a throat; an ‘‘intrauniverse wormhole’’ is constructed in
Section IV by identifying parts of these regions, corre-
spondingly a new parameter d—the distance between the
mouths—appears).

The wormhole is taken to be empty: Tc
�� � 0 (for rea-

sons of simplicity again). Hence, classically it would be
just (a part of) the Schwarzschild space MS, which is a
standard of nontraversability [1]. But the Schwarzschild
black hole, as is well known, evaporates, that is quantum
effects in MS give rise to a nonzero vacuum stress-energy
tensor �T��. So, by the Einstein equations Mwh is anything
but MS. Determination of its real geometry is, in fact, a
longstanding problem, see e.g. [11] for references and [12]
for some discussion on its possible relation to the worm-
holes. In this paper I make no attempts to solve it. It turns
out that to study traversability of a wormhole all one needs
to know is the metric in the immediate vicinity of the
apparent horizons and, fortunately, for wormholes with
the proper values of $ this—simpler—problem can be
solved separately.

To that end I make a few assumptions based on the idea
that quantum effects are relatively weak. Roughly, I as-
sume that the system (Einstein equations� quantum field
equations) has a solution Mwh with the geometry resem-
bling that of the Schwarzschild space—and coinciding
with the latter on S—and with T�� close to that of the
conformal scalar field in the Unruh vacuum (what exactly
the words ‘‘resembling‘‘ and ‘‘close‘‘ mean in this context
is specified in Section II C). Though the above-mentioned
assumptions are quite usual and on the face of it seem
rather innocent, in some situations, as we shall see, they
cannot be true (which on the second thought is not surpris-
ing—one does not expect the vacuum polarization to be
weak near the singularity, or in the throat at the moment of
its maximal expansion). Therefore the consideration will
be restricted to the class of wormholes with $ 2 �1;

��
5
p
�1
2 �.

Throughout the paper the Planck units are used: G �
c � @ � 1 and the massm0 is supposed to be large in these
units.
II. THE MODEL AND THE ASSUMPTIONS

A. The Schwarzschild spacetime

We begin with recapitulating some facts about the
Schwarzschild space, which will be needed later.

The eternal (though nonstatic) spherically symmetric
empty wormhole is described by the Schwarzschild metric,
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which we shall write in the form

d s2 � � �F2�u; v�dudv� �r2�u; v��d�2 � cos2�d��; (1)

where

�F 2 � 16m2
0x
�1e�x; �r � 2m0x (2)

and the function x�u; v� is defined implicitly by the equa-
tion

uv � �1� x�ex: (3)

It is easy to check that the following relations hold

�r;v � �
2m0u
xex

; (4a)

�r;u � �
2m0v
xex

� 2m0
x� 1

ux
; (4b)

�r;uv � �2m0
e�x

x3 ; (4c)

�’;u � �
1

2
�lnx� x�;u� �

1� x
2x

x;u where �’ � ln �F:

(4d)

In the Unruh vacuum the expectation value of the stress-
energy tensor of the conformal scalar field has the follow-
ing structure:

4� �Tvv � �1 �r�2
;u ; 4� �Tuu � �2 �r2

;um
�4
0 ;

4� �Tuv � �3m
�2
0 ; 4� �T�� � 4�cos�2� �T�� � �4m

�2
0

(all remaining components of �T�� are zero due to the
spherical symmetry), where �i are functions of x, but not
of u, v, or m0, separately. What is known about �i�x�
supports the idea that in the Planck units they are small.
In particular, j�i�1�j & 10�3 and K defined in (5a) is �
5� 10�6 as follows from the results of [13,14], see the
appendix. At the horizons �h, which in this case are the
surfaces x � 1,

�r2
;u

�Tvv

�������� �h
�
�1�1�

4�
� �

�F4�1�K

16m4
0

; K � �
�1�1�e2

64�
;

(5a)

�r�2
;u

�Tuu

�������� �h
�
�2�1�

4�m4
0

; (5b)

j �Tuvj
�������� �h
�
�3�1�

4�m2
0

	
�F2

64�m2
0

: (5c)
B. The geometry of the Einstein-Rosen wormhole

The wormhole Mwh being discussed is a spacetime with
the metric

d s2 � �F2�u; v�dudv� r2�u; v��d�2 � cos2�d��: (6)
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To express the idea that the wormhole is ‘‘initially
Schwarzschildian’’ we require that there should be a sur-
face S such that F, r, and their first derivatives are equal,
on S, to �F, �r, and their derivatives, respectively. The
surface is subject to the following three requirements:
(a) I
FIG. 1
hole. T
is the e
t is spacelike between the horizons, i.e. at x < 1;

(b) F
or the points of S with x > 1 and u > v the de-

pendence u�v� is a smooth positive function without
maximums. The same must hold also with v and u
interchanged;
(c) F
ar from the wormhole (i.e. at r
 m0) S must be
just a surface of constant Schwarzschild time, that is
it must be given by the equation u=v � const. Thus
(see Fig. 1) for any point p 2 S with r�p� 
 m0

v�p�> u�p� ) u�p� � ��Rv�p�;

v�p�< u�p� ) v�q� � ��Lu�q�;
�R; �L > 0:
Condition (a) restricts substantially the class of wormholes
under examination, in contrast to (b), which is of minor
importance and can be easily weakened, if desired. The
idea behind (c) is that far from the wormhole the
Schwarzschild time becomes the ‘‘usual’’ time and that the
Planck era ended—by that usual time—simultaneously in
different regions of the Universe. Though, remarkably, (c)
does not affect the relevant geometrical properties of Mwh,
it proves to be very useful in their interpretation. In par-
ticular, it enables us to assign in an intuitive way the
‘‘time’’ T to any event p0 near the throat of the wormhole.
Namely, p0 happens at the moment when it is reached by
the photon emitted in the end of Planck era from the point
p (or p00) located in the left (respectively, right) asymptoti-
cally flat region. The distance from this point to the worm-
hole—when it is large enough—is approximately
2m0 lnu2�p0��L (respectively, � 2m0 lnv2�p0��R). Taking
this distance to be the measure of the elapsed time from the
end of the Planck era we define
. The section � � � � 0 of the Einstein-Rosen worm-
he thin solid lines are surfaces r � const. The gray angle
vent horizon.
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TL�p0� � 2m0 lnu2�p0��L; TR�p0� � 2m0 lnv2�p0��R
(7)

(even though rT is null, as is with ‘‘advanced’’ and
‘‘retarded’’ time in the Schwarzschild case). Note that as
long as we consider the two asymptotically flat regions as
different and totally independent (i.e. up to Section IV)
there is no relation between �R and �L, nor is there a
preferred value for either of them.

Among other things the choice of S fixes the coordinates
u and v up to a transformation

u � u0 � Cu; v � v0 � C�1v: (8)

To fix this remaining arbitrariness and thus to make for-
mulas more compact we require

u0 � v0;

where u0 and v0 are the coordinates of the intersections of
S with the coordinate axes, see Fig. 1. Though no reasons
are seen to think that wormholes with some particular
values of v0 are more common than with any other, we
restrict our consideration to those with

1<$<
��
5
p
�1
2 ; where $ � e�=v2

0;

� � 16�Km�2
0 :

As we shall see below the wormholes with smaller $ may
be nontraversable, while those with larger $ evaporate too
intensely and cannot be studied within our simple model.
To summarize, we have four independent parameters m0,
$, and �R�L�, all values of which are considered equally

possible as long as m0 
 1, $ 2 �1;
��
5
p
�1
2 �, and �R�L� > 0.

Our subject will be the (right, for definiteness) horizon,
by which I understand the curve h lying in the (u, v)-plane
and defined by the condition

r;v

��������h
� 0: (9)

By (4a) r;v is negative in all points of S with u > 0 and
vanishes in the point (0, v0). In this latter point the horizon
starts. h cannot return to S, because there are no more
points r;v � 0 on S [by condition (b)]. Neither can it have
an end point, being a level line of the function with nonzero
[by condition (12a) imposed below] gradient. So, h goes
from S to infinity dividing the plane (u, v) above S into
two parts: r;v is strictly negative to the left of h and strictly
positive to the right. So the horizon exists and is unique.
The physical meaning of h is that its each small segment
shows where the event horizon would pass if the evolution
stopped at this moment. The metric in that case would be
just the Schwarzschild metric with mass

m�v� � 1
2r�h�v��: (10)

The fact that h can be parametrized by v, as is implied in
-3
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this expression, will become obvious below. Alternatively
the horizon can be parametrized by m.

Notation. From now on we shall write f̂ for the restric-
tion of a function f�u; v� to h. In doing so we view f̂ as a
function of v or m depending on which parametrization is
chosen for h (this is a—slight—abuse of notation, because
strictly speaking f̂�v� and f̂�m� are different functions, but
no confusion must arise). Partial derivatives are, of course,
understood to act on f, not on f̂. Thus, for example,

m �
1

2
r̂;

@
@v
r̂;u � r;uv�h�v��;

’̂;uv�m� � ’;uv�h�m��; etc:

In conformity with this notation the function v! u whose
graph is h will be denoted by û�v�, while û�m� is a short-
hand notation for û�v�m��.

Traversability of the wormhole is determined by the fact
that û�m� tends to û1 > v0 as m! 1 (what happens at
smaller m is, of course, beyond the scope of this paper).
Indeed, consider a null geodesic 	 given by u � u�p0�,
where p0 2 h. In our model r̂;vv is strictly positive [see
Eq. (26) below] and hence 	 intersects h once only. As we
have just discussed r;v is negative in all points of 	 preced-
ing p0 and is positive afterwards. So, r reaches in p0 its
minimum on 	. That is the photon emitted in p � 	 \ S
passes in p0 the throat of the wormhole2 and escapes to
infinity. As we move from p to the left the same reasoning
applies to all photons as long as their u-coordinates are
small enough to enforce the intersection of h and 	. The
boundary of this region is generated by the points p1 with

u�p1� � û1 � sup
m2�1;m0�

û�m�

(as we shall see the supremum is provided, in fact, by m �
1). Correspondingly, we define the closure time—the mo-
ment when the wormhole ceases to be traversable for a
traveler wishing to get from the left asymptotically flat
region to the other one:

Tcl
L � 2m0 lnû2

1�L:

Similarly is defined the opening time Top
L � 2m0 lnû2

0�L.
So, the time of traversability of a wormhole is

Ttrav
L � Tcl

L � T
op
L � 4m0 ln

û1
û0
: (11)

Thus the goal of the paper is essentially to estimate û1=û0.
Remark 1. The fact that r � r�p0� for all points of 	,

guarantees that within our model no photon from the
singularity r � 0 will come out of the wormhole. So, in
spite of evaporation and the weak energy condition viola-
2I call it a throat just because it is the narrowest place on the
photon’s way, but, since 	 is orthogonal to the sphere u; v �
const through p0, this term is in agreement with what is proposed
in [15].
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tions involved, the wormhole fits in with the (weak) cosmic
censorship conjecture.

C. Weak evaporation assumption

The physical assumption lying in the heart of the whole
analysis is the ‘‘evaporation stability’’ of the Einstein-
Rosen wormhole, i.e. I assume that there is a solution of
the system (Einstein equations� field equations) which
starts from S and has the following property: the geometry
in a small neighborhood of any point p is similar to that in a
point �p of the Schwarzschild space with mass �m (of course
�p and �m depend on p), while the stress-energy tensor in p
is small and close to �T��� �m; x� �p��.

More specifically I require ofMwh that to the future of S

r;uv < 0 (12a)

[cf. (4c)] and

rr � 0: (12b)

The latter means that at S the throat of the wormhole is
already contracting and that later contraction does not pass
into expansion.

The requirement that T�� in a point p 2 h is close to
�T���m; 1� is embodied in the assumption that the relations
(5) are valid when the sign� is removed and m0 is replaced
with m:

r̂ 2
;uT̂vv � �

K
16F̂

4m�4; 0<K	 1; (13)

4�r̂�2
;u T̂uu � cm�4; c	 1; (14)

4�jT̂vuj 	
1
16F̂

2m�2: (15)

I also assume that outside the horizon

Tuu � 0: (16)

In the Schwarzschild case this inequality is known to hold
at x � 1, see (A8). Elster’s results ( �Tuu ��� pr � 2s in
notation of [14]) make it obvious that (16) holds also at x >
1:5. It is still possible, of course, that �Tuu by whatever
reasons changes its sign somewhere3 between 1 and 1.5,
however, even if (16) breaks down the results established
below are not affected unless the violation is so strong that
it changes the sign of the relevant integral, see (49).
Finally, I assume that

jT��j 	
1

2�rjr;vujF
�2: (17)

Again, the corresponding inequality in the Schwarzschild
case—it is 2�4 	 m2

0=x, see (2) and (4c)—holds both on
the horizon and at large x, see Eqs. (A4) and (A2). And,
again, we actually do not need (17) to be true pointwise.
3This hopefully can be verified numerically. Some arguments
against this possibility can be found in [16].

-4



4The event horizon is a null surface and there is no such thing
as the (invariant) distance between a point and a null surface.
Consider, for example, the surface t � x� � in the Minkowski
plane. Is it far from, or close to the origin of coordinates? The
answer is: neither. Simply by an appropriate coordinate trans-
formation one can give any value to �.
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The smallness of the relevant integral [see Eq. (34)] would
suffice.

Remark 2. All these assumptions are local in the sense
that to check their validity an observer in a point p does not
need to know anything beyond a small vicinity of p.
For, the requirement that the metric in this vicinity is
(approximately) (1) fixes the coordinates up to the trans-
formation (8) and the assumptions are invariant under that
transformation.

D. Groundless apprehensions

Now that the model is built finding out whether the
Einstein-Rosen wormhole is traversable becomes a matter
of mathematics. But traversability of wormholes, let alone
the evolution of the black hole horizons, are long being
investigated and both theories have arguments that seem to
enable one to answer in the negative even without solving
any equations. In this subsection I point the holes in two of
these conceivable arguments.

1. Quantum inequalities

From (13) it is seen that the weak energy condition is
violated in some macroscopic region V around the throat
of the wormhole. At the same time the energy density 

measured by a free falling observer—whose proper time
we denote by t—obeys in V the inequality [17]
Z t2

t1

�t�dt & jt1 � t2j�3; when jt1 � t2j & m0:

(18)

The combination of these two properties in a few occasions
(note that the global structure of the spacetime is irrelevant
here, it need not be a wormhole) led to quite impressive
estimates. Thus, in particular, it was found in [18] that in
the Alcubierre bubble and in the Krasnikov tube there are
three-surfaces � and unit timelike vector fields u such that

Z
�
T��u�u�d3V � �1032MGalaxy: (19)

The figure in the right-hand side is so huge that both
spacetimes were dismissed as ‘‘unphysical.’’ So, is there
not any danger of that kind in our case?

The answer is negative by at least two reasons. First, we
explore not the capabilities of a hypothetical advanced
civilization (as is usual in discussing the above-mentioned
spacetimes), but a natural phenomenon. And there is a vital
interpretational difference between these two situations.
Indeed, in the former case the fact that a physical quantity
has a presumably unrealistic value can be used as a ground
for ruling the corresponding solution out as unphysical or
unfeasible. But in the case at hand the situation—once the
assumptions about the initial data, the values of the pa-
rameters, and the other constituents of the model are
admitted reasonable—is reverse. If calculations yield
(19), this would not signify that the spacetime is unphys-
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ical. On the contrary, it would mean that huge values of the
integral may occur in physically appropriate situations and
thus cannot serve as sign of unfeasibility of a spacetime.

Second, the estimates like (19) do not follow from (18)
automatically. Additional assumptions are necessary and
the approximate equality

maxjGk̂ l̂�p�j
maxjRî ĵ m̂ n̂�p�j

�
8�maxjTk̂ l̂�p�j
maxjRî ĵ m̂ n̂�p�j

� 1 p 2 V

(20)

is among them [19]. At first glance, violation of this equal-
ity would signify some unnatural fine-tuning (note that �
can be understood quite liberally, the difference in 5–10
orders being immaterial). In fact, however, this is not the
case: Eq. (20) corresponds to the situation in which the
geometry of V is defined mostly by its (exotic) matter
content, while the contribution to the curvature of the Weyl
tensor is neglected. But in four dimensions this is not
always possible. For example, Eq. (20) breaks down, in
any nonflat empty region (the numerator vanishes there but
the denominator does not). And the Einstein-Rosen worm-
hole is just another example. Loosely speaking, the
Schwarzschild spacetime is a wormhole by itself. In mak-
ing it traversable exotic matter is needed not to shape the
spacetime into a wormhole, but only to keep the latter ajar.

2. The gap between the horizons

The model built above is not entirely new. The behavior
of the apparent horizon in very similar assumptions was
studied back in 1980s (see, i.e. [11] for some review). The
spacetime under consideration, though, was not the worm-
hole Mwh, but the black hole originating from gravitational
collapse (such a spacetime is not a wormhole, nor is it
empty). The general consensus (see though [20]) was that
the backreaction results only in the shift of the event
horizon to a radius smaller than 2m by ��m�2, which
is physically negligible [21]. To see why such an over-
whelmingly small � does not make wormholes nontravers-
able note that � is the shift in radius and not the distance
between the horizons.4 That is � � r�q� � r�p0�, see
Fig. 1. Clearly this quantity has nothing to do with travers-
ability of the wormhole.

III. THE EVOLUTION OF THE HORIZON

The Einstein equations for the metric (6) read

4�Tvu �
F2

4r2 � �rr;vu � r;vr;u�r
�2; (21)
-5
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4�Tvv � �2r;v’;v � r;vv�r�1; (22)

4�Tuu � �2r;u’;u � r;uu�r
�1 (23)

� �
F2

r

�
r;u
F2

�
;u
; (23’)

4�T�� � �
2r2

F2 �r;vu=r� ’;vu�: (24)

On the horizon the left-hand side in (21) can be neglected
by (15), while r;v vanishes there by definition and we have

r̂ ;vu � �
F̂2

8m
: (25)

Equations (22) and (13) give

r̂ ;vv �
�KF̂4

2m3r̂2
;u
: (26)

Likewise, (23) and (14) result in

r̂ ;uu � 2r̂;u’̂;u � 2cr̂2
;um�3: (27)

Finally, Eqs. (24) and (17) yield

’;vu � �r;vu=r: (28)
A. û as function of m

Our aim in this subsection is to find the function û�m�.
To this end we, first, use Eqs. (25)–(28) to find a system of
two ordinary differential equations defining û�m� [these are
Eqs. (30) and (36), below]. Then for wormholes with

$> 1; (29a)

$<
��
5
p
�1
2 ; (29b)

we integrate the system and obtain a simple explicit ex-
pression for û.

The horizon can be parametrized by v, or by m (as was
already mentioned), or finally by u. The relations between
the three parametrizations are given by the obvious for-
mulas:

2
dm
du
�

dr̂
du
� r̂;u (30)

and

dv
du
� �

r̂;vu
r̂;vv

; (31)

of which the former follows right from the definitions (9)
and (10) and the latter from the fact that 0 � dr̂;v �
r̂;vudu� r̂;vvdv on h. These formulas enable us to write
down
084006
d

dm
r̂;u �

du
dm

�
@
@u
�

dv
du

@
@v

�
r̂;u � 2r̂�1

;u

�
r̂;uu �

r̂2
;vu

r̂;vv

�
:

(32)

Using (27) and the relation

r̂2
;vu

r̂2
;ur̂;vv

�
m

32�K
;

which follows from Eqs. (25) and (26), one can rewrite (32)
as

r̂�1
;u

dr̂;u
dm
� 4

’̂;u
r̂;u
� 4cm�3 �

m
16�K

: (33)

To assess the first term in the right-hand side consider the
segment 	 of the null geodesic u � const between a pair of
points p 2 S, p0 2 h. Below I write for brevity �r, �x;u, etc.
for r�p�, xu�p�, etc. (note that in this notation �u � û). By
(28) and (4d)

’̂ ;u � ’;u�p
0� � ’;u�p� �

Z
	
’;uvdv

� �
1� �x

2�x
�x;u �

Z
	

r;uv
r

dv: (34)

The sign of r;uv is constant by (12a), while r—as was
shown in Section II B it monotonically falls on 	—varies
from �r to 2m. Thus,

’̂;u �
�

1

2m

�

1� 1= �x
4m0

�
r;u �

1

2m


�
�r;u �

Z
	
r;uvdv

�

�

�
1

2m

�

1� 1= �x
4m0

�
r;u �

1

2m

r̂;u; m < m
 <

1

2
�r:

(35)

Substituting this in (33) and neglecting the terms �m�1

 ,

m�3 in comparison with the last term we finally get

r̂�1
;u

dr̂;u
dm
�

2� �x;u
r̂;u
�

m
16�K

; � � �2m0

m

� 1� 1

�x�;

r̂;u�m0� � �2
m0v0

e
(36)

(the last equation follows from (4b) and serves as a bound-
ary condition for the differential equation). Introducing
new notations

� �
m
m0

; y��� � exp
1��2

2�

one readily finds the solution of this equation:

r̂;u��� � �2
m0v0

e
�1������y���;

� �
e
v0

Z 1

�

�
y

�
�x� 1

�u �x

�
d�;

(37)

and, correspondingly, [the first equality is an obvious con-
sequence of Eq. (30)]
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û�m� � 2
Z m

m0

dm
r̂;u
� A���

e
v0

Z 1

�

d

y�
�

: (38)

Here A��� is an unknown function bounded by

�max
��;1�
�1�����1 < A��� < �min

��;1�
�1�����1: (39)

In the remainder of this subsection I demonstrate that
j�j< 1, which implies, in particular, that û�m� monotoni-
cally falls and therefore û1 is just û�1�. To simplify the
matter the further consideration will be held separately for
small and for large û.

The case û < v0.—On this part of h it is possible that
	 \ S consists of one, two, or three points. But one of them
always lies between the horizons and it is this point that we
take to be the point p that enters (35) and thus (38). We
then are ensured that �x < 1 and �v < v0. By (3) it follows

�1� �x�= �u � �ve� �x < v0;

�x > 1� �1� �x�e �x � 1� uv>1� v2
0

and therefore (recall that �	 1 and by (29a) so is v0)

j �x� 1j

�u �x
< 2v0: (40)

Now note that by (35) at �x < 1

1 <
1

�x
<
m0

m

<

1

�

and hence

0< � � �m0

m

� 1� � �m0

m

� 1

�x� < 2
1��
�

: (41)

Consequently,

j�j <
2e
v0

Z 1

�

1� 


y�
�

j �x� 1j

�u �x
d
 < 4e

Z 1

�

1� 


y�
�

d
: (42)

To proceed let us write down the following equality ob-
tained by integrating by parts

Z 1

�

1� 


y�
�

d
 � �
�
�N � exp�

1

2�

Z 1

�

�
2


3 �
1


2

�

� exp

2

2�
d

�
;

N �
1��

�2 exp
�1��2

2�
:

Note that the integrand in the right-hand side monotoni-
cally grows at 1=m0 < 
 < 1 (i.e. as long as the wormhole
remains macroscopic). So, splitting when necessary (i.e.
when �< 1� 100�) the range of integration by the point

 � 1� 100� and replacing the integrand on either inter-
val by its maximum we obtain the following estimate
(recall that 100�	 1)
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e�1=2�
Z 1

�

�
2


3 �
1


2

�
e


2=2�d


<

�
2

�3 �
1

�2

�
e��

2�1�=2�

����������1�100�
�100�

� e�100 � 100�:

So, taking into consideration that N is positive,

Z �
Z 1

�

1� 


y

d
 < e�100�� 100�2; 8m> 1:

(43)

Substituting which in (42) yields j�j 	 1 and hence
A��� � 1. Correspondingly,

û �
e
v0

Z 1

�

d

y�
�

:

This expression is valid on the whole segment û < v0, i.e.
at � > �


�
: û��
� � v0:

To find �
 we employ the formula (see, e.g., [22])

Z �=
�����
2�
p

0
e


2
d
 �

���������
�=2

p
�

exp
�2

2�
;

which is valid (asymptotically) at small �

v0 � û��
� �
exp1� 1

2�

v0

Z 1

�

exp


2

2�
d


�
exp1� 1

2��

v0

�
exp

1

2�
� 1

�

exp

�2



2�

�

�
e�
v0

�
1� 1

�

exp

�2

 � 1

2�

�
:

So,

1
�


exp
�2

 � 1

2�
� 1�$�1: (44)

The case û > v0.—Now �x > 1 and instead of (40) we
have

�x� 1

�u �x
<

1

v0
�
$
e�

v0;

and instead of (41)

j�j <
1��
�
�

1

�
:

Substituting these inequalities in (37) and neglecting the
contribution of the segment (�
, 1) in � gives

j�j <
$
�

Z �


�
y�1

�
1� 



�

1




�
d
 <

$
�
Z�

$
�

Z �


�

d


y
:

The first term can be neglected by (43) and we have
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j�j <
$
�

Z �


1=m0

exp

2 � 1

2�

�1d


�
$
2�

exp
�1

2�

Z �2

=�2��

1=�2�m2
0�
e

�1d
 �

$

�2



exp
�2

 � 1

2�

� $� 1

(the last equality follows from (44) and the last but one—
from the fact that

R
b
a e



�1d
 � eb=b at large b). Thus on
this segment of the horizon

û � v0 � A���
e
v0

Z �


�

d

y�
�

;
1

$
< A <

1

2�$
:

Whence, in particular,

û1 > v0 �
e

v0$
��1�$�1� � v0�2�$�1�; (45a)

û1 < v0 �
1

2�$
e
v0
��1�$�1�

� v0

�
1�

$� 1

2�$

�
�

v0

2�$
: (45b)

We see that û1 > v0 and thus the wormhole in study
proves to be traversable. Depending on the value of $ its
time of traversability [see (11), (29), and (45)] varies from

Ttrav
L � 0 at $ � 1 (46)

to

Ttrav
L � �m0; 1:3 < � < 3:8 at $ �

��
5
p
�1
2 :

(47)

It should be emphasized that the upper bound on Ttrav
L

restricts not the traversability time of empty wormholes
(nothing in our analysis suggests that this time is restricted
at all), but the traversability time of the wormholes obeying
(29); it says not that the time the wormhole is open is less
than 4m0, but only that to exceed that time a wormhole
would have to have so large $ that our model cannot
describe it. To see why it happens and why the condition
(29) has to be imposed we need to examine the form of the
horizon in more detail.

B. û as function of v

To relate m with v let us, first, combine Eqs. (30) and
(31) and substitute Eqs. (25) and (26) into the result:

dv
dm
� �2r̂�1

;u
r̂;vu
r̂;vv
�
r̂;um

2

2�K
F̂�2;

or, equivalently,

dv

d�3 �
8m0

3�
r̂;u
F̂2
: (48)

Now let � be a segment of a null geodesic v � v�p0� from
084006
p00 2 S to p0 2 h. By (23’) on ��
r;u
F2

�
;u du � �

4�r

F2 Tuudu � �
4�r

r2
;u
Tuu

�
r;u
F2

�
dr

and hence

r̂;u
F̂2
�p0� �

r;u
F2 �p

00� � exp
�Z

�

�
ln
r;u
F2

�
;u

du
�

� �
v

8m0
exp

�
�
Z
�

4�rTuudr

r2
;u

�
(49)

(the factor at the exponent is reduced with the use of the
first equalities in Eqs. (2) and (4b), which are valid in p00).
� does not intersect the left horizon and therefore r;u is
negative in each of its points. So, the integration in (49) is
performed in the sense of decreasing r. By (16) it follows
then

r̂;u
F̂2
�v� < �

v
8m0

: (50)

Substituting which in (48) we finally obtain

v��� > v0 exp
�

1

3�
�1��3�

�
(51)

and, in particular,

v1 � v�m � 0� > v0 exp
1

3�
:

The latter formula enables one, among other things, to
bound from below the time of evaporation [in the sense
of (7)]

Tevap
R � 2m0 ln�v2

1�R� > Top
R �

m3
0

12�K
:

Let us check now that our model is self-consistent in that
the condition (12b) does hold in Mwh. To this end note that
it is equivalent to the condition that the left and right
horizons do not intersect, for which it is sufficient that

û���< v���: (52)

Clearly, this condition holds for all û < v0, that is for all
� > �
. At the same time �<�
 implies [the first in-
equality follows from (44)]

�3 � 1< 3� ln�1�$�1�< 3� ln�2�$�: (53)

It is the last inequality in this chain that we need (29b) for.
Combining (45b), (51), and (53) we finally see that

û=v < û1=v <
1

2�$
exp

�3 � 1

3�
< 1;

i.e. (52) is satisfied and the horizons do not intersect.
Remark 3. By the coordinate transformation �u; v� !

�r; ~v�, where ~v � 4m0 lnv, one could cast the metric into
-8



FIG. 2. The two dashed lines depict the world line of the same
photon.
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ds2 � �F2r�1
;u dv��r;vdv� dr� � r2�d�2 � cos2�d��

�
F2v

8r;um0

�
1

2m0
vr;vd~v2 � 2drd~v

�

� r2�d�2 � cos2�d��:

So, if the integral in (49) is neglected and the relation (50)
becomes therefore an equality (as in the Schwarzschild
case), the metric takes the form

ds2 � ��1� 2mV=r�d~v2 � 2drd~v� r2�d�2 � cos2�d��;

mV � r
2m0 � vr;v

4m0
:

In the vicinity of the horizon this, in fact, is the Vaidya
metric, because

4m0mV;u � 2m0r;u � v�r;ur;v � rr;uv�
��������h

� 2m0r̂;u �
1
4vF̂

2 � 0

[the second equality follows from (25)] and hence

mV � mV�v� � m�v�:

IV. TRAVERSABILTY

A photon arriving to the wormhole (in the ‘‘left uni-
verse’’) after Tcl

L will never traverse it. At the same time
photons with u < v0, i.e. with TL < Top

L (such photons
exist, unless S is spacelike, which is uninteresting) cannot
traverse it either: on their way to the wormhole they get
into the Planck region, their afterlife is veiled in obscurity.
And the traversability time Ttrav

L turns out to be rather
small, see (47). For the wormholes in discussion it is
only�2m0, which is of the order of minutes even for giant
black holes which presumably can be found in the centers
of galaxies. And for a stellar mass wormhole it measures
only a few microseconds. It may appear that so small Ttrav

L
make the Einstein-Rosen wormholes useless in ‘‘interuni-
verse communicating’’ even for an advanced civilization.
This, however, is not so by the reason mentioned in foot-
note 4. Indeed, consider a spaceship moving in the left
asymptotically flat region towards the wormhole. Sup-
pose, at Top

L it is at the distance l
 m0 from the mouth
and moves so fast that reaches the mouth (i.e. the vicinity
of the left horizon) at TL � Tcl

L . Then neglecting the terms
�m0=l and �û1=l it is easy to find that the travel takes
�� � 2

��������
lm0

p
by the pilot’s clock. Thus if Top

L is large
enough, the pilot may have plenty of time to send a signal
through the wormhole.

Now let us consider the intrauniverse wormholes. To
transform our model into one describing such a wormhole
we first enclose the throat in a surface T : r � rM 

2m0. This surface is a disjoint union of two cylinders S2 �
R1, one of which lies in the left asymptotically flat region
and the other in the right:
084006
T � T L [T R; T L�R� : r � rM; v + 0:

We shall consider the spacetime outside T (which is,
correspondingly, a disjoint union of two asymptotically
flat regions ML and MR) as flat. This, of course, is some
inexactness, but not too grave—in reality the space far
enough from a gravitating body is more or less flat. Let us
fix Cartesian coordinates in ML�R� so that the t-axes are
parallel to the generators of T and the x1-axes—to the line
t � � � � � 0. The x1-coordinates of the points of T are
understood to lie within the range [� rM, rM] and S must
be the surface t � 0. Now an intrauniverse wormhole is
obtained by the standard procedure: one removes the re-
gions x1 > d=2 from ML and x1 < d=2 from MR and
identify the points with the same coordinates on their
boundaries (the three-surfaces x1 � �d=2 and x1 � d=2,
respectively). The resulting spacetime, see Fig. 2, is the
Minkowski space in which the interiors of two cylinders
(their boundaries are T L and T R) are replaced by a
connected region, so that, for example, a photon intersect-
ing T L at a moment tin 2 �T

op
L ; T

cl
L � emerges from T R at

some tout�tin�.
Now note that it would take only d for the photon to

return to T L. So Mwh is causal if and only if

t < tout�t� � d; 8t 2 �Top
L ; T

cl
L �:

By changing �L to �0L—all other parameters being fixed—
one shifts the interval (Top

L , Tcl
L ) and the graph of tout�t� to

the right by� 2m0 ln��0L=�L�, see (7). So, if �0L is taken to
be sufficiently large the inequality breaks down. Which
means that irrespective of the values of m0, d, $, and �R,
the intrauniverse Einstein-Rosen wormholes with suffi-
ciently large �L are time machines.
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V. CONCLUSIONS

We have studied the evolution of the spherically sym-
metric empty wormhole, or to put it otherwise the back-
reaction of the Hawking radiation on the (approximately)
Schwarzschild metric. A few simplifying assumptions
were made, which physically, reduced to the idea that the
metric and the vacuum polarization around each observer
remain approximately those of the Schwarzschild black
hole. It turns out that such a wormhole is characterized
by three parameters in addition to the initial mass and the
distance between the mouths. The explicit calculations
within this model have shown that for a macroscopic
time interval—its duration is determined by those parame-
ters— the wormhole is traversable.

None of the assumptions made in this paper looks too
wild, so its results can be regarded as evidence for possi-
bility of natural ‘‘transient’’ wormholes. Obviously the
existence of such wormholes would be of enormous sig-
nificance, the implications ranging from a process generat-
ing highly collimated flashes to causality violation (or at
least violation of the strong cosmic censorship conjecture).
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APPENDIX

In this appendix I extract the relevant estimates on �i
from the results obtained in [13,14]. At large r the radial
pressure �T�� � �T�� equals (see Eqs. (2.6), (4.8), (5.5), and
(6.21) of [13]) to

�T �
� �

	
16Km

�4
0 x�4;

where

0< 	 � 27; K �
9

40 � 84�2 : (A1)

Correspondingly,

�4 � 16�m4
0x

2 �T�� � �	Kx�2; at large x: (A2)

Near the horizon �T�� was found (numerically) in [14],
where it was denoted by pt:

0< �T�� � �
1

2

d

dx
�T�� & 2� 10�6m�4

0 (A3)

[the value of the derivative will be needed in (A5)], whence

�4�1� & 10�4: (A4)
084006
Further, for the conformal field the trace �Taa is defined by
the conformal anomaly and in the Schwarzschild space

T � �Taa �
m�4

0

3840�2x6 � 3� 10�5m�4
0 x6;

T0
��������x�1

� 2� 10�4m�4
0 ;

see, e.g., Eq. (4.8) in [13]. So, for the quantity Y � T �
�T�� � �T�� one finds

Y
��������x�1

� 3� 10�5m�4
0 ; Y0

��������x�1
� 10�4m�4

0 : (A5)

In coordinates t, r


t � 2m0 ln��v=u�; r
 � 2m0 ln��vu�;

which are used in [13,14], the Schwarzschild metric (1)
takes the form

d s2 � x�1
x ��dt2 � dr
2� � �r2�d�2 � cos2�d��

and one has

�T uv �
4m2

0

vu �
�Tr
r
 � �Ttt� � �

4m2
0e
�x

x �
�Tr



r
 � �Ttt�

� �
4m2

0e
�x

x Y
��������x�1

� �4� 10�5m�2
0 :

From whence it follows

j�3�1�j � 5� 10�4: (A6)

Likewise,

�T vv �
4m2

0

v2 � �Ttt � �Tr
r
 � 2 �Ttr
 �

� �x�1�
x �

4m2
0

xex �
2 �r�2
;u �� �Ttt � �Tr




r
 � 2 �Tr



t �:

At the horizon x � 1 andG�1� � H�1� � Q � 0 (see [[13]
section 2] for the definitions of the relevant functions). So
the only contribution to �Tab comes from its divergent part
T�2�ab :

T�2�ab �
K

4m4
0x�x� 1�

Eab;

where I defined

Ett � �Er



t � Etr
 � �E
r

r
 � 1:

Thus

�T vvjx�1 � �16e�2K �r�2
;u : (A7)

Finally,
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�T uu �
x

x� 1
�r2
;u�� �Ttt � �Tr




r
 � 2 �Tr



t � �
x

x� 1
�r2
;u

�
2x

r2�x� 1�
�H �G� � Y

�

�
x

x� 1
�r2
;u

�
2x

r2�x� 1�
�

1

2

Z r

2m0

��r0 �m0�T � �r
0 � 3m0��T � 2Y��dr0 � Y

�

�
x

x� 1
�r2
;u

�
1

x�x� 1�

Z x

1

��
x0 �

1

2

�
T �

�
x0 �

3

2

�
�T � 2Y�

�
dx0 � Y

�

�
x

x� 1
�r2
;u

�
4

x�x� 1�

Z x

1
�x0 � 1� �T��dx0 �

1

x�x� 1�

Z x

1
Ydx0 � Y

�

!
x

x� 1
�r2
;u

�
2�x� 1�

x
�T�� �

�
1

x
� 1

�
Y �

x� 1

2x
Y0
�
!

1

2
�r2
;uY0

��������x�1
� 10�4m�4

0 �r2
;u (A8)
and, correspondingly,

�2�1� � 10�3: (A9)
Remark 4. To avoid confusion note that our coordinates u and v differ from those used [13]. The latter—let us denote
them uCF and vCF —are related to the former by
uCF � �4m0 ln��u�; vCF � 4m0 lnv:
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