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Attractor solutions for general hessence dark energy
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As a candidate for the dark energy, the hessence model has been recently introduced. We discuss the
critical points of this model in an almost general case, that is for arbitrary hessence potential and almost
arbitrary hessence-background matter interaction. It is shown that, in all models, there always exist some
stable late-time attractors. It is shown that our general results coincide with those solutions obtained
earlier for special cases, but some of them are new. These new solutions have two unique characteristics.
First, the hessence field has finite value in these solutions and, second, their stabilities depend on the
second derivative of the hessence potential.
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I. INTRODUCTION

In recent years, astronomical observations from type Ia
supernova [1], WMAP data [2], and large scale structure
surveys [3] have shown that the expansion of the universe
is accelerated. Although there is no clear understanding of
the mechanism leading to this acceleration, it is believed
that about 70% of the total energy density of universe
consists of this unknown energy, i.e. dark energy, which
leads to this expansion. The simplest explanation of dark
energy is a cosmological constant � of order �10�3 eV�4.
Unfortunately it is about 120 orders smaller than the naive
expectations, giving rise to the idea of a dynamical nature
of this energy. The possible dynamical explanations have
been introduced in different frameworks, such as quintes-
sence [4], phantom [5], k-essence [6], tachyons [7], etc.

In studying the dark energy, the equation of state pa-
rameter wde � pde=�de plays an important role, where pde

and �de are the pressure and energy density of the dark
energy, respectively. This parameter is always equal to
constant �1 in cosmological constant model, but it can
be a dynamical variable in the above mentioned dynamical
models. This is an important point since the present data
seem to slightly favor an evolving dark energy with wde

being below�1 around the present epoch [8], from wde >
�1 in the near past [9].

To be definite, we consider the following action:

S �
Z

d4x
�������
�g
p

�
�

R

16�G
�LDE �Lm

�
; (1)

where g is the determinant of the metric g��, R is the
Ricci scalar, and LDE and Lm are the Lagrangian densities
of the dark energy and matter, respectively. In the case of
quintessence, the Lagrangian density is

L quintessence �
1
2�@���

2 � V���; (2)

where � is a real scalar field. In a spatially flat Friedmann-
Robertson-Walker (FRW) universe with homogeneous �,
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w is

wquintessence �
_�2=2� V���
_�2=2� V���

; (3)

which results in�1 � wquintessence. The Lagrangian density
of the phantom scalar field is

L phantom � �
1
2�@���

2 � V���; (4)

from which

wphantom �
� _�2=2� V���

� _�2=2� V���
; (5)

where for � � 0, which comes from H2 � �8�G=3��, it
results wphantom � �1. So we cannot cross the phantom
divide line w � �1 in quintessence or the phantom model
alone. A possible way to overcome this problem is consid-
ering two real fields, where one behaves as quintessence
and other one as phantom field. The resulting model, called
the quintom model, has the following Lagrangian [9,10]:

L quintom �
1
2�@��1�

2 � 1
2�@��2�

2 � V��1; �2�; (6)

with

wquintom �
_�1

2=2� _�2
2=2� V��1; �2�

_�1
2=2� _�2

2=2� V��1; �2�
: (7)

Now it is obvious that wquintom � �1 when _�1
2 � _�2

2 and
wquintom <�1 when _�1

2 < _�2
2. So crossing the phantom

divide line is, in principle, possible in the quintom model.
See, for example, [10,11].

Instead of introducing two independent real scalar fields
to describe a quintom model, it is also natural to consider a
single complex scalar field. The resulting spintessence
model of dark energy [12–16] has the following
Lagrangian density:

L spintessence �
1
2�@

�����@��� � V�j�j�: (8)

Using � � �1 � i�2, the kinetic term of Eq. (8) reduces
to the kinetic terms of Eq. (6). Also, the above Lagrangian
-1 © 2006 The American Physical Society
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is invariant under �! ei�� which leads to a conserved
charge. Unfortunately, this model suffers from the problem
of Q-ball formation [12,14]. Q-ball is a kind of nontopo-
logical soliton which, except in some special cases of
spintessence with unnatural potentials, grows exponen-
tially and depends on the potential, can be either stable at
the late time to be a dark matter, or decay into other
particles. Therefore the spintessence model cannot be a
viable candidate for the dark energy.

To avoid the difficulty of Q-ball formation and also to
introduce another possibility for mysterious dark energy
problem, a noncanonical complex scalar field, called hes-
sence, has been recently introduced in [17]. In the hessence
model, the phantomlike role is played by the so-called
internal motion _�, where � is the internal degree of free-
dom of hessence. There is a conserved charge Q in this
model which makes the physics of hessence more interest-
ing, and the transition from wh >�1 to wh <�1 or vice
versa is also possible. Another interesting feature of the
hessence model is that it is free of big rip [18]. If w<�1
in an expanding FRW universe, then the positive energy
density of a phantom matter generally becomes infinite in
finite time, overcoming all other forms of matter and hence
leads to the late-time singularity called the ’’big rip’’ [19].

By considering two specific hessence potentials, i.e. the
exponential and the (inverse) power law, and four different
interaction forms between hessence and background per-
fect fluid, the late-time attractors of the hessence model
have been studied in [18]. In each case, different scaling
and hessence-dominated solutions have been obtained and
their stability properties have been studied.

In this paper we are going to study the late-time attrac-
tors of the almost general hessence model, with arbitrary
hessence potential and almost arbitrary hessence-
background matter interaction term. By almost arbitrary,
we mean that the hessence potential and hessence-
background matter interaction terms are arbitrary functions
of dimensionless variables defined in (22). Specifically, we
mean Eqs. (33) and (34). We show that there always exist
some stable solutions, in scaling or hessence-dominated
form, which some of them have not been appeared in
special cases studied in [18]. These new solutions have
two interesting unique characteristics which are absent in
other solutions. First, their stability depends on the second
derivative of the hessence potential and, second, the hes-
sence field has finite value in these solutions. The signifi-
cance of the second derivative of the potential in the late-
time behaviors has been also revealed for the quintessence
model in [20], in which some conditions have been im-
posed on the first and second derivatives of the potential.

The scheme of the paper is as follows. In Sec. II, we
briefly introduce the main points of the hessence model and
the system of equations which determine the critical points
in terms of dimensionless variables. In Sec. III, we con-
sider the general hessence potential, but assuming no
083527
hessence-background matter interaction. It is shown that
there exist five general solutions for critical points, three of
which are stable under specific conditions. Finally, in
Sec. IV, the hessence potential and hessence-background
matter interaction are considered arbitrary and it is shown
that there are, in general, six classes of solutions for critical
points. The stability of solutions is discussed in special
cases. It is shown that all the solutions of [18] can be
obtained from our general results.

We use the units @ � c � 1, �2 � 8�G, and adopt the
metric convention as ��;�;�;�� throughout the paper.

II. HESSENCE MODEL

Following [17], the hessence field introduced by a non-
canonical complex scalar field

� � �1 � i�2; (9)

with Lagrangian density

L h �
1
4	�@���2 � �@����2
 �U��2 ���2�

� 1
2	�@���

2 ��2�@���
2
 � V���; (10)

where the new fields ��; �� are defined through

�1 � � cosh�; �2 � � sinh�: (11)

In a spatially flat FRW universe with scale factor a�t�, the
equations of motion for � and �, when they are considered
homogeneous, are

��� 3H _��� _�2 � V;� � 0; (12)

�2 ��� �2� _�� 3H�2� _� � 0; (13)

where H � _a=a is the Hubble parameter and overdot and
subscript ‘‘;�’’ denote the derivatives with respect to cos-
mic time t and �, respectively. Equation (13) implies

Q � a3�2 _� � const:; (14)

where Q is the total conserved charge due to the symmetry
of Lagrangian (10) under the transformation �! � and
�! �� i�. Substituting Eq. (14) into (12), one has

��� 3H _��
Q2

a6�3
� V;� � 0: (15)

The pressure and energy density of hessence are

ph �
1

2
_�2 �

Q2

2a6�2
� V���;

�h �
1

2
_�2 �

Q2

2a6�2
� V���:

(16)

The Friedmann equation and the Raychaudhuri equation
are given by, respectively,

H2 �
�2

3
��h � �m�; (17)
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_H � �
�2

2
��h � �m � ph � pm�; (18)

where pm and �m are the pressure and energy density of
background matter, respectively. The background matter is
described by a perfect fluid with barotropic equation of
state

pm � wm�m � �	� 1��m; (19)

where 0<	< 2. In particular, 	 � 1 and 4=3 correspond
to dust matter and radiation, respectively.

To introduce the interaction between hessence and back-
ground matter, it is assumed that it can be described by an
interaction term C in the energy balance [18,21]

_� h � 3H��h � ph� � �C; (20)

_�m � 3H��m � pm� � C; (21)

which preserves the total energy conservation equation
_�tot � 3H��tot � ptot� � 0. C � 0 corresponds to no inter-

action between hessence and background matter and when
C � 0, a new term due to C will appear in the right-hand
side of Eq. (15).

Following [22] and many other papers, if we introduce
the following dimensionless variables

x �
� _����
6
p
H
; y �

�
����
V
p���
3
p
H
; z �

�
�������
�m
p���
3
p
H
;

u �

���
6
p

��
; v �

����
6
p
H

Q

a3�
;

(22)

then using Eqs. (16)–(18), (20), and (21), the evolution
equations of these variables become

x0 � 3x
�
x2 � v2 �

	
2
z2 � 1

�
� uv2 �

���
3

2

s
y2f� C1;

(23)

y0 � 3y
�
x2 � v2 �

	
2
z2

�
�

���
3

2

s
xyf; (24)

z0 � 3z
�
x2 � v2 �

	
2
z2 �

	
2

�
� C2; (25)

u0 � �xu2; (26)

v0 � 3v
�
x2 � v2 �

	
2
z2 � 1

�
� xuv: (27)

Prime denotes the derivative with respect to the e-folding
time N � lna, and

f �
V;�
�V

; (28)
083527
C1 �
�C���
6
p
H2 _�

; C2 �
�C

2
���
3
p
H2 �������

�m
p �

x
z
C1: (29)

The Friedmann equation (17) becomes

x2 � y2 � z2 � v2 � 1; (30)

and the fractional energy densities are

�h �
�h
�c
� x2 � y2 � v2; �m �

�m
�c
� z2; (31)

where �c �
3H2

� is the critical energy density. The equation
of states of hessence and the whole system are

wh �
ph
�h
�
x2 � v2 � y2

x2 � v2 � y2 ;

weff �
ph � pm
�h � �m

� x2 � v2 � y2 � �	� 1�z2:

(32)

The critical points � �x; �y; �z; �u; �v� are obtained by imposing
the conditions �x0 � �y0 � �z0 � �u0 � �v0 � 0.

Note that we take

f � f�u�; (33)

and

C1 � C1�x; z; u�; C2 � C2�x; z; u�: (34)

It is because V � V���, so f is assumed to be a function of
only one variable u. Also because of Eq. (30), only four of
the variables (22) are independent, which we can take them
x, y, z, and u. But the dependence of hessence-background
matter interaction to the potential V (or variable y) is
meaningless, so Cs are taken to be arbitrary functions of
variables x, z, and u. Really, Eq. (33) does not constrain the
potential V, but Eq. (34) restricts the possible interaction
termC. In this way the Eqs. (23)–(27) become autonomous
and we need not consider any further variables. For ex-
ample, f is not an extra variable since f0 � 0 leads to, for
an arbitrary potential, u0 � 0.
III. ATTRACTORS IN C � 0 CASE

To obtain the attractors for the arbitrary hessence poten-
tial and when there is no hessence-background matter
interaction, we must solve Eq. (30) and the set of
Eqs. (23)–(27), when setting zero, in C1 � C2 � 0.
Equation (26) results in �u � 0 or �x � 0 and Eq. (25) results
in �z � 0 or �x2 � �v2 � �	=2��z2 � 	=2 � 0. So we have
four possibilities: I � � �u � 0; �z � 0�, II � � �u �
0; �x2 � �v2 � �	=2��z2 � 	=2 � 0�, III � � �x � 0; �z � 0�,
and IV � � �x � 0; �x2 � �v2 � �	=2��z2 � 	=2 � 0�. In the
type I solution, Eq. (27), using (30), reduces to vy2 � 0,
so it divides to I:1 � � �u � 0; �z � 0; �v � 0� and I:2 � � �u �
0; �z � 0; �y � 0� solutions. The remaining variables can be
easily found. The final results are represented in Table I.

The solutions with �h � 1, i.e. solutions I.1, I.2, and III,
are hessence dominated, solution IV is background matter
-3



TABLE I. Critical points for arbitrary hessence potential when there is no hessence-
background matter interaction.

Label Critical point � �x; �y; �z; �u; �v� �h �m wh weff

I.1 �
�f��
6
p , 	1�

�f2

6 

1=2, 0, 0, 0 1 0 �1�

�f2

3 �1�
�f2

3
I.2 �x2 � 1, 0, 0, 0, 

��������������
�x2 � 1
p

1 0 1 1
II �	32


1=2 	
�f
, 	3	�f2 �1�

	
2�


1=2, 	1� 3	
�f2 


1=2, 0, 0 3	
�f2 1� 3	

�f2 �1� 	 �1� 	
III 0, 1, 0, �f � 0, 0 1 0 �1 �1
IV 0, 0, 1, any, 0 0 1 any �1� 	
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dominated and solution II is the scaling solution. In
solution III, �u must be found by solving �f � f� �u� � 0.
Note that in all cases weff >�1. It is also interesting that
for potentials where f2� �u � 0� � 3	, the solutions I.1 and
II become degenerate.

In examples considered in [18], the potentials are

V1 � V0e�
��; (35)

V2 � V0����n; (36)

or, using (28),

f1 � �
; (37)

f2 �
n
��
�
nu���

6
p : (38)

It can be easily checked that our solutions (I.1, I.2, II, and
IV) and (I.1, I.2, and IV) reduce to those obtained in [18]
for V1 and V2, respectively. Solution II does not exist for
potential V2 since f2� �u � 0� � 0. Solution III is a new
solution which has not appeared in [18]. This is because the
equation �f � 0 results in 
 � 0 for V1, which is not
acceptable, and results in �u � 0 for V2, which reduces
solution III to I.1.

To study the stability of the critical points I.1–IV, we
must consider a small perturbation about the critical point
� �x; �y; �z; �u; �v�: x! �x� �x, y! �y� �y, z! �z� �z, u!
�u� �u, and v! �v� �v, in Eqs. (23)–(26) with C1 �
C2 � 0, which due to Friedmann constraint (30), only four
of them are independent. In this way, one can find a 4� 4
matrix M defined through

d

dN

�q1

�q2

�q3

�q4

0BBB@
1CCCA � M

�q1

�q2

�q3

�q4

0BBB@
1CCCA; (39)

where �q1; . . . ; q4� are four chosen independent variables.
The critical solutions are stable if the real part of all the
eigenvalues of matrix M are negative. The eigenvalues of
matrix M for our solutions are as follows:

I :1: ��3�y2;�6�y2; 1
2�

�f2 � 3	�; 0�; (40)
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I :2:
�
0; 0;

3

2
�2� 	�; 3�

���
3

2

s
�x �f
�
; (41)

III:
�
�6;�

3	
2
;�

3

2
�

��������������������������
9�2

���
6
p

�u2 �f0
q

2
;�

3

2
�

��������������������������
9�2

���
6
p

�u2 �f0
q

2

�
;

(42)

IV :
�
0;

3	
2
; 3�	� 2�;

3

2
�	� 2�

�
; (43)

in which �q1; . . . ; q4� � �x; y; z; u� and �f0 � �df=du� �u. It is
clear that the I.1 solution is stable if

�f 2 � 3	; (44)

the I.2 solution is unstable since 	 < 2, the III solution is
stable if �

df
du

�
�u
� 0; (45)

and IV is an unstable solution since 	 > 0.
For solution II, it is easier to use �q1; . . . ; q4� �

�x; z; u; v�. Then it can be easily found that 
1 � 0, 
2 �
3
2 �	� 2�, and 
3 and 
4 are roots of the equation 
2 �

b
� c � 0 with

b �
3

2
�	� 2�; c �

9	

2 �f2
�2� 	�� �f2 � 3	�: (46)


3 and 
4 are nonpositive if b � 0 and c � 0. As 	 < 2,
solution II is stable if

�f 2 � 3	: (47)

So for any potential V, there always exists at least one
stable attractor, a hessence-dominated attractor (I.1) if
�f2 � 3	 or a scaling attractor (II) if �f2 � 3	.

It is interesting to note that solution III has two unique
properties. First, it is the only stable attractor which has the
nonvanishing �u value, i.e. finite value of hessence field ��.
Second, it is the only attractor whose stability depends on
the derivative of f [Eq. (45)]. In other words, the stable
attractors I.1 and II cannot distinguish between different
potentials with the same �f value, but the attractor III does.
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As examples of potentials which have solution III as a
stable attractor, we may consider V3 � V0 sin���=

���
6
p
� and

V4 � V0 cos���=
���
6
p
�. For V3, we have f3 � ��1=�u

2��
cot�1=u�, which results in �u � 	�2n� 1��=2
�1, with n �
0; 1; 2; . . . , as the solution of the �f3 � 0 equation. It really
has infinite number of attractors. Then �df=du� �u �
��1=��	�2n� 1��=2
4 < 0, which shows that the attrac-
tors are stable. The same is true for the V4 potential.
IV. ATTRACTORS IN THE PRESENCE OF
HESSENCE-BACKGROUND MATTER

INTERACTION

In this case, we must solve Eq. (30) and the set of
Eqs. (23)–(27), when setting zero, for the arbitrary C
function. Equation (26) results in �u � 0 or �x � 0. In
each case, we consider eight cases in which each of the
variables �y, �z, and �v has two possibilities, zero and not
zero, and then check the consistency of the equations. The
final results are as follows:

solution 1:
�

�x � �
�f���
6
p ; �y �

��������������
1�

�f2

6

s
; �z � �u � �v

� 0; �C1 � �C2 � 0
�
: (48)

Note that the equations �C1 � �C2 � 0 imply that the func-
tional form of C1 and C2 must be such that they are
identically equal to zero at this critical point, otherwise
this solution does not exist:

solution 2: f �x2 � 1; �y � �z � �u � 0; �v � 
��������������
�x2 � 1

p
; �C1

� �C2 � 0g: (49)

In this case, the equations �C1 � �C2 � 0 can generally
determine the allowed value of �x. If �C1 and �C2 are identi-
cally equal to zero at �y � �z � �u � 0, as they are in the
C � 0 case, then �x can choose any arbitrary value:

solution 3: f �x � �y � 0; �z � 1; �u; �v � 0; �C1 � �C2 � 0g:

(50)

The value of �u is generally determined by solving �C1 �
�C2 � 0:

solution 4:
�

�x � 0; �y � 1; �z � 0; �u; �v � 0; �C1

� �

���
3

2

s
�f; �C2 � 0

�
; (51)

where the last two equations can generally determine �u:
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solution 5:
�

�y � �u � �v � 0; �C1

� 3�x
�

�x2 �
	
2

�z2 � 1
�
; �C2

� �3�z
�

�x2 �
	
2

�z2 �
	
2

�
; �x2 � �z2 � 1

�
:

(52)

�x and �z are found by solving the above equations. The last
solution is

solution 6:
�

�y �
�������������������������
1� �x2 � �z2

p
; �u � �v � 0;

�C1 � 3�x
�

�x2 �
	
2

�z2 � 1
�
�

���
3

2

s
�y2 �f;

�C2 � �3�z
�

�x2 �
	
2

�z2 �
	
2

�
;

3
�

�x2 �
	
2

�z2

�
�

���
3

2

s
�x �f � 0

�
: (53)

At C � 0, solutions 1, 2, 3, 4, and 6 reduce to I.1, I.2, IV,
III, and II of Table I, respectively. Solutions 1, 2, and 4 are
hessence dominated, solution 3 is background matter
dominated and 5 and 6 are generally scaling solutions.
Among these solutions, there are only two solutions 3
and 4 in which �u can principally be different from zero,
which have not been appeared in examples discussed in
[18].

In [18], besides the noninteracting C � 0 case, three
following interactions have been considered:

C�II�1 �

���
3

2

s
�z2;

C�III�1 �
3

2

�
x
; C�IV�1 �

3

2

z2

x
; (54)

in which �, �, and  are some constants. In both of
solutions 3 and 4, �x is zero, so C�III�1 diverges and C�IV�1 is
not generally well defined, and therefore these critical
points do not exist in these cases. So we only consider
the C�II�1 case. For the V � V1 potential, with f1 � �
,
solution 3 does not exist since �C1 � 0 leads to � � 0
which is not acceptable, and solution 4 does also not exist
as �C1 � �	

3
2


1=2 �f and results in 
 � 0, which again is not
acceptable. For the V � V2 potential, with f2 � nu=

���
6
p

,
solution 3 leads to � � 0 which is not acceptable, and
solution 4 results in �u � 0, which does not lead to a �u � 0
solution.

It may be useful to reproduce all the critical points of at
least one of the cases studied in [18] in more detail. We
consider, as an example, V � V1 and C � C�II�1 . So
-5
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f � �
; C1 �

���
3

2

s
�z2; C2 �

���
3

2

s
�xz: (55)

Solutions 1–6 result in

solution 1:
�

�x �

���
6
p ; �y �

���������������
1�


2

6

s
; �z � �u � �v � 0

�
;

(56)

solution 2: f �x2 � 1; �y � �z � �u � 0; �v � 
��������������
�x2 � 1

p
g;

(57)

solution 3: �C1 � 0! � � 0 �is not acceptable�; (58)

solution 4: �C1 � �

���
3

2

s
�f ! 
 � 0 �is not acceptable�;

(59)

solution 5:
�

�x �

���
2

3

s
�

	� 2
; �y � 0; �z

�

������������������������������
1�

2�2

3�	� 2�2

s
; �u � �v � 0

�
; (60)

solution 6:
�

�x �

���
3

2

s
	


� �
; �y

�

����������������������������������������������������
2�2 � 3�	� 2�	� 2�


2��� 
�2

s
; �z

�

��������������������������������

�
� �� � 3	

�
� ��2

s
; �u � �v � 0

�
; (61)

which coincide with those in Table II of [18]. Note that in
that table, four of the solutions (2p, 2m, 4, and 5) are not
independent solutions and are special cases of the first
solution.

The stability studies of these critical points depends on
the precise value of the function C. But it may be interest-
ing to study the conditions under which the derivative of f
becomes important in the stability properties of the critical
points. Consider the most general case C1 � C1�x; z; u�. It
can be shown that the coefficient of �f0 term in the equation
det�M� 1̂
� � 0, where 1̂ stands for the 4� 4 unit matrix,
is

�y2 �u2

�z2
h� �x; �y; �z; �u�; (62)

which shows that the derivative of f survives only if

�y � 0 and �u � 0: (63)

Therefore solution 4 is the only one in which we expect �f0

may be important. Focusing on this solution, the eigen-
083527
value problem is still very complicated in the general case
and it is better to consider the more restricted cases. As an
example, we consider the potentials and C’s in which �f �
�C1=z� � �@C1=@x� � 0. Under these conditions, the
equation det�M� 1̂
� � 0 leads to


4 � a1

3 � a2


2 � a3
� a4 � 0; (64)

where

a1 � 9�
3

2
	; a2 � 18�

27

2
	� �u2

�
�C1;u �

���
3

2

s
�f0
�
;

a3 � �3 �u2

�
�C1;u �

���
3

2

s
�f0
��

2�
	
2

�
� 27	;

a4 � �9	 �u2

�
�C1;u �

���
3

2

s
�f0
�
;

(65)

where �C1;u � �@C1=@u�. Now it is well known that
P
i
i �

�a1,
P
i�j
i
j � a2,

P
i�j�k
i
j
k � �a3, and


1
2
3
4 � a4, where 
1 � � �
4 are the roots of
Eq. (64). So all the roots are nonpositive only if ai � 0
�i � 1; . . . ; 4�, provided if

�f 0 � �

���
2

3

s
�C1;u: (66)

In C � 0, this condition of stability reduces to Eq. (45).

V. CONCLUSION

In this paper, we study the attractor solutions of the
general hessence model by studying the 4-dimensional
phase space of the theory. The hessence model is a non-
canonical complex scalar theory which can be a candidate
of dark energy with some interesting properties, among
them is the possibility of crossing the w � �1 line.
Comparing the Lagrangian of the hessence model with
the quintom model shows that the � (or equally charge
Q) term plays the role of the phantom field. In Q � 0, the
model reduced to the quintessence model with no w � �1
crossing.

We consider an arbitrary hessence potential V��� and
almost arbitrary hessence-background matter interaction
term C, and find several results. We show that, in C � 0,
there is always at least one stable attractor which depends
on the value �f � f� �u � 0�: For �f2 � 3	 the hessence-
dominated attractor I.1 and for �f2 � 3	 the scaling attrac-
tor II of Table I. In all the attractor solutions we have ��!
1, except for attractor III where �� is finite and also its
stability depends on the derivative �df=du� �u. This kind of
attractor did not appear in the previously studied cases and
can be seen in potentials like sin����. �v is zero in all the
stable attractors of Table I, but for the arbitrary C-term, this
is not the case.

For general C, we show that there generally exist six
classes of attractor, which can all be stable in special cases
(for example V � V1 and C1 � C�II�1 of [18]). Among these
-6
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solutions, solution 2 is the only one with property �v � 0.
Solutions 3 and 4 have a finite �� value and solution 4 is the
only one whose stability depends on �df=du� �u, the features
that cannot be seen in the previously studied potentials.
083527
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