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Large non-Gaussianity in multiple-field inflation
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We investigate non-Gaussianity in general multiple-field inflation using the formalism we developed in
earlier papers. We use a perturbative expansion of the nonlinear equations to calculate the three-point
correlator of the curvature perturbation analytically. We derive a general expression that involves only a
time integral over background and linear perturbation quantities. We work out this expression explicitly
for the two-field slow-roll case, and find that non-Gaussianity can be orders of magnitude larger than in the
single-field case. In particular, the bispectrum divided by the square of the power spectrum can easily be of
O�1–10�, depending on the model. Our result also shows the explicit momentum dependence of the
bispectrum. This conclusion of large non-Gaussianity is confirmed in a semianalytic investigation of a
simple quadratic two-field model.
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I. INTRODUCTION

The assumption that inflationary fluctuations are
Gaussian is a good starting point for the study of cosmo-
logical perturbations, but it is only true to linear order in
perturbation theory. Since gravity is inherently nonlinear,
and most inflation models have (self-)interacting poten-
tials, nonlinearity must be present at some level in all
inflation models. Hence the issue is not whether inflation
is non-Gaussian, but how large the non-Gaussianity is.
With increasingly precise CMB data becoming available
in the near future from the WMAP and Planck satellites
and other experiments, we might well hope to detect this
non-Gaussianity. This would offer us another key observ-
able to help constrain or confirm specific inflation models
and the underlying high-energy theories from which they
are derived. As a rough order of magnitude estimate, we
note that non-Gaussianity will be detectable by Planck if
the bispectrum (the Fourier transform of the three-point
correlator) is of the order of the square of the power
spectrum [1].

It follows that to compute the predicted amount of non-
Gaussianity in specific inflation models we need to go
beyond linear-order perturbation theory. In [2,3] we intro-
duced a new formalism to deal with the nonlinearity during
inflation. We will not again summarize the other work
dealing with this subject, references for which can be
found in [3] or a recent review [4]. Our formalism is
distinguished by being based on a system of fully nonlinear
equations for long wavelengths, while stochastic sources
take into account the continuous influx of short-
wavelength fluctuations into the long-wavelength system
as the inflationary comoving horizon shrinks. The variables
used incorporate both scalar metric and matter perturba-
tions self-consistently and they are invariant under changes
of time slicing in the long-wavelength limit.

The advantages of our method are threefold: (i) it is
physically intuitive and relatively simple to use for quanti-
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tative analytic and semianalytic calculations; (ii) it is valid
in a very general multiple-field inflation setting, which
includes the possibility of a nontrivial field metric; and
(iii) it is well-suited for direct numerical implementation.
The first point was already demonstrated in [5], where we
computed the non-Gaussianity in single-field slow-roll in-
flation, while the third point is the subject of a forthcoming
paper [6]. The present paper is dedicated to the exploration
of the second point, as well as the first.

In [5] we found, confirming what was known in the
literature beforehand (see e.g. [7]), that non-Gaussianity
in the single-field case is too small to be realistically
observable, because it is suppressed by slow-roll factors
(actually the scalar spectral index n� 1). However, there
have been long-standing claims in the literature (see e.g.
[8,9]) that specific multiple-field models can, in principle,
create significant non-Gaussianity. Indeed, there has been
growing recent interest in models which can produce large
primordial non-Gaussianity [10]. A feature shared by most
of these models though is that this non-Gaussianity in-
volves some mechanism operating after inflation, usually
(p)reheating or later domination of a curvaton field. In this
paper we investigate for the first time general multiple-field
inflation, not just specific models, presenting a method by
which to accurately calculate the resulting three-point
correlator during inflation. We find that it is possible to
get significant primordial non-Gaussianity without invok-
ing some post-inflationary mechanism even for the sim-
plest two-field quadratic potential.

The key mechanism for the production of this large non-
Gaussianity is the superhorizon influence of isocurvature
perturbations on the adiabatic mode. The former feed into
the latter when the background follows a curved trajectory
in field space. Note that the example studied in Sec. V D
illustrates that there is no need for the potential to be
interacting. Our aim is to push forward towards a tractable
non-Gaussian methodology for the new era of precision
cosmology which confronts us.
-1 © 2006 The American Physical Society
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This work is organized as follows. In Sec. II we give the
equations from [3] that are used as the starting point for the
present investigations. In Sec. III we then derive the gen-
eral solution for the relevant quantities in multiple-field
inflation, culminating in a general expression for the three-
point correlator of the adiabatic component of the curva-
ture perturbation, without any slow-roll approximations.
This integral solution—Eq. (29)—is a very useful calcula-
tional tool because it gives the three-point correlator en-
tirely in terms of background quantities and linear
perturbation quantities at horizon crossing. In Sec. IV we
make a leading-order slow-roll approximation to work out
the various contributions in the general solution more
explicitly. Finally in Sec. V we calculate the bispectrum
in an analytic treatment of the two-field case with constant
slow-roll parameters. We find that the result can be orders
of magnitude larger than for single-field inflation. This
result is confirmed with a semianalytic calculation of an
explicit model with a quadratic potential in Sec. V D. Our
method yields the full momentum dependence, not just an
overall magnitude, and we find that there can be a differ-
ence of the order of a few between opposite extreme
momentum limits. We conclude in Sec. VI. Parts of this
paper, in particular Sec. V, are rather technical, so some
readers might be interested in referring to [11] first, which
contains a simplified derivation of only the dominant non-
Gaussian contributions in multiple-field inflation, along
with a summarized discussion.
II. MULTIPLE-FIELD SETUP

Since in this paper we are explicitly working out the
general nonlinear multiple-field formalism of [3], we refer
the reader to that paper for derivations and more details of
the initial equations. Here we just briefly describe the
context and give the relevant equations and definitions to
be used as starting point for further calculations.

We start from a completely general inflation model, with
an arbitrary number of scalar fields �A (where A labels the
different fields) and a potential V��A� with arbitrary inter-
actions. We also allow for the possibility of a nontrivial
field manifold with field metric GAB. We will consider only
scalar modes and make the long-wavelength approxima-
tion (i.e. consider only wavelengths larger than the Hubble
radius 1=�aH�, where second-order spatial gradients can be
neglected compared to time derivatives).1 The spacetime
metric g�� and matter Lagrangean are given by
1Formally this corresponds with taking only the leading-order
terms in the gradient expansion. We expect higher-order terms to
be subdominant on long wavelengths during inflation, but this
statement has only been rigorously verified at the linear level. A
calculation to higher order in spatial gradients, or, even better, a
full proof of convergence of the expansion, would be desirable.
See [12] for more details on the validity of the gradient expan-
sion beyond linear theory.
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ds2 � �N2�t; x�dt2 � a2�t; x�dx2;

Lm � �
1
2g
��@��AGAB@��B � V��A�;

(1)

with a the local scale factor and N the lapse function. The
local expansion rate is defined as H � _a=�Na�, where the
dot denotes a derivative with respect to t. The proper field
velocity is �A � _�A=N, with length �. We also define
local slow-roll parameters as

~��t; x� �
�2�2

2H2 ; ~�A�t; x� � �
3H�A �GAB@BV

H�
;

~�A�t; x� � �
DB@AV

H2

�B

�
� 3~�

�A

�
� 3 ~�A; (2)

where �2 � 8	G � 8	=m2
Pl and DB is a covariant deriva-

tive with respect to the field �B. For the first part of the
paper we will not make a slow-roll approximation, and
consider these definitions as just a short-hand notation.
When we do make this approximation, from Sec. IV ~�
and ~�A are first order in slow roll, while ~�A is second order.
Finally, we choose the gauge where

t � ln�aH� , NH � �1� ~���1: (3)

In this gauge horizon exit of a mode, k � aH, occurs
simultaneously for all spatial points and calculations are
simpler.

We will make use of a preferred basis in field space,
defined as follows. The first basis vector eA1 is the direction
of the field velocity. Next, eA2 is defined as the direction of
that part of the field acceleration that is perpendicular to eA1 .
One continues this orthogonalisation process with higher
derivatives until a complete basis is found. Explicit ex-
pressions can be found in [3], here we only give eA1 �
�A=�. Now one can take components of vectors in this
basis and we define, for example, for 
Ai [defined below in
(6)] and ~�A:


mi � emA
Ai ; ~�k � eA1 ~�A; ~�? � eA2 ~�A: (4)

Note that, unlike for the index A, there is no difference
between upper and lower indices for the m. By construc-
tion there are no other components of ~�A, so that one can
write ~�? � j~�A � ~�keA1 j. We also define

Zmn �
1

NH
emADteAn ; (5)

where Dt is the covariant time derivative containing the
connection of the field manifold. Zmn is antisymmetric and
only nonzero just above and below the diagonal, and first
order in slow roll. Its explicit form in terms of slow-roll
parameters can be found in [13]; here we only need that
Z12 � �Z21 � �~�?.

As discussed in [2,3] it is useful to work with the
following combination of spatial gradients to describe the
fully nonlinear inhomogeneities:
-2
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Ai �t; x� � eA1 �t; x�@i lna�t; x� �
����������������

2~��t; x�
p @i�

A�t; x� ,


mi � �m1@i lna�
�������
2~�
p emA@i�

A; (6)

which is invariant under changes of time slicing, up to
second-order spatial gradients [3,14]. Note that, when
linearized, 
1

i (the m � 1 component of 
mi ) is the spatial
gradient of the well-known 
 from the literature, the cur-
vature perturbation. In [3] we derived a fully nonlinear
equation of motion for 
mi without any slow-roll approx-
imations:

_
mi � �
m
i � Smi ;

_�mi �
�
�3� 2~�� 2 ~�k � 3~�2 � 4~�~�k��mn

�1� ~��2
�

2Zmn
1� ~�

�
�ni

�
�mn

�1� ~��2

ni � J m

i (7)

LARGE NON-GAUSSIANITY IN MULTIPLE-FIELD INFLAT
083522
where �mi is the velocity corresponding with 
mi and

�mn�
Vmn
H2 �

2~�

�2Rm11n��1� ~�� _Zmn�ZmpZpn

��3�2~��2 ~�k� ~�2�2~�~�k�
Zmn
1� ~�

��3~��3 ~�k�2~�2�4~�~�k��~�?�2� ~�k��mn

�2~���3� ~��2 ~�k��m1�n1� ~�?��m1�n2��m2�n1��

(8)

where Vmn � eAm�DB@AV�eBn and Rm11n �
eAmRABCDe

B
1 e

C
1 e

D
n with RABCD the curvature tensor of the

field manifold. Although for the first part of the paper we
will not make a slow-roll approximation, we give here
immediately the leading-order slow-roll approximation of
(7), which we will be using in the second part, to show that
things simplify considerably in that case:
_
 mi � �
m
i � Smi ; _�mi � 3�mi �

�
Vmn
H2 � 3Zmn � 3�~�� ~�k��mn � 6~��m1�n1

�

ni � J m

i : (9)
The stochastic source terms Smi and J m
i are given by

Smi � �
�

a
������
2~�
p

Z d3k

�2	�3=2
_W �k�Qlin

mn�k�n�k�ikieik�x

� c:c:;

J m
i � �

�

a
������
2~�
p

Z d3k

�2	�3=2
_W �k�

�

�
_Qlin
mn�k� �

1� ~�� ~�k

1� ~�
Qlin
mn�k�

�
n�k�ikieik�x

� c:c:; (10)

where c.c. denotes the complex conjugate. The perturba-
tion quantity Qlin

mn is the solution from linear theory for the
multiple-field generalization of the Sasaki-Mukhanov vari-
able Q � �a

������
2~�
p


=�. It can be computed exactly numeri-
cally, or analytically within the slow-roll approximation
[13]. The m�k� are a set of Gaussian complex random
numbers satisfying

hm�k�
	
n�k
0�i � �mn�

3�k� k0�; hm�k�n�k
0�i � 0:

(11)

The quantity W �k� is the Fourier transform of an appro-
priate smoothing window function which cuts off modes
with wavelengths smaller than the Hubble radius; we
choose it to be a Gaussian with smoothing length R �
c=�aH� � ce�t, where c 
 3–5:

W �k� � e�k
2R2=2 ) _W �k� � k2R2e�k

2R2=2: (12)

Since 
mi and �mi are smoothed long-wavelength variables,
the appropriate initial conditions are that they should be
zero at early times when all the modes are subhorizon.
Hence,

lim
t!�1


mi � 0; lim
t!�1

�mi � 0: (13)

A key aspect of the system (7) or (9) is that it is fully
nonlinear. All functions in the coefficients on the left-hand
side of the equation, like ~��t; x�, and in the sources on the
right-hand side are inhomogeneous and depend on 
mi and
�mi via a basic set of three constraint equations:

@i lna � �@i lnH � �
~�

1� ~�
e1A


A
i ; (14)

@i�A � �

������
2~�
p

�

�
�AB �

~�
1� ~�

eA1e1B

�

Bi ; (15)

Di�
A � �

������
2~�
p

�
H
�
�1� ~���Ai

�

�
�~�� ~�k��AB � ~�eA1e1B �

~�
1� ~�

~�Ae1B

�

Bi

�
:

(16)

Using only these three constraints one can compute the
spatial derivative of all relevant quantities, keeping in mind
that �mi � emA�Ai � �1� ~���1Zmn
ni . Note that in our
gauge W depends on t only and does not get any nonlinear
contributions.
III. GENERAL ANALYTIC SOLUTION

In this section we investigate how to solve the system (7)
analytically and give formal expressions for the solution. In
-3



2To be precise, the Green’s function is actually defined as the
solution of (22) with ��t� t0� on the right-hand side instead of
zero. The solution is then a step function times what we call the
Green’s function. This step function has been taken into account
by changing the upper limit of the integral in (21) from 1 to t.
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the next sections we will investigate cases where we can
determine the solution more explicitly. We start by rewrit-
ing the system (7) into a single vector equation:

_v ia�t; x� � Aab�t; x�vib�t; x� � bia�t; x�;

lim
t!�1

via � 0; vi �


1
i

�1
i


2
i

�2
i

..

.

0
BBBBBBBBB@

1
CCCCCCCCCA
; bi �

S1
i

J 1
i

S2
i

J 2
i

..

.

0
BBBBBBBBB@

1
CCCCCCCCCA
:

(17)

Here the indices a; b; . . . label the components within this
2N-dimensional space (with N the number of fields). The
matrix A can be read off from (7) and has the following
form: A2m�1;2m � �1, A2m;2n � �mn and A2m;2n�1 �
�mn=�1� ~��2, where �mn is the matrix between parenthe-
ses in the second equation of (7) and m; n � 1; 2; . . . ; N.
All other entries of A are zero.

Equation (17) is nonlinear since the matrix A�t; x� and
the the source term bi�t; x� are inhomogeneous functions in
space and depend on the vi through (14)–(16). It can be
solved perturbatively as an infinite hierarchy of linear
equations with known source terms at each order (see
also [3]). We expand the relevant quantities as

vi � v�1�i � v
�2�
i � . . . ; bi � b�1�i � b

�2�
i � . . . ;

A�t; x� � A�0��t� � A�1��t; x� � A�2��t; x� � . . . :
(18)

Then the equation of motion for v�m�i is

_v �m�ia �t; x� � A
�0�
ab�t�v

�m�
ib �t; x� � ~b�m�ia �t; x�;

lim
t!�1

v�m�ia � 0; ~b�m�ia � b�m�ia �
Xm�1

j�1

A�m�j�ab v�j�ib :
(19)

Let us recapitulate the meaning of the various indices, to
avoid confusion. The index i � 1; 2; 3 labels the compo-
nents of spatial vectors. The indices A;B; . . . � 1; . . . ; N
label components in field space. These indices will not
occur in the rest of the paper, since they have been replaced
by the indices m; n; . . . � 1; . . . ; N that label components
in field space within the special basis as defined in (4).
Next, the indices a; b; . . . � 1; . . . ; 2N label components
within the 2N-dimensional space consisting of both 
 and
� as defined in (17). Finally there are the labels within
parentheses that denote the order in the perturbative ex-
pansion defined above. Only with the i and A;B; . . . is there
a difference between upper and lower indices.

We now show that the source term ~b�m�i is known from
the solutions for vi up to order (m� 1). The equation for
v�1�i is linear by construction: A�0� depends only on the
homogeneous background quantities, and the only x de-
pendence in b�1�i is in the eik�x, for the rest it depends on
homogeneous background quantities. All of these are in the
083522
end functions of just H, �A, and �A via their definitions.
To go beyond linear order all these background quantities
are perturbed as follows (C stands for any of the quantities
to be perturbed, for example ~�, ~�?, etc.):

C�t; x� � C�0��t� � C�1��t; x� � . . .

� C�0� � @�2@i�@iC��1� � . . .

� C�0� � �C�0�a @�2@iv�1�ia � . . . (20)

where we use (14)–(16) to compute @iC and �C�0� is some
homogeneous (space-independent) vector that is the result
of that calculation. Next, to compute C�2� one simply
repeats this process with the vector �C, and continues in
this way order by order (of course there is also a
�C�0�a @�2@iv�2�ia term at second order, etc.). Then it is easy

to see that ~b�m�i depends only on v�1�i ; . . . ; v�m�1�
i , and hence

is a known quantity at each order.
The solution of Eq. (19) for v�m�i can be written as

v�m�ia �t; x� �
Z t

�1
dt0Gab�t; t0�~b

�m�
ib �t

0; x�; (21)

with the Green’s function Gab�t; t0� satisfying2

d

dt
Gab�t; t0� � A

�0�
ac �t�Gcb�t; t0� � 0;

lim
t!t0

Gab�t; t0� � �ab:
(22)

It is important to note that this Green’s function is homo-
geneous, a solution of the background equation. It has to be
computed only once, and can then be used to calculate the
solution at each order using the different source terms as in
(21). We write explicitly for the first two orders:

b�1�ia �t; x� �
Z d3k

�2	�3=2
_W �k; t�X�1�am�k; t�m�k�ikieik�x

� c:c:;

b�2�ia �t; x� � �@
�2@iv�1�ic �t; x��

Z d3k

�2	�3=2
_W �k; t� �X�1�amc�k; t�

� m�k�ikie
ik�x � c:c: (23)

Comparison with (10) shows that Xam is given by the
following equations:

X2n�1;m � �
�

a
������
2~�
p Qlin

nm;

X2n;m � �
�

a
������
2~�
p

�
_Qlin
nm �

1� ~�� ~�k

1� ~�
Qlin
nm

�
:

(24)
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The quantity �Xamc is derived from Xam as in (20). In the
same way we define A�1�ab�t; x� � �A�0�abc�t�@

�2@iv�1�ic �t; x�.
Using the solution (21), valid at each order, and the

relations (11) to compute the averages, it is now straight-
forward to write down the general expressions for the two-
point and three-point correlators of the adiabatic (m � 1)
component of 
m � @�2@i
mi , which is the a � 1 compo-
nent of via, or rather their Fourier transforms, the power
spectrum and the bispectrum. Making use of the short-hand
notation

v�1�am�k; t� �
Z t

�1
dt0Gab�t; t

0� _W �k; t0�X�1�bm�k; t
0�; (25)

we find for the power spectrum:

hj
 �1�1�k; t�j2i � v�1�1m�k; t�v
�1�	
1m �k; t� � c:c: (26)

We emphasize here that the quantity v�1�am defined by (25) is
simply made up of the linear 
 lin

mn, �lin
mn mode functions. One

needs to evaluate the Green’s function Gab�t; t0� and to
perform the integral (25) when the linear source terms
Qlin
mn, _Qlin

mn in X�1�bm are known only up to horizon crossing,
k 
 aH. However, where analytic solutions are available
for k� aH, or in a fully numerical approach, we can
dispense with the integral (25) by using the linear solution
on superhorizon scales.

To find the bispectrum the calculation is slightly longer.
One first has to compute 
 �2�1�t; x�. As we noted in the
single-field case in [5], h
 �2�1i is indeterminate. To remove
this ambiguity and also require that perturbations have a
zero average, we define ~
m � 
m � h
mi. Expanding
~
m � ~
 �1�m � ~
 �2�m, the three-point correlator will be a
combination of the different permutations of
h~
 �2�1�t; x1�~


�1�1�t; x2�~

�1�1�t; x3�i, and the bispectrum is its

Fourier transform. The intermediate steps are given in
more detail in the explicit calculation in Sec. V; here we
go directly to the end result for the bispectrum of the
adiabatic component:

h~
1�t;x1�~

1�t;x2�~


1�t;x3�i
�2��k1;k2;k3�

��2	�3�3�k1�k2�k3��f�k1;k2��f�k1;k3��f�k2;k3�

(27)

with

f�k; k0� �
k2 � k � k0

jk� k0j2
v�1�	1m �k; t�

Z t

�1
dt0G1a�t; t0�

� � �X�1�amc�k; t0� _W �k; t0� � �A�0�abc�t
0�v�1�bm�k; t

0�

� �v�1�	1n �k
0; t�v�1�cn �k0; t0� � v

�1�
1n �k

0; t�v�1�	cn �k0; t0�

� c:c:� k$ k0: (28)

If Qlin
mn is real, this simplifies to
083522
f�k;k0� � 4
k2 � k � k0

jk� k0j2
v�1�1m�k; t�v

�1�
1n �k

0; t�
Z t

�1
dt0G1a�t; t

0�

� � �X�1�amc�k; t0� _W �k; t0� � �A�0�abc�t
0�v�1�bm�k; t

0�

� v�1�cn �k0; t0� � k$ k0: (29)
This integral expression is a key result of this paper. Using
our methodology, the three-point correlator with full mo-
mentum dependence has been expressed as a single time
integral over quantities determined by the background
model and the linear perturbations, that is, respectively,
the matrix �A�0�abc and the solution Qlin

mn embedded in �X�1�amc
(24) and v�1�am (25) (in both of which the background is also
implicit). Of course, one also has to find the Green’s
function Gab from (22), but, like the equation for QA

linB in
[3], this is a linear ordinary differential equation for which
there is no serious impediment to finding a numerical
solution, in cases where an analytic or semianalytic solu-
tion is unknown. The integral solution (29), then, demon-
strates that the calculation of the three-point correlator is
straightforward and tractable. It is, in principle, similar to
calculations of the power spectrum, where accurate esti-
mates can be found from background quantities, for ex-
ample, in the slow-roll approximation. Here, we only have
to supplement this with the amplitudes of the linear per-
turbation mode functions Qlin

mn�k; t� and the closely related
Green’s function Gab�t; t0�. In Sec. V D, using this meth-
odology, we provide some quantitative semianalytic results
for the bispectrum of a two-field inflation model with a
quadratic potential.

Before closing this section a final comment is in order. A
feature of (29) which may at first sight cast doubt on its
utility for quantitative calculations is its apparent depen-
dence on the ad hoc choice for the functional form of the
window function W �k�. Closer inspection reveals that the
second term of (29) (the �A term) does not depend on W �k�
for scales sufficiently larger than the horizon. This is
evident from the fact that (25) is simply the solution to
linear theory smoothed on scales larger than the horizon.
Any properly normalised window function with W �k� !
1 for scales sufficiently larger than the horizon will pro-
duce the same final answer. The �A term represents the
nonlinear evolution on superhorizon scales and, as we
show below, it describes an integrated effect which can
lead to large non-Gaussianity. In contrast, the �X term arises
from perturbations around horizon crossing and may de-
pend on W . We find below that this term is localized
around horizon crossing and that it does not give rise to
observationally interesting effects. Section V E provides
more discussion on these points. In [11] we explicitly show
that taking a step function instead of a Gaussian as window
function does not change the leading-order integrated
effects.
-5



RIGOPOULOS, SHELLARD, AND VAN TENT PHYSICAL REVIEW D 73, 083522 (2006)
IV. SLOW-ROLL APPROXIMATION

The perturbation quantity Qlin
mn can be computed exactly

numerically, or analytically within the slow-roll approxi-
mation where all slow-roll parameters are assumed to be
smaller than unity. The latter was done in [13] to next-to-
leading order in slow roll3:

Qlin
mn �

1

2
���
k
p

�
E
�
c
kR

�
1�D

�
mn
; (30)

where the matrices D and E are defined by

Dmn � ~��mn � 2~��m1�n1 �
Vmn
3H2 ;

Emn � �1� ~���mn � �2� �E � ln2�Dmn;
(31)

with �E Euler’s constant. Overall unitary factors that are
physically irrelevant have been omitted. Using this expres-
sion the source terms are given by

Smi � �
�

a
������
2~�
p

Z d3k

�2	�3=2
_W �k�Qlin

mn�k�n�k�ikieik�x

� c:c:;

J m
i � �

�

a
������
2~�
p �Dmn � �2~�� ~�k��mn

�
Z d3k

�2	�3=2
_W �k�Qlin

np�k�p�k�ikieik�x � c:c: (32)

Now when computing �X�1�amc as defined in (23), or any
3Compared with the solution in [13] there is an extra factor of 1
between the classical Gaussian random numbers , which have h
â, which have hâyâi � 0. In [5] we introduced this factor of 1=

���
2
p

results.
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higher-order terms in the perturbative expansion, we would
in principle have to make the background quantities inQlin

mn
dependent on x and perturb them according to (20).
However, from (30) we see that Qlin

mn depends on x only
beyond leading order in slow roll (to leading order it is just
given byQlin

mn � c=�2k3=2R��mn). Hence in a leading-order
slow-roll approximation the only nonlinear parts in the
source terms are the factors in front of the integrals in (32).

Within the leading-order slow-roll approximation, we
now look at the two-field case, to make things a bit more
explicit. In that case the matrix A in (17) is given by

A �

0 �1 0 0
0 3 �6 ~�? 0
0 0 0 �1
0 0 3� 3

0
BBB@

1
CCCA; � �

V22

3H2 � ~�� ~�k:

(33)

The quantity � is first order in slow roll. Here we used (9)
and the relation, valid to leading order in slow roll (see e.g.
[13]),

V1m

3H2
�
Vm1

3H2 � �~�� ~�k��m1 � ~�?�m2: (34)

Using the constraints (14)–(16) we can compute the spatial
derivatives that are needed to calculate �A. Some of these
were given in a general form in [3]; to first order in slow
roll for the � coefficients and to second order for the 

coefficients we find in the two-field case,
�@i lna��1� � ��@i lnH��1� � �~�
 �1�1i ; �@i ln~���1� � �2��1�1i � 2�~�� ~�k�
 �1�1i � 2 ~�?
 �1�2i ;

�@i ~�?��1� � ~�?��1�1i � �3� 3~�� ~�k���1�2i � ��~�� 2 ~�k�~�? � ~�?�
 �1�1i � �3�� �~�� ~�k�~�k � �~�?�2�
 �1�2i ;

�@i��
�1� � �3� 5~�� ~�k���1�1i � 3 ~�?��1�2i �  1


�1�1
i � � 2 � �6� 10~�� 2 ~�k � 3��~�?�
 �1�2i ;

(35)

introducing the two second-order slow-roll quantities  1 and  2 as short-hand notation:

 1 � 2~��� �~�� ~�k�~�k � 3�~�?�2 � ~�k �

������
2~�
p

�
V221

3H2 � 2~���� 2 ~�k� � 4�~�?�2 �

������
2~�
p

�
1

3H2 �V111 � V221�;

 2 � �11~�� 2 ~�k � 3��~�? � ~�? �

������
2~�
p

�
V222

3H2 ;

(36)

with Vmnp � eAmeBneCpDCDB@AV. The reason for this specific definition of  2 will become clear later on. Since we have
only two fields, the notation ~�? is unambiguous. To compute @i� we used that in the two-field case, because of the
orthonormality of the basis vectors, DieA2 � �e

A
1 �e2BDieB1 �. All slow-roll parameters in these expressions take their

homogeneous background values. From this we find that the rank-3 matrix �Aabc [defined below (24)] is

�A �

0 0 0 0
0 0 �6���~�� 2 ~�k�~�? � ~�?; ~�?; 3�� �~�� ~�k�~�k � �~�?�2; 3� 3~�� ~�k� 0
0 0 0 0
0 0 3�� 1; 3� 5~�� ~�k;� 2 � �6� 10~�� 2 ~�k � 3��~�?;�3 ~�?� 0

0
BBB@

1
CCCA: (37)

In the same way we find that the matrices Xam and �Xamc, defined in (24), are given by
=
���
2
p

. It has to be introduced to take into account the difference
	i � h	i, and the quantum creation/annihilation operators ây,
in the analogue of Eq. (10), which leads of course to identical

-6
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X � �
�

a
������
2~�
p

1 0
0 ~�?

0 1
~�? ��

0
BBB@

1
CCCA et

2k3=2
; �X � �

�

a
������
2~�
p

�2~�� ~�k; 1;�~�?; 0� 0
0 X22

0 �2~�� ~�k; 1;�~�?; 0�
X22 X42

0
BBB@

1
CCCA et

2k3=2
;

X22 � ��~�� 3 ~�k�~�? � ~�?; 2 ~�?; 3�� �~�� ~�k�~�k � 2�~�?�2; 3� 3~�� ~�k�;

X42 � � 1 � �2~�� ~�k��;�3� 5~�� ~�k � �; 2 � �6� 10~�� 2 ~�k � 4��~�?; 3 ~�?�;

(38)

where we used (30) and (32).
In general the Green’s functionGab�t; t

0� cannot be expressed in closed form, since the time-dependent matrix A does not
commute at different times. It can be formally represented as

G�t; t0� � T exp
�
�
Z t

t0
A�s�ds

�
; (39)

where T denotes a time-ordered exponential:

T exp
�
�
Z t

t0
A�s�ds

�
�1�

Z t

t0
A�s�ds�

Z t

t0
ds
Z s

t0
ds0A�s�A�s0��

Z t

t0
ds
Z s

t0
ds0

Z s0

t0
ds00A�s�A�s0�A�s00�� . . . : (40)

This formal expression is standard in quantum mechanics and quantum field theory (see e.g. [15]) where, viewed
as a perturbative expansion, the first few terms in the series are kept when the operator A contains a small parameter.
In our case, however, not all elements of A are first order in slow roll, so that a truncation at any finite order is a bad
approximation. Moreover, even if Awere first order in slow roll, one should still be careful, because the time interval in the
integrations can easily be of the order of an inverse slow-roll parameter. The time-ordered exponential can be written as an
ordinary exponential plus terms which contain (nested) commutators. For example, the second and third order terms in the
series (40) can be written as

Z t

t0
ds
Z s

t0
ds0A�s�A�s0� �

1

2

�Z t

t0
A�s�ds

�
2
�

1

2

Z t

t0
ds
Z t

t0
ds0�A�s�; A�s0���s� s0� (41)

and

Z t

t0
ds
Z s

t0
ds0

Z s0

t0
ds00A�s�A�s0�A�s00� �

1

3!

�Z t

t0
A�s�ds

�
3
�

1

2

Z t

t0
ds
Z t

t0
ds0

Z t

t0
ds00A�s��A�s0�; A�s00���s0 � s00�

�
1

3

Z t

t0
ds
Z t

t0
ds0

Z t

t0
ds00��A�s�;A�s0�A�s00� �A�s00��A�s�; A�s0����s� s0���s� s00�

(42)
respectively, where � is the step function, and similarly for
higher orders (see [16] for general expressions).

There are basically three ways to proceed with this
expression. In the first place we can, if we are interested
only in relatively short time intervals, neglect the commu-
tator terms in the expansion of the time-ordered exponen-
tial and write it as an ordinary exponential. The
commutator terms all contain a difference of slow-roll
parameters at different times, as opposed to the terms of
the ordinary exponential that have just a slow-roll parame-
ter at one time. Hence, for small time intervals, the com-
mutator terms are a slow-roll order of magnitude smaller.
Then we have an exact analytic solution in closed form for
the Green’s function. Secondly, as will be the case in the
explicit example in the next section, we can consider
examples where A does commute with itself at different
times, in which case the time-ordered exponential simpli-
fies to an ordinary exponential exactly. Finally, we can
083522
compute the Green’s function numerically and use it in a
semianalytic calculation (remember that the Green’s func-
tion has to be computed only once). That will be worked
out in a future publication, though we give some results in
Sec. V D.
V. EXPLICIT SOLUTION FOR TWO-FIELD
SLOW-ROLL CASE

In this section we provide an analytic solution for the
bispectrum in two-field slow-roll inflation. We assume
slow roll as in Sec. IV but in order to obtain explicit
solutions in Secs. VA, V B, and V C, and we make the
further assumption that all slow-roll parameters are con-
stant. The semianalytic results of Sec. V D are not bound
by this further assumption and all slow-roll parameters are
calculated numerically for a quadratic model. No slow-roll
parameter takes values greater than unity. However, a
-7
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semianalytic approach is feasible for the most general non-
slow-roll case and will be the study of a future publication
[6].

A. Power spectrum

We now restrict ourselves to just two fields. Moreover,
we assume the background values of H and all slow-roll
parameters, including perpendicular ones, to be completely
constant in time whenever they are the leading-order (in
slow roll) nonzero terms in our expressions. Then we can
actually solve the system explicitly, i.e. do the time inte-
grals. We start from the equation of motion (17) for vi
together with the definitions (33), or rather from (19) for
the mth order v�m�i in an expansion in perturbation orders.
We assume everywhere that �> 0. At first order in the
perturbations this reads as
083522
_v �1�i � A
�0�v�1�i � b�1�i ; lim

t!�1
v�1�i � 0: (43)

The matrix A�0� contains just background quantities, which
by assumption are constant. Hence we circumvent the
issues of noncommutativity and time-ordered exponen-
tials, and we can write down the solution immediately as

v�1�i �t; x� � e�A
�0�t
Z t

�1
dt0eA

�0�t0b�1�i �t
0; x�: (44)

(In the terminology of Sec. III, the Green’s function is
G�t; t0� � exp��A�0��t� t0�.) The exponential can be
worked out using its eigenvalues and eigenvectors. When
multiplied with its inverse (at a different time) and ex-
panded to first order in slow roll, we obtain
e�A
�0�teA

�0�t0 �

1 1
3�1��y=y

0�3� 2 ~�?

� �1��1�
�
3��y=y

0����
3 �y=y

0�3��� 2 ~�?

3� �1��y=y
0�3��1� 2�

3 ���y=y
0����y=y0�3���

�

0 �y=y0�3 2 ~�?��y=y0����y=y0�3��� 2 ~�?

� ��y=y
0�3��

3 �y=y
0����1��

3��y=y
0�3���

0 0 �1��
3��y=y

0����
3 �y=y

0�3�� 1
3�1�

2�
3 ���y=y

0����y=y0�3���
0 0 ����y=y0����y=y0�3��� ��

3 �y=y
0����1��

3��y=y
0�3��

0
BBBBBB@

1
CCCCCCA:

(45)
Obviously, it is the identity matrix if y0 � y. For calcula-
tional simplicity here we have defined the new time vari-
able y, as well as the relative momentum p,

y �
k	c���

2
p e�t �

k	R���
2
p �

c���
2
p e��t	 ;

p �
k
k	

) py �
kR���

2
p �

c���
2
p e��tk ;

(46)

with �t	 � t� t	, the time since horizon crossing of a
reference mode k	, and we have used the fact that
k	 exp��t	� � 1 by definition (�tk is defined similarly
for the mode k). The fixed reference mode k	 is most
conveniently chosen to be one of the observable modes,
say the one that crossed the horizon 50 e folds before the
end of inflation. From (23) and (38) and the relation a �
kc=�pyH

���
2
p
� we find that b�1�i can be written to leading

order in slow roll as

b�1�i � �
�

2
���
2
p

H���
~�
p

Z d3k

�2	�3=2

1

k3=2
2p2y2e�p

2y2
ikieik�x

�

1�k�

~�?2�k�

2�k�

~�?1�k� � �2�k�

0
BBBBB@

1
CCCCCA� c:c: (47)

Changing to y as integration variable, we can then do the
integral in (44) explicitly to find the solution
v�1�i �y; x� � �
�

2
���
2
p

H���
~�
p

Z d3k

�2	�3=2

1

k3=2
ikieik�x

1 � 2 ~�?

� 2 � 2
3
�~�?�2

� 1 �
1
3 ~�?2 �2 ~�?

� 2
2
3
�~�?�2

� 1

0 2 �~�
?�2

� 1 � ~�?2 2 ~�?2 �2 �~�
?�2

� 1

0 0 2 � 1
3 ~�?1

0 0 ��2 ~�?1

0
BBBBB@

1
CCCCCA

�

e�p
2y2

p3y3��� 1
2 ; p

2y2�

p�y���1� �
2 ; p

2y2�

p3��y3����� 1
2�

�
2 ; p

2y2�

0
BBB@

1
CCCA� c:c:

� �
�

2
���
2
p

H���
~�
p

Z d3k

�2	�3=2

1

k3=2
ikieik�xB�k�u�py� � c:c: (48)
-8
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where we have omitted the explicit k dependence of the’s
and the final expression defines the matrix B�k� and vector
u�py�.

It is interesting to look at the time behavior of (48) in
more detail. Note that in our leading-order slow-roll ap-
proximation, differences �t in the time variable defined in
(3) are equal to differences in the number of e folds. A few
e folds4 after horizon crossing the vector u�py� in (48) can
be approximated by �1; 0; p�y���1� �=2�; 0�T . The third
entry can be approximated even further as just 1� ��tk,
where �tk is the number of e folds after horizon crossing of
the mode k, and the expression is valid for ��tk suffi-
ciently smaller than unity, but �tk * 3.5 With this approxi-
mation the solution (48) can be written as

v�1�i �t; x� 
 �
�

2
���
2
p

H���
~�
p

Z d3k

�2	�3=2

�
1

k3=2
ikie

ik�x

1 � 2 ~�?�tk2

2 ~�?�1� ��tk�2

�1� ��tk�2

���1� ��tk�2

0
BBB@

1
CCCA� c:c:

(49)

As expected (see e.g. [13]) we find that the effectively
4For example, 3 e folds is good enough if c � 3 and � � 0:05,
and this result depends only weakly on the values of c and �.

5See the previous footnote. A logarithmic dependence on c has
been ignored here. For c � 3 this term is 4 times smaller than
��tk when �tk � 3, and becomes even less important as �tk
grows.

083522
single-field (1) component of 
1
i reaches its constant final

value right after horizon crossing, while the influence of
the perpendicular field direction (2, ‘‘isocurvature
mode’’) on 
1

i continues to grow with time on superhorizon
scales. The velocities �1

i and �2
i are both suppressed by an

additional slow-roll factor compared to the 
i’s. In the limit
of �tk ! 1 (or py! 0), where the above approximation
is no longer valid, the exact result (48) leads to the limit

v�1�i �x� 
 �
�

2
���
2
p

H���
~�
p

Z d3k

�2	�3=2

�
1

k3=2
ikieik�x

1 � 2 ~�?

� 2

0
0
0

0
BBB@

1
CCCA� c:c: (50)

Hence the expression does not diverge as t grows, but
reaches a well-defined value, which is independent of the
smoothing parameter c.

Concentrating now on the adiabatic (e1) component of

 � @�2@i
i we find from (48) to leading order in slow
roll:

 �1�1�t; x� � �
�

2
���
2
p

H���
~�
p

Z d3k

�2	�3=2

1

k3=2
eik�x

�
e�p

2y2��t	�1�k� � 2
~�?

�
g�p; �;�t	�2�k�

�
� c:c:; (51)

where y as a function of �t	 is given in (46), p � k=k	, and we have defined

g�p; �;�t	� � e�p
2y2
� p�y��

�
1�

�
2
; p2y2

�

 1� p�e���t	 � 1� e���tk ; (52)

where the approximation is good from a few e folds after horizon crossing. Hence the two-point correlator is given by

h
 �1�1�t; x�
 �1�1�t; x0�i �
�2

8

H2

~�

Z d3k

�2	�3
1

k3

�
e�2p2y2��t	� � 4

�
~�?

�

�
2
g2�p; �;�t	�

�
eik��x�x

0� � c:c:; (53)

or, equivalently, for the power spectrum:

h
 �1�1�k; t�
 �1�1�k; t�i �
�2

4

H2

~�
1

k3

�
e�2p2y2��t	� � 4

�
~�?

�

�
2
g2�p; �;�t	�

�
: (54)
Here we used (11) to take the average. Alternatively, we
could have used (26) directly. From a few e folds after
horizon crossing, exp��2p2y2� 
 1 and g�p; �;�t	� is
given by the final expression in (52), so that the power
spectrum is independent of the smoothing parameter c.
Finally, we can compute the adiabatic spectral index using
the expressions in [17], where the UPe in that paper can be
read off from (54), once the transient horizon-crossing
effects have disappeared, to be 2�~�?=��g�p; �;�t	�e2,

nad � 1 � �4~�� 2 ~�k � 8 ~�?
~�?

�
g�p; �;�t	�

�
1� g�p; �;�t	�

1� 4�~�
?

� �
2g2�p; �;�t	�

: (55)
B. Second-order solution

At second order in the perturbations we expand all
quantities in A and bi as explained in (20), using (35),
resulting in the expressions in (37) and (38). Remember
that superscripts within parentheses denote the order in
perturbation theory, while the superscripts without paren
-9
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theses indicate the component of the vector within the field basis as defined in (4). The resulting equation for v�2�i has the
same structure as (43), but with a different source term:

_v �2�i � A
�0�v�2�i � b�2�i �

0
�6 ~�?�1�

0
3��1�

0
BBB@

1
CCCA
 �1�2i ; lim

t!�1
v�2�i � 0; (56)

where b�2�i is the vector obtained by perturbing H, ~�, ~�?, and � in b�1�i given in (47). Explicitly, the right-hand side of
Eq. (56) is to leading order in slow roll given by

�2

8

H2

~�

ZZ d3kd3k0

�2	�3
ikieik�x

k3=2k03=2

2
6666642p2y2e�p

2y2

�2~�� ~�k�1�k� 1�k� �~�?1�k� 0

	 	 	 	

�2~�� ~�k�2�k� 2�k� �~�?2�k� 0

	 	 	 	

0
BBBBB@

1
CCCCCA

� 3

0

0

1

0

0
BBBBB@

1
CCCCCA

T

B�k�u�py�

0 0 0 0

2�~�� 2 ~�k�~�? � 2 ~�? �2 ~�? �6�� 2�~�� ~�k�~�k � 2�~�?�2 �6� 6~�� 2 ~�k

0 0 0 0

� 1 3� 5~�� ~�k � 2 � �6� 10~�� 2 ~�k � 3��~�? �3 ~�?

0
BBBBB@

1
CCCCCA

3
777775

� �B�k0�u�qy�eik
0�x � c:c:� � c:c:

�
�2

8

H2

~�

ZZ d3kd3k0

�2	�3
ikie

ik�x

k3=2k03=2
�2p2y2e�p

2y2 ~B�k� � 3�0; 0; 1; 0�B�k�u�py�F�B�k0�u�qy�eik
0�x � c:c:� � c:c: (57)
where we have defined q � k0=k	, as well as the matrices
~B�k� and F in the last expression (the matrix B and vector u
were defined in (48)). The entries indicated by an asterisk
in the matrix ~B are not given explicitly here, but can be
read off from (38); they do not contribute to 
 �1�1i and 
 �1�2i
to leading order in slow roll, because they are one order
higher than the corresponding entries in the first and third
row, after cancellations in the final result have been taken
into account. The solution for v�2�i �t; x� is now given by the
same expression (44) as v�1�i �t; x�, if one replaces b�1�i in
083522
that expression by (57), though actually calculating the
time integral to obtain a completely explicit expression is
clearly more difficult.

To get all the time-dependent terms together, it is useful
to change from the matrix notation used above to a com-
ponent notation, as defined in (17). We define the indices a,
b, c, d, e, f running from 1 to 4 to label the components in
the 4-dimensional f
1

i ; �
1
i ; 


2
i ; �

2
i g space. Moreover, we re-

write the matrix in (45) as
e�A
�0�teA

�0�t0 � Kabcwc�y; y
0�;

K �

�1; 0; 0; 0� 1
3 �1;�1; 0; 0� 2 ~�?

� �1; 0;�1� �
3 ;

�
3�

2 ~�?

3� �1;�1;�1� 2�
3 ; 1�

2�
3 �

0 �0; 1; 0; 0� 2 ~�?�0; 0; 1;�1� 2 ~�?

� �0; 1;
�
3 ;�1� �

3�

0 0 �0; 0; 1� �
3 ;�

�
3�

1
3 �0; 0; 1�

2�
3 ;�1� 2�

3 �

0 0 ��0; 0;�1; 1� �0; 0;� �
3 ; 1�

�
3�

0
BBBBBBB@

1
CCCCCCCA
;

w�y; y0� �

1

�y=y0�3

�y=y0��

�y=y0�3��

0
BBBBB@

1
CCCCCA;

(58)

which defines the rank-3 matrix K and the vector w�y; y0�. Then the solution for v�2�i can be written as
-10
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v�2�ia �y;x��
�2

8

H2

~�

ZZ d3kd3k0

�2	�3
ikieik�x

k3=2k03=2
Kabc�Bde�k

0�eik
0�x�c:c:�

�

�
~Bbd�k�

Z 1
y

dy02p2y0e�p
2y02wc�y;y0�ue�qy0��3B3f�k�Fbd

Z 1
y

dy0

y0
wc�y;y0�ue�qy0�uf�py0�

�
�c:c: (59)
(To be precise, c, e, and f are actually indices in a com-
pletely different space than the other indices, but it is also
4-dimensional.) It is useful to consider the contributions of
the two integral terms within the square brackets sepa-
rately, since they have a different origin [cf. (29)]. The
first term is the variation of the stochastic source, repre-
sented in (29) by the �X term, and because of the window
function the integral only picks up a contribution around
horizon crossing (although this contribution is time-
dependent even later on, because of the dependence on y,
not just y0, of the Green’s function). The second term is the
variation of the coefficients in the equation of motion,
represented in (29) by the �A term, which is an integrated
effect up to the end of inflation, and is not present in single-
field inflation. The leading-order coefficients in front of the
first term are first order in slow roll, while the ones in front
of the second term are second order6, however, this can be
more than compensated by the larger integration interval.

In principle there are 80 different integrals here: 16 from
the first term and 64 from the second one. Some of the
integrals can be done analytically, but most have to be
studied numerically. However, of those 64 from the second
term the only integrals that matter are those that are secu-
lar, i.e. continue to grow with time (up to a time of order
�t� ��1), since these will be, roughly speaking, a slow-
roll order of magnitude larger at the end of inflation than
the other integrals. Although we studied all integrals more
carefully, one can easily get an idea of which integrals in
the second term will be secular by looking at the behavior
of the integrand for y0 ! 0 (i.e. t! 1): only the compo-
nents with e and f either 1 or 3 are secular, since these are
close to y0�1 in that limit. A slightly more careful analysis
6There are some entries in the product FbdBde that are first
order in slow roll, but these exactly cancel when (59) is worked
out explicitly, so that the nonvanishing leading-order coefficients
are second order in slow roll.
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shows that, roughly speaking, the c � 2 and c � 4 com-
ponents of those terms will be a factor � smaller (one gets a
3�1 instead of a ��1 when integrating). Given that B31 �
0, f cannot be equal to 1, so in the end one expects the 4
integrals in the second term with c and e both either 1 or 3
and f � 3 to be dominant, and that is confirmed by a
careful numerical study. We denote the �c; e; f� �
�1; 1; 3�, (1, 3, 3), (3, 3, 3), and (3, 1, 3) integrals in the
second term within the square brackets of (59) by
I1�p; q; �;�t	�, I2�p; q; �;�t	�, I3�p; q; �;�t	�, and
I4�p; q; �;�t	�, respectively.

Regarding the 16 integrals of the first term the following
can be said. Because of the y3 factor in front of the c � 2; 4
integrals, which cannot be completely canceled by factors
coming from the integral, these terms will become negli-
gible after just a few e folds after horizon crossing. Of the
remaining integrals those with e � 2 and e � 4 will be
practically equal, because �� 3. Hence there are only 6
distinct integrals here that have to be considered: those
with c � 1; 3 and e � 1; 2; 3; the 2 integrals with c � 1; 3
and e � 4 are taken to be equal to those with e � 2. Again,
these simple estimates are confirmed by careful numerical
study of the integrals. We denote the �c; e� � �1; 1�, (1, 2),
(1, 3), (3, 1), (3, 2), and (3, 3) integrals in the first term
within the square brackets of (59) by J1�p; q;�t	�,
J2�p; q;�t	�, J3�p; q; �;�t	�, J4�p; q; �;�t	�,
J5�p; q; �;�t	�, and J6�p; q; �;�t	�, respectively.

Let us now investigate these 10 integrals. Half of them,
viz. I3, I4, J4, J5, and J6, are zero in the limit of t! 1, but
decrease slowly enough with time that they should not be
neglected at the end of inflation. Three of the integrals can
be done analytically:
J1�p; q;�t	� �
Z 1
y��t	�

dy02p2y0e��p
2�q2�y02 �

p2

p2 � q2 e
��p2�q2�y2

;

J4�p; q; �;�t	� � y���t	�
Z 1
y��t	�

dy02p2y01��e��p
2�q2�y02 �

p2

p2 � q2 �p
2 � q2��=2y��

�
1�

�
2
; �p2 � q2�y2

�
;

J6�p; q; �;�t	� � q�y���t	�
Z 1
y��t	�

dy02p2y0e�p
2y02 �

�
1�

�
2
; q2y02

�

� �
q2

p2 � q2 �p
2 � q2��=2y��

�
1�

�
2
; �p2 � q2�y2

�
� q�y�e�p

2y2
�
�
1�

�
2
; q2y2

�
;

(60)
where y��t	� is given in (46). It is also interesting to look at
the behavior of the integrals in the limits of p! 0 (k! 0)
and q! 0 (k0 ! 0). For p! 0 all integrals are zero. For
q! 0 only I1, I4, J1, and J4 are nonzero. The integrals J1

and J4 are given above, but in this limit also I1 and I4 can
be computed analytically (the expression for I4 is only
valid from a few e folds after horizon crossing, i.e. for
py� 1):
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I1�p; 0; �;�t	� �
Z 1
y��t	�

dy0p�y0�1���
�
1�

�
2
; p2y02

�
�

1

�

�
e�p

2y2
� p�y��

�
1�

�
2
; p2y2

��
�

1

�
g�p; �;�t	�;

I4�p; 0; �;�t	� � p�y���t	�
Z 1
y��t	�

dy0

y0
�
�
1�

�
2
; p2y02

�
’ �p�y� ln�py��

�
1�

�
2

�

 ��t	 � lnp�p�e���t	 ;

(61)
where g�p; �;�t	� is defined in (52). Using the results
discussed in the text above Eq. (49), one sees that from a
few e folds after horizon crossing both start growing
linearly with �tk ( � �t	 � lnp), although finally the limit
1=� is reached for I1, while I4 goes to zero.

For q > 0 the four I-integrals have to be evaluated
numerically; the resuls are plotted in Fig. 1 as a function
of q=p for �t	 � 50, for various values of the parameters
� and p. Although we will be using the exact numerical
results for all integrals when plotting the three-point cor-
relator, one can get an approximation by neglecting the
�=2 inside the gamma function in u3�py0� [see (59) and
(48)]. Then the I-integrals can be done analytically, with
5 10 15 20
q p
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FIG. 1 (color online). The integrals I1�p; q; �;�t	� (small dashe
I4�p; q; �;�t	� (dots) plotted as a function of q=p for �t	 � 50, both
50 and 40 e folds after horizon crossing of the mode k). The smooth
The different figures correspond with different values of �, as indic
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the results

I1�p;q;�;�t	�

1

2
p��p2�q2���=2�

�
�
2
;�p2�q2�y2

�
;

I2�p;q;�;�t	�

1

2
p�q��p2�q2������;�p2�q2�y2�;

I3�p;q;�;�t	�

1

2
p�q��p2�q2���=2y��

�
�
2
;�p2�q2�y2

�
;

I4�p;q;�;�t	�

1

2
p�y���0;�p2�q2�y2�; (62)

so that we can make the following estimates:
5 10 15 20
q p

0

5

0

5

0

5 10 15 20
q p

2

4

6

8

0

s), I2�p; q; �;�t	� (solid), I3�p; q; �;�t	� (large dashes), and
for p � 1 (blue, darker) and for p � exp�10� (green, lighter) (i.e.
ing parameter c � 3, although the dependence on c is negligible.
ated. Note that I2 and I4 almost coincide in the first plot.
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I1 
 �tk�1�
1
2��tk �

1
6���tk�

2�;

I2 
 �tk�1� ��tk �
2
3���tk�2�;

I3 
 �tk�1�
3
2��tk �

7
6���tk�

2�;

I4 
 �tk�1� ��tk �
1
2���tk�2�;

(63)

for ��1 � �tk, and

I1 
 ��1; I2 

1
2�
�1; I3 
 0; I4 
 0 (64)

for ��1 � �tk. As a rough approximation, they can be
taken independent of q for reasonable ranges, say up to
q=p� 100. For I2 and I3 this range has a lower limit as
well: 100�1 & q=p & 100; they are zero for q � 0. Note
that these secular I-integrals typically give a result which is
of the order of an inverse slow-roll parameter.

For the J-integrals the results are much smaller, since the
integration interval is restricted because of the window
function. The integrals J1, J2, and J3 become completely
independent of �tk from a few e folds after horizon cross-
ing of the mode k. Moreover, J1 and J2 are independent of
�, while J3 has a relatively weak dependence on �. On the
other hand, all three depend strongly on q=p. They are
plotted in Fig. 2(a). The integrals J4, J5, and J6 depend

LARGE NON-GAUSSIANITY IN MULTIPLE-FIELD INFLAT
0.5 1 1.5 2 2.5 3
q p
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1

FIG. 2 (color online). (a) The integrals J1�p;q;�t	� (small dashes)
��0:2 (large dashes) plotted as a function of q=p, a few e folds
�tk��t	� lnp has become negligible. (b) The integrals J4�p;
J6�p;q;�;�t	� (solid) plotted as a function of q=p for p�1 and �
lighter).
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strongly on both q=p and ��tk. In the limit ��tk � 1 they
become equal to J1, J2, and J3, respectively, while in the
opposite limit they all go to zero. They are plotted in
Fig. 2(b). For q � 0 we have an exact analytic result; for
q � p (i.e. k � k0) it is sometimes useful to have an
analytic approximation:

J1

1
2; J2
0:14; J3


1
2; J4


1
2�1���tk�;

J5
0:14�1���tk�; J6

1
2�1���tk�;

(65)

for ��1 � �tk, and

J1 

1
2; J2 
 0:14; J3 


1
2;

J4 
 0; J5 
 0; J6 
 0;
(66)

for ��1 � �tk.
Having studied all the integrals, we can now work out

(59) explicitly. We focus on the a � 1 component of via,
that is 
1

i (the adiabatic component of 
i), since that is the
quantity we want to compute the three-point correlator of
in the end. The final result for 
 �2�1i in the two-field case, in
a leading-order slow-roll approximation (constant slow-
roll parameters) and valid well after horizon crossing, is

 �2�1i �t;k� �
�2

8

H2

~�

ZZ d3kd3k0

�2	�3
1

k3=2k03=2
eik

0�x

�

�
�ikieik�x1�k� � c:c:�

�
��2~�� ~�k�J11�k

0� � 2
~�?

�

�
�2~�� ~�k��J1 � J3� �

�
2
�J3 � J2�

�
2�k

0�

�

� 2
~�?

�
�ikie

ik�x2�k� � c:c:�
��
�2~�� ~�k��J1 � J4� �  1�I1 � I4� � �

�
�~�� 2 ~�k �

~�?

~�?

�
I1

�
1�k

0�

� 2
~�?

�

�
�2~�� ~�k��J1 � J3 � J4 � J6� �

�
2
�J3 � J2 � J6 � J5� �  1�I1 � I4 � I2 � I3�

� �
�
�~�� 2 ~�k �

~�?

~�?

�
�I1 � I2� �

�

2 ~�?
 2�I2 � I3� �

�2

2�~�?�2
!I2

�
2�k

0�

��
� c:c:; (67)
0.5 1 1.5 2 2.5 3
q p

0.1

0.2

0.3

0.4

0.5

0.6

, J2�p;q;�t	� (dots), and J3�p;q;�;�t	� for ��0:05 (solid) and
after horizon crossing of the mode k when the dependence on
q;�;�t	� (small dashes), J5�p;q;�;�t	� (large dashes), and
t	 �50, for both � � 0:01 (blue, darker) and ��0:05 (green,
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with ! � �~�� ~�k�~�k � �3~�� ~�k��� �~�?�2 defined as
short-hand notation. The arguments �p; q; �;�t	� of the
integrals have been suppressed, but it should of course be
kept in mind that that is where the time dependence resides
in this expression. Note that in the single-field limit, where
all terms with 2 disappear, we recover the result of [5].
For the three-point correlator we need to know 
 �2�1 �
@�2@i
 �2�1i , which is given by the same expression (67),
but with eik

0�x�ikie
ik�x1�k� � c:c:� replaced by

�
k2 � k � k0

jk� k0j2
ei�k�k

0��x1�k� �
k2 � k � k0

jk� k0j2
e�i�k�k

0��x	1�k�
�

(68)

and the same for 2�k�.
t�
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C. Bispectrum

As in the single-field case, h
 �2�1i is indeterminate. To
remove this ambiguity and also require that perturbations
have a zero average, we define ~
m � 
m � h
mi.
Expanding ~
m � ~
 �1�m � ~
 �2�m and switching over to
Fourier space, we finally arrive at our end result for the
three-point correlator (or rather the bispectrum) of the
adiabatic component:

h~
1�t;x1�~

1�t;x2�~


1�t;x3�i
�2��k1;k2;k3�

��2	�3�3�k1�k2�k3��f�k1;k2��f�k1;k3��f�k2;k3�

(69)

with
f�k; k0� �
�4

16

1

k3k03
H4

~�2

k2 � k � k0

jk� k0j2

�
�2~�� ~�k�J1

� 4
�

~�?

�

�
2
�
g�p; �;�t	�

�
�2~�� ~�k��J1 � J4� �  1�I1 � I4� � �

�
�~�� 2 ~�k �

~�?

~�?

�
I1

�

� g�q; �;�t	�
�
�2~�� ~�k��J1 � J3� �

�
2
�J3 � J2�

��

� 16
�

~�?

�

�
4
g�p; �;�t	�g�q; �;�t	�

�
�2~�� ~�k��J1 � J3 � J4 � J6� �

�
2
�J3 � J2 � J6 � J5�

�  1�I1 � I4 � I2 � I3� � �
�
�~�� 2 ~�k �

~�?

~�?

�
�I1 � I2� �

�

2 ~�?
 2�I2 � I3� �

�2

2�~�?�2
!I2

��
� k$ k0:

(70)
Again, this result is valid in the two-field case, in a leading-
order slow-roll approximation (constant slow-roll parame-
ters) and valid from a sufficient number of e folds after
horizon crossing that transient effects have disappeared.
The function g�p; �;�t	� is given in (52), �,  1, and  2 are
defined in Sec. IV, and! is defined below (67). Remember
that all the integrals and the function g�p; �;�t	� depend
on the momenta via p � k=k	 and q � k0=k	 and hence are
affected by the interchange of k and k0. In the single-field
limit only the first line of (70) remains, which agrees
exactly with [5].

In the limit k3 � k1; k2 (and hence k1 � �k2 � k,
while we also fix k	 � k so that we do not need to write
a subscript on �t), all the integrals can be performed
analytically and the result is (leaving aside the overall
factor of �2	�3�3�

P
sks�):

h~
1 ~
1 ~
1i�2� �
�4

8

1

k3k3
3

H4

~�2

�
1�4

�
~�?

�

�
2
�

�

�
�2~�� ~�k�

�
1�4

�
~�?

�

�
2
�1�e���t�2

�

�4
�

~�?

�

�
2
�1�e���t�

�
 1

�
�1��1���t�e���

�

�
�~��2 ~�k�

~�?

~�?

�
�1�e���t�

��
; (71)
where the term on the second line comes from the
J-integrals, and the terms on the third and fourth lines
from the I-integrals. Again, this agrees with the single-
field result in the limit ~�? ! 0. Unlike the single-field
case, the multiple-field result cannot be expressed in terms
of the scalar spectral index and the power spectrum only
(see (54) and (55) and [17] for expressions for the isocur-
vature and mixing components). Instead of the three-point
correlator itself, it is actually more useful to look at the
ratio of the bispectrum to the square of the power spectrum,
since that ratio is related to observables like the fNL

parameter (more about that later). Dividing (71) by the
square of (54) (one with momentum k and the other with
k3) and taking the limit of ~�?=�� 1, we get for the two
opposite limits of ��t that

h~
1 ~
1 ~
1i

�h~
1 ~
1i�2
�

8>>><
>>>:

2
�

~�� 3 ~�k �
~�?

~�?

�
� 1�t for ��1 � �t;

2
�

~�� 3 ~�k �
~�?

~�?
�  1

�

�
for ��1 � �t:

(72)

Now if we assume that ~�? is larger than the other slow-roll
parameters, the dominating term in both expressions will
be the 4�~�?�2 in  1 (36), so that the two expressions in (72)
will go to 4�~�?�2�t and 8�~�?�2=�, respectively. Hence,
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FIG. 3 (color online). The bispectrum (71) divided by the
square of the power spectrum (54) (with two different momenta)
in the limit where one of the momenta is much smaller than the
other two, plotted as a function of ~�? and � for �t � 50, ~� �
~�k � 0:05, and ~�k � ~�? � �

������
2~�
p

=��V221=�3H
2� � 0:003.
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while this ratio of the bispectrum to the square of the power
spectrum is first order in slow roll by naive power counting
7There is a difference of a factor of order unity between ~fNL
and fNL even in the equal momentum limit, caused partly by the
difference between 
 and the gravitational potential � which
was used in the original definition.

083522
(counting 1=�t as a slow-roll parameter), as in the single-
field case, it can be much larger for models with a relatively
small � and relatively large ~�?. For example, ~�? � 0:07
and �t � 1=� � 50 would already give a ratio of more
than unity, so that a value about 100 times larger than in the
single-field case seems well within range for multiple-field
models. This is confirmed by the full plot of (71) divided
by the square of (54) as a function of ~�? and � given in
Fig. 3. It is also interesting to see that in the cases where
non-Gaussianity is large, this is caused by the I-integrals
(i.e. the superhorizon integrated background effects that
are absent in single-field inflation): roughly speaking it
boils down to ~�J1 versus �~�?�2I1, which gives ~� versus
the smaller of �~�?�2�t and �~�?�2=�, either of which can
easily be 2 orders of magnitude larger.

In the opposite limit of k1 � k2 � k3 � k (where we
again set k	 � k so that �t is unambiguous) we do not have
an exact analytic result for all integrals, but we can use the
approximations (63)–(66). We find the following results
for the bispectrum divided by the square of the power
spectrum, in the limit of ~�?=�� 1:
h~
1 ~
1 ~
1i

�h~
1 ~
1i�2
�

8>>><
>>>:

3
2

�
0:36�!=�~�?�2

�t � ~�� 2 ~�k �
~�?

~�?
�  2

2 ~�?
� 1

3 1�t
�

for ��1 � �t;

3
2

�
0:36�� �!

2�~�?�2
� ~�� 2 ~�k �

~�?

~�?
�  2

2 ~�?
�  1

�

�
for ��1 � �t:

(73)

If we assume once again that ~�? is larger than the other slow-roll parameters, the dominating term in both expressions will
again be the 4�~�?�2 in  1, so that the two expressions will go to 2�~�?�2�t and 6�~�?�2=�, respectively. Finally we should
check that all the limits that produce large non-Gaussianity do not produce an unacceptably large spectral index at the same
time. Fortunately that is not the case: from (55) we derive, under the same limits as in (72) and (73),

nad � 1 �

8><
>:
�4~�� 2 ~�k � 8�~�?�2�t

1�4�~�?�2��t�2
for ��1 � �t;

�4~�� 2 ~�k for ��1 � �t:
(74)

After having discussed the various momentum limits, we finally show the full dependence on the relative magnitude of
the momenta of the bispectrum divided by the square of the power spectrum in Fig. 4(a), where we did not use any analytic
approximations for the integrals. To be precise, it is actually the bispectrum given in (69) and (70), without the overall
�2	�3�3�

P
sks� factor (but taking into account the relation between the momenta that the �-function implies), divided by

the sum of products of power spectra (54) with different momenta, as follows:

~f NL �
h~
1 ~
1 ~
1i�k1; k2; k3�

�h~
1 ~
1i�k1�h~

1 ~
1i�k2� � h~


1 ~
1i�k1�h~

1 ~
1i�k3� � h~


1 ~
1i�k2�h~

1 ~
1i�k3�=3

: (75)
This quantity can be seen as a momentum-dependent ver-
sion of the fNL parameter often used in the literature (see
e.g. [4]).7 We now choose k	 to be the mode that crossed
the horizon 50 e folds before the end of inflation (i.e. we set
�t	 � 50). The function ~fNL depends on the three scalars
k1, k2, k3, but we can plot it in a two-dimensional triangular
domain if we fix their sum, which we do by setting �k1 �
k2 � k3�=k	 � 3. This convenient way of plotting the
three-point correlator in a triangle, clearly demonstrating
its symmetries, was introduced in [5], and is illustrated in
Fig. 4(b).8 The quantities on the axes are
8Note, however, that in [5] a different normalization factor was
used.
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FIG. 4 (color online). (a) The bispectrum (69) and (70), without the overall �2	�3�3�
P
sks� factor and divided by the square of the

power spectrum (54) as defined in (75), plotted as a function of the relative size of the three momenta. The sum of the momenta is
chosen as �k1 � k2 � k3� � 3k	 with k	 fixed by choosing �t	 � 50. The values for the parameters are ~� � ~�k � 0:05, ~�? � 0:2,
� � 0:01, ~�k � ~�? � �

������
2~�
p

=��V221=�3H
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2~�
p
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2� � 0:003 (as well as c � 3, although the dependence on c is

negligible). (b) An explanation of the triangular domain used, defined in (76), with k � k1 � k2 � k3.
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� � 2
k2 � k3

k1 � k2 � k3
; � � �

���
3
p k1 � k2 � k3

k1 � k2 � k3
: (76)

At the vertices of the triangle one of the three momenta is
equal to zero. Lines of constant ks are parallel to the sides
of the triangle (a different side for each s � 1; 2; 3) and ks
increases linearly perpendicular to these. At the side itself
the corresponding momentum is equal to half the total sum,
�k1 � k2 � k3�=2. In the center of the triangle all momenta
have equal length.

The plot in Fig. 4(a) has been made for all first-order
slow-roll parameters equal to 0.05, except ~�? � 0:2 and
� � 0:01, and all second-order slow-roll parameters equal
to 0.003. We see that there is a dependence on the relative
magnitude of the momenta. Though not visible in the
figure, this dependence is strongest very near the vertices
of the triangle, which is the limit of (71), where for this
specific example the value 9.0 is reached. Of course loga-
rithmically the region near the vertices covers an infinite
range of magnitudes in momentum ratios. (The fact that the
result is largest in the squeezed momentum limit agrees
with the findings of [18].) The value at the center is 3.7.
Assuming that a naive extrapolation of this result at the end
of inflation to the time of recombination is allowed, so that
the quantity plotted is indeed comparable to the observable
fNL, we see that this model does produce sufficient non-
Gaussianity to be detectable with the Planck satellite. To
compare this plot with the one for the single-field case in
[5] one should keep in mind that there an additional factor
of (2~�� ~�k) was left out (and there are some differences in
the momentum normalization factor, but that does not
083522
change the magnitude much), so that the multiple-field
result is indeed about 2 orders of magnitude larger.

D. Comparison with semianalytic calculation using
quadratic potential

Of course it may be argued that the approximate model
considered here is not very realistic, with all slow-roll
parameters constant with time (in particular ~�? and �).
We should also stress that the calculation here was made
under the assumption that �> 0, which is not true for all
models. While we will study more realistic models in great
detail in a future publication [6], both semianalytically and
purely numerically without any approximations, for direct
comparison here we present a bispectrum calculation using
the Green’s function formalism outlined in Sec. III. We
have investigated a simple two-field model with a qua-
dratic potential V � 1

2m
2
1�

2
1 �

1
2m

2
2�

2
2 with m1 �

1 � 10�5��1 (the overall mass magnitude can be freely
adjusted to fix the amplitude of the power spectrum). The
analytic solution (30) is used as the linear source term in
(23), the superhorizon Green’s function is then calculated
from (22) and (33), and the bispectrum computed from
these using (29) and (37). We find that for a mass ratio
m2=m1 � 9 and initial conditions �1 � �2 � 13��1 we
get relatively large non-Gaussianity: with all momenta
equal, that is, at the center of the triangle, the ratio of the
bispectrum to the square of the power spectrum is, in the
slow roll limit,

~f NL � 1:8; (77)
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where we have taken horizon crossing to be 58 e folds
before the end of inflation. The ratio of the contribution
from the I-integrals to that of the J- integrals is 74. This
confirms our assertion that the integrated secular terms (the
�A term in (29)) subsequent to horizon crossing dominate
the contributions to the bispectrum. We note also that the
spectral index in this model is 0.93, which is observatio-
nally acceptable. While the investigation of the quadratic
model is preliminary at this stage, it is clear that large non-
Gaussianity (fNL greater than unity) can be obtained in a
real multiple-field inflation model.

Even though the slow-roll parameters are definitely not
constant in the quadratic model, we find that the expres-
sions in the previous subsection can be used to make a
useful approximation of the numerical result. In this case,
for example, to estimate ~�? we use a representative value
and adjust �t to reflect the region of support where its
value is significant. To compare to the quadratic potential
result, here we have taken �~�?�2 � 0:73 (its maximum
value) and �t � 1:0 (full width at half maximum), and
use the limit 2�~�?�2�t given below (73). From this we
estimate the value 1.5, which is relatively close to the
numerical value. This seems to indicate that the constant
slow-roll, analytic results of the previous subsection9,
while in principle unrealistic, can be used to get a first
estimate of the amount of non-Gaussianity even in real
models with varying slow-roll parameters.

E. Discussion

Before we conclude, a couple of points regarding the
consistency of our approach need to be discussed. The first
is an inherent limitation of our method in capturing all
possible sources of non-Gaussianity, since, by using the
linear perturbation solutions to source our nonlinear equa-
tions, we are implicitly neglecting all nonlinear interac-
tions up to horizon crossing. We believe that this accounts
for the small discrepancy between the momentum depen-
dence of our single-field three-point correlator [5] and that
obtained from the tree-level action calculations of [7] when
k1 
 k2 
 k3, whereas in the limit k1, k2 � k3 the two
correlators agree exactly. We surmise that the superhorizon
nonlinear effects described by our method and the horizon-
crossing effects we are missing are of comparable magni-
tude for single-field inflation in the equal momentum limit.

For multiple-field inflation, however, the situation is
very different. We can see this by using the quantitative
results above to interpret our key integral expression for the
three-point correlator (29). In the case where multiple-field
effects are large (as indicated by the behavior of ~�?) it is
the perturbation of the long-wavelength evolution term in
the integrand of (29) (represented by �A�0�abc and absent in the
9Except expression (74) for the spectral index, which is a poor
approximation in this case.

083522
single-field case) that dominates over perturbations of the
stochastic source term which contains the linear perturba-
tions (represented by �X�1�amc; the term that would, in princi-
ple, be influenced by these horizon-crossing effects). For
example, in the case considered in Fig. 4(a) the contribu-
tion of the �X�1�amc term, which is given by the J-integrals in
(70), is 20 times smaller than the contribution from the
�A�0�abc term at the vertices of the triangle, and 200 times
smaller at the center. But would the �X�1�amc term be similarly
enhanced when taking into account nonlinear effects at
horizon crossing in the multiple-field case? This seems
unlikely, given that horizon crossing is only a short tran-
sition, while the large effects of the other term are caused
by a buildup over a significant time interval. Moreover, this
question appears to have been answered definitively in the
negative by recent work [19]. Generalising [7] for
multiple-field inflation, though only up to horizon crossing,
it shows that these extra contributions remain of the order
of small slow-roll parameters, just as in the single-field
case. In that sense, the papers [7,19] are important null
results which clarify that our approach focusing on non-
linear superhorizon effects will indeed capture the main
non-Gaussian contributions from multiple-field inflation
models.

The second point regards the possible influence of loop
corrections to the stochastic picture for generating and
evolving inflationary perturbations. It is generally accepted
within the cosmological community that quantum fluctua-
tions can be considered classical for modes which have
crossed the horizon, and we explicitly make such an as-
sumption here by using classical random fields to set up
initial conditions for long wavelengths via the source terms
in (10). The long-wavelength evolution is then followed by
using the classical equations of motion. A natural question
to be asked is whether loop corrections might play a role in
the superhorizon evolution. Recently, the question was
addressed in [20] for a single inflaton field plus a number
of noninteracting massless scalar fields. A theorem was
proved about the growth of loop effects and it was shown
that for the theories mentioned loop effects were deter-
mined at horizon crossing and were subdominant. Since
the conditions of the theorem imply ~�? � 0, these results
are not directly applicable to the kind of models considered
in this paper. However, even if loop effects were to grow
with time in such models, they would still need to dominate
over the classical growth that these models can exhibit in
order to interfere with the classical picture for the evolution
of the perturbations we have developed here. Nevertheless,
a definitive answer to such matters requires further
investigation.
VI. CONCLUSIONS

In this paper we have investigated non-Gaussianity in
multiple-field inflation using the formalism of [2,3], em-
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phasizing analytic calculations. That formalism is based on
fully nonlinear equations for long wavelengths, with sto-
chastic source terms taking into account the short-
wavelength quantum fluctuations. For analytic calculations
an expansion of the relevant equations in perturbation
orders is necessary. However, it is much easier to derive
the perturbed equations at second order directly from the
nonlinear equation of motion for 
i than from perturbing
the original Einstein equations. Of course, in a fully nu-
merical investigation no expansion in perturbation orders
has to be made; this will be explored in future work.

We derived two main results in this paper. The first is the
general solution for the bispectrum, (27) with (28) or (29).
Even though this is an integral expression, it will be
relatively simple to evaluate in a semianalytic calculation
and it yields the full momentum dependence. To achieve
this one only needs solutions for the homogeneous back-
ground quantities in the inflation model, for the linear
perturbation variable Qlin around horizon crossing, and
for the homogeneous Green’s function, as well as expres-
sions for the spatial derivatives of the various coefficient
functions. The latter can all be computed analytically from
the constraint Eqs. (14)–(16); for the general two-field case
all relevant expressions were given explicitly in [3] and this
paper. Computing the bispectrum is then just a question of
performing a few time integrals. An accurate semianalytic
treatment will be the subject of a forthcoming paper [6],
though we do provide the results of a slow-roll calculation
for a quadratic potential here. In the present paper, how-
ever, we have emphasized an example where we could
proceed purely analytically.

In the second part of the paper we studied two-field
slow-roll inflation, with the strong leading-order approxi-
mation that all slow-roll parameters are constant. In this
case we could work out the bispectrum explicitly analyti-
cally (apart from a few integrals that had to be done
numerically, although we found analytic approximations
in certain limits), which is the other main result of this
paper, Eq. (70). We found that in this two-field case the
bispectrum can easily be 2 orders of magnitude larger than
in the single-field case, due to the continued buildup of
non-Gaussianity on superhorizon scales caused by the
influence of the isocurvature mode on the adiabatic pertur-
bation. We note that even though the presence of isocurva-
ture perturbations during inflation is crucial, it is not
mandatory that they survive afterwards. In fact they feed
into the adiabatic perturbation and can disappear by the
end of inflation (as in the cases studied here). On the other
hand, if any isocurvature modes do persist at the end of
inflation, their fate will depend on the details of reheating
and further evolution.

The bispectrum divided by the square of the power
spectrum, which can be seen as a momentum-dependent
generalization of the fNL observable, can be fNL 

O�1�–O�10�, or even larger in extreme cases. If a straight-
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forward extrapolation of this result at the end of inflation to
the time of recombination is justified, a subject which still
needs to be studied in more detail, this means that the
Planck satellite, and to a lesser extent even the WMAP
satellite, should be able to confirm or rule out certain
classes of multiple-field inflation models. Finally we
want to stress that beyond estimating the amplitude of
the bispectrum, we also give its explicit momentum de-
pendence. While this dependence is rather flat for momenta
of comparable size, there is a significant difference be-
tween more extreme momentum limits.

We believe this paper is a significant step towards pro-
viding quantitative and testable predictions of non-
Gaussianity from multiple-field inflation. Nevertheless
there are still a number of issues that remain to be inves-
tigated in more detail, and on which we are working for
future publications. In the first place, we will apply our
general solution for the bispectrum to more realistic in-
flation models, particularly those strongly motivated by
fundamental theory. This will require a semianalytic treat-
ment, but because we are dealing with integral equations,
we believe that the strong slow-roll approximations pre-
sented here will actually provide reasonable analytic esti-
mates of the exact results. As a first step we presented here
the results of the semianalytic slow-roll treatment of an
explicit two-field model with a quadratic potential. This
will be investigated in more detail in [6], but the results
confirm the fact that non-Gaussianity can be large in
multiple-field inflation models, and that our analytic ap-
proximations provide a good estimate. Next, it is of course
important to study the further evolution of non-
Gaussianities after inflation through recombination to the
present day (see [4,21] for some work in this direction). In
this paper we restricted ourselves to computing only the
bispectrum of the adiabatic component of 
 , even though
we have the solution for all components. In future work we
will investigate isocurvature and mixed bispectra as well.
Finally, we will test our results with a purely numerical
implementation of our formalism, which can also be ap-
plied to non-slow-roll models where our analytic approx-
imations fail. In this case, the real-space realizations for 

that result allow for other measures of non-Gaussianity to
be determined, not just the three-point (or higher) correla-
tor. After the disappointing results for single-field inflation,
primordial non-Gaussianity is now back as an important
quantitative tool for confirming or ruling out multiple-field
inflation models, offering an exciting new window on the
early universe as observations continue to improve over the
next 5–10 years.
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Note added.—After our investigation of the example of
Sec. V D in an earlier version of this paper, the non-
Gaussianity produced by a quadratic potential was also
considered by the authors of [22]. They conclude that
fNL � 1 using the ‘‘�N formalism’’ and extrapolating
results from a potential with (almost) equal masses. They
have not computed the general case of unequal masses and
assume deviations from the (almost) equal mass case to be
small. In the case of almost equal masses, which is effec-
083522
tively single-field, we agree that non-Gaussianity is small.
However, already in [13] it was quantitatively shown that
even at linear order additional leading-order effects arise in
the case of unequal masses from the effective coupling
between the fields caused by the bending of the trajectory
in field space. Moreover, in the model we consider here, the
dominant non-Gaussianity is caused by a relatively large
~�?, so that a naive slow-roll order counting is not valid, a
situation where the �N formalism as we understand it is
not applicable.
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