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Cosmology with high-redshift galaxy survey: Neutrino mass and inflation
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High-z galaxy redshift surveys open up exciting possibilities for precision determinations of neutrino
masses and inflationary models. The high-z surveys are more useful for cosmology than low-z ones owing
to much weaker nonlinearities in matter clustering, redshift-space distortion, and galaxy bias, which
allows us to use the galaxy power spectrum down to the smaller spatial scales that are inaccessible by
low-z surveys. We can then utilize the two-dimensional information of the linear power spectrum in
angular and redshift space to measure the scale-dependent suppression of matter clustering due to neutrino
free-streaming as well as the shape of the primordial power spectrum. To illustrate capabilities of high-z
surveys for constraining neutrino masses and the primordial power spectrum, we compare three future
redshift surveys covering 300 square degrees at 0:5< z< 2, 2< z < 4, and 3:5< z< 6:5. We find that,
combined with the cosmic microwave background data expected from the Planck satellite, these surveys
allow precision determination of the total neutrino mass with the projected errors of ��m�;tot� � 0:059,
0.043, and 0.025 eV, respectively, thus yielding a positive detection of the neutrino mass rather than an
upper limit, as ��m�;tot� is smaller than the lower limits to the neutrino masses implied from the neutrino
oscillation experiments, by up to a factor of 4 for the highest redshift survey. The accuracies of
constraining the tilt and running index of the primordial power spectrum, ��ns� � �3:8; 3:7; 3:0� �
10�3 and ���s� � �5:9; 5:7; 2:4� � 10�3 at k0 � 0:05 Mpc�1, respectively, are smaller than the current
uncertainties by more than an order of magnitude, which will allow us to discriminate between candidate
inflationary models. In particular, the error on �s from the future highest redshift survey is not very far
away from the prediction of a class of simple inflationary models driven by a massive scalar field with
self-coupling, �s � ��0:8–1:2� � 10�3.

DOI: 10.1103/PhysRevD.73.083520 PACS numbers: 98.65.Dx, 98.70.Vc, 98.80.Cq
I. INTRODUCTION

We are living in the golden age of cosmology. Various
data sets from precision measurements of temperature and
polarization anisotropy in the cosmic microwave back-
ground (CMB) radiation as well as those of matter density
fluctuations in the large-scale structure of the universe
mapped by galaxy redshift surveys, Lyman-� forests,
and weak gravitational lensing observations are in a spec-
tacular agreement with the concordance �CDM model [1–
4]. These results assure that the theory of cosmological
linear perturbations is basically correct, and can accurately
describe the evolution of photons, neutrinos, baryons, and
collisionless dark matter particles [5–7], for given initial
perturbations generated during inflation [8,9]. The predic-
tions from linear perturbation theory can be compared with
the precision cosmological measurements, in order to de-
rive stringent constraints on the various basic cosmological
parameters. Future observations with better sensitivity and
higher precision will continue to further improve our
understanding of the universe.

Fluctuations in different cosmic fluids (dark matter,
photons, baryons, and neutrinos) imprint characteristic
features in their power spectra, owing to their interaction
properties, thermal history, equation of state, and speed of
sound. A remarkable example is the acoustic oscillation in
the photon-baryon fluid that was generated before the
decoupling epoch of photons, z ’ 1088, which has been
06=73(8)=083520(22)$23.00 083520
observed in the power spectrum of CMB temperature
anisotropy [10], temperature-polarization cross correlation
[11], and distribution of galaxies [12,13].

Yet, the latest observations have shown convincingly
that we still do not understand much of the universe. The
standard model of cosmology tells us that the universe has
been dominated by four components. In chronological
order the four components are: early dark energy (also
known as ‘‘inflaton’’ fields), radiation, dark matter, and
late-time dark energy. The striking fact is that we do not
understand the precise nature of three (dark matter, and
early and late-time dark energy) out of the four compo-
nents; thus, understanding the nature of these three dark
components has been and will continue to be one of the
most important topics in cosmology in next decades.
Among these four components, one might be hopeful
that the next generation particle accelerators such as the
Large Hadron Collider (coming online in 2007) would find
some hints for the nature of dark matter particles. On the
other hand, the nature of late-time dark energy, which was
discovered by measurements of luminosity distance out to
distant Type Ia supernovae [14,15], is a complete mystery,
and many people have been trying to find a way to con-
strain properties of dark energy (see, e.g., [16] for a
review).

How about the early dark energy, inflaton fields, which
caused the expansion of the universe to accelerate in the
very early universe? We know little about the nature of
-1 © 2006 The American Physical Society
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inflaton, just like we know little about the nature of late-
time dark energy. The required property of inflaton fields is
basically the same as that of the late-time dark energy
component: both must have a large negative pressure
which is less than�1=3 of their energy density. To proceed
further, however, one needs more information from obser-
vations. Different inflation models make specific predic-
tions for the shape of the power spectrum [8] (see also
Appendix B) as well as for other statistical properties [17]
of primordial perturbations. Therefore, one of the most
promising ways to constrain the physics of inflation, hence
the nature of early dark energy in the universe, is to
determine the shape of the primordial power spectrum
accurately from observations. For example, the CMB
data from the Wilkinson microwave anisotropy probe [1],
combined with the large-scale structure data from the Two-
Degree Field Galaxy Redshift Survey [18], have already
ruled out one of the popular inflationary models driven by a
self-interacting massless scalar field [19]. Understanding
the physics of inflation better will likely provide an im-
portant implication for late-time dark energy.

‘‘Radiation’’ in the universe at around the matter-
radiation equality mainly consists of photons and neutri-
nos; however, neutrinos actually stop being radiation when
their mean energy per particle roughly equals the tempera-
ture of the universe. The physics of neutrinos has been
revolutionized over the past decade by solar, atmospheric,
reactor, and accelerator neutrino experiments having pro-
vided strong evidence for finite neutrino masses via mixing
between different neutrino flavors, the so-called neutrino
oscillations [20–24]. These experiments are, however,
only sensitive to mass square differences between neutrino
mass eigenstates, implying �m2

21 ’ 7� 10�5 eV2 and
�m2

32 ’ 3� 10�3 eV2; thus, the most fundamental quan-
tity of neutrinos, the absolute mass, has not been deter-
mined yet. Cosmological neutrinos that are the relic of the
cosmic thermal history have distinct influences on the
structure formation. Their large energy density, compa-
rable to the energy density of photons before the matter-
radiation equality, determines the expansion history of the
universe. Even after the matter-radiation equality, neutri-
nos having become nonrelativistic affect the structure for-
mation by suppressing the growth of matter density
fluctuations at small spatial scales owing to their large
velocity dispersion [25–30] (see Sec. II and Appendix A
for more details). Therefore, the galaxy redshift surveys,
combined with the CMB data, provide a powerful, albeit
indirect, means to constraining the neutrino properties [31–
35]. This approach also complements the theoretical and
direct experimental efforts for understanding the neutrino
physics. In fact, the cosmological constraints have placed
the most stringent upper bound on the total neutrino mass,
m�;tot & 0:6 eV (2�) [36], stronger than the direct experi-
ment limit & 2 eV [37]. In addition, the result obtained
from the Liquid Scintillator Neutrino Detector (LSND)
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experiment, which implies ��� to ��e oscillations with
�m2 * 0:2 eV2 [38] in an apparent contradiction with
the other neutrino oscillation experiments mentioned
above, potentially suggests the need for new physics: the
cosmological observations will provide independent tests
of this hypothesis.

In this paper we shall study the capability of future
galaxy surveys at high redshifts, combined with the CMB
data, for constraining (i) the neutrino properties, more
specifically the total neutrino mass, m�;tot, and the number
of nonrelativistic neutrino species, Nnr

� , and (ii) the shape
of the primordial power spectrum that is parametrized in
terms of the spectral tilt, ns, and the running index, �s,
motivated by inflationary predictions (see Appendix B).
For the former, we shall pay particular attention to our
ability to simultaneously constrain m�;tot and Nnr

� , as they
will provide important clues to resolving the absolute mass
scale as well as the neutrino mass hierarchy. The accuracy
of determining the neutrino parameters and the power
spectrum shape parameters will be derived using the
Fisher information matrix formalism, including margin-
alization over the other cosmological parameters as well
as the galaxy bias.

Our analysis differs from the previous work on the
neutrino parameters in that we fully take into account the
two-dimensional nature of the galaxy power spectrum in
the line-of-sight and transverse directions, while the pre-
vious work used only spherically averaged, one-
dimensional power spectra. The geometrical distortion
due to cosmology and the redshift-space distortion due to
the peculiar velocity field will cause anisotropic features in
the galaxy power spectrum. These features help to lift
degeneracies between cosmological parameters, substan-
tially reducing the uncertainties in the parameter determi-
nations. This is especially true when variations in
parameters of interest cause modifications in the power
spectrum shape, which is indeed the case for the neutrino
parameters, tilt, and running index. The usefulness of the
two-dimensional power spectrum, especially for high-
redshift galaxy surveys, has been carefully investigated in
the context of the prospected constraints on late-time dark
energy properties [39–45].

We shall show the parameter forecasts for future wide-
field galaxy surveys that are already being planned or
seriously under consideration: the Fiber Multiple Object
Spectrograph (FMOS) on Subaru telescope [46], its sig-
nificantly expanded version, WFMOS [47], the Hobby-
Ebery Telescope Dark Energy eXperiment (HETDEX)
[48], and the Cosmic Inflation Probe (CIP) mission [49].
To model these surveys, we consider three hypothetical
galaxy surveys which probe the universe over different
ranges of redshift, (i) 0:5 � z � 2, (ii) 2 � z � 4, and
(iii) 3:5 � z � 6:5. We fix the sky coverage of each survey
at �s � 300 deg2 in order to make a fair comparison
between different survey designs. As we shall show below,
-2



COSMOLOGY WITH HIGH-REDSHIFT GALAXY . . . PHYSICAL REVIEW D 73, 083520 (2006)
high-redshift surveys are extremely powerful for precision
cosmology because they allow us to probe the linear power
spectrum down to smaller length scales than surveys at low
redshifts, protecting the cosmological information against
systematics due to nonlinear perturbations.

We shall also study how the parameter uncertainties are
affected by changes in the number density of sampled
galaxies and the survey volume. The results would give
us a good guidance to defining the optimal survey design to
achieve the desired accuracies in parameter
determinations.

The structure of this paper is as follows. In Sec. II, we
review the physical pictures as to how the nonrelativistic
(massive) neutrinos lead to scale-dependent modifications
in the growth of mass clustering relative to the pure cold
dark matter (CDM) model. Section III defines the parame-
trization of the primordial power spectrum motivated by
inflationary predictions. In Sec. IV we describe a method-
ology to model the galaxy power spectrum observable
from a redshift survey that includes the two-dimensional
nature in the line-of-sight and transverse directions. We
then present the Fisher information matrix formalism that
is used to estimate the projected uncertainties in the cos-
mological parameter determination from statistical errors
on the galaxy power spectrum measurement for a given
survey. After survey parameters are defined in Sec. V, we
show the parameter forecasts in Sec. VI. Finally, we
present conclusions and some discussions in Sec. VII.
We review the basic properties of cosmological neutrinos
in Appendix A, the basic predictions from inflationary
models for the shape of the primordial power spectrum in
Appendix B, and the relation between the primordial
power spectrum and the observed power spectrum of mat-
ter density fluctuations in Appendix C.

In the following, we assume an adiabatic, CDM domi-
nated cosmological model with flat geometry, which is
supported by the WMAP results [1,36], and employs the
notation used in [50,51]: the present-day density of CDM,
baryons, and nonrelativistic neutrinos, in units of the criti-
cal density, are denoted as �c, �b, and ��, respectively.
The total matter density is then �m � �c ��b ���, and
f� is the ratio of the massive neutrino density contribution
to �m: f� � ��=�m.
II. NEUTRINO EFFECT ON STRUCTURE
FORMATION

Throughout this paper we assume the standard thermal
history in the early universe: there are three neutrino
species with temperature equal to �4=11�1=3 of the photon
temperature. We then assume that 0 � Nnr

� � 3 species are
massive and could become nonrelativistic by the present
epoch, and those nonrelativistic neutrinos have equal
masses, m�. As we show in Appendix A, the density
parameter of the nonrelativistic neutrinos is given by
��h2 � Nnr

� m�=�94:1 eV�, where we have assumed
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2.725 K for the CMB temperature today [52], and h is
the Hubble parameter defined as H0 �
100h km s�1 Mpc�1. The neutrino mass fraction is thus
given by

f� �
��

�m
� 0:05

�
Nnr
� m�

0:658 eV

��
0:14

�mh2

�
: (1)

Structure formation is modified by nonrelativistic neu-
trinos on scales below the Hubble horizon size when the
neutrinos became nonrelativistic, knr �

0:0145�m�=1 eV�1=2�1=2
m h Mpc�1 [see Eq. (A8)]. In par-

ticular, the characteristic scale imprinted onto the galaxy
power spectrum at a given redshift z is the neutrino free-
streaming scale, which is defined by Eq. (A11):

kfs�z� � 0:113 Mpc�1

�
m�

1 eV

��
�mh2

0:14

5

1� z

�
1=2
: (2)

Therefore, nonrelativistic neutrinos with lighter masses
suppress the growth of structure formation on larger spatial
scales at a given redshift, and the free-streaming length
becomes shorter at a lower redshift as neutrino velocity
decreases with redshift. The most important property of the
free-streaming scale is that it depends on the mass of each
species, m�, rather than the total mass, Nnr

� m�; thus, mea-
surements of kfs allow us to distinguish different neutrino
mass hierarchy models. Fortunately, kfs appears on the
scales that are accessible by galaxy surveys: kfs �
0:096–0:179 Mpc�1 at z � 6–1 for m� � 1 eV.

On the spatial scales larger than the free-streaming
length, k < kfs, neutrinos can cluster and fall into gravita-
tional potential well together with CDM and baryonic
matter. In this case, perturbations in all matter components
(CDM, baryon, and neutrinos, denoted as ‘‘cb�’’ hereafter)
grow at the same rate given by

Dcb��k; z� / D�z� k	 kfs�z�; (3)

where D�z� is the usual linear growth factor [see, e.g.,
Eq. (4) in [53] ]. On the other hand, on the scales smaller
than the free-streaming length, k > kfs, perturbations in
nonrelativistic neutrinos are absent due to the large veloc-
ity dispersion. In this case, the gravitational potential well
is supported only by CDM and baryonic matter, and the
growth of matter perturbations is slowed down relative to
that on the larger scales. As a result, the matter power
spectrum for k > kfs is suppressed relative to that for k <
kfs. In this limit the total matter perturbations grow at the
slower rate given by

Dcb��k; z� / �1� f��
D�z��
1�p k� kfs�z�; (4)

where p � �5�
����������������������
25� 24f�
p

�=4 [25]. In [50,51] an accu-
rate fitting function for the scale-dependent growth rate
was derived by matching these two asymptotic solutions.
We shall use the fitting function throughout this paper.

Figure 1 shows suppression in the growth rate of total
matter perturbations at k � 0:01, 0.1, and 1h Mpc�1 due to
-3



FIG. 2 (color online). Upper panel: A fractional suppression of
power in the linear power spectrum at z � 4 due to free-
streaming of nonrelativistic neutrinos. We fix the total mass of
nonrelativistic neutrinos by f� � ��=�m � 0:05, and vary the
number of nonrelativistic neutrino species (which have equal
masses, m�) as Nnr

� � 1 (solid), 2 (dashed), and 3 (dot-dashed).
The mass of individual neutrino species therefore varies as m� �
0:66, 0.33, and 0.22 eV, respectively [see Eq. (1)]. The shaded
regions represent the 1-� measurement errors on P�k� in each
k-bin, expected from a galaxy redshift survey observing galaxies
at 3:5 � z � 4:5 (see Table I for definition of the survey). Note
that the errors are for the spherically averaged power spectrum
over the shell of k in each bin. Different Nnr

� could be discrimi-
nated in this case. Middle panel: Same as in the upper panel, but
for a smaller neutrino mass fraction, f� � 0:01. While it is not
possible to discriminate between different Nnr

� , the overall sup-
pression on small scales is clearly seen. Lower panel:
Dependences of the shape of P�k� on the other cosmological
parameters.

FIG. 1 (color online). Suppression in the growth rate of total
matter perturbations (CDM, baryons and nonrelativistic neutri-
nos), Dcb��a�, due to neutrino free-streaming [a � �1� z��1 is
the scale factor]. Upper panel: Dcb��a�=D��0�a� for the neutrino
mass fraction of f� � ��=�m � 0:05. The number of non-
relativistic neutrino species is varied from Nnr

� � 1, 2, and 3
(from thick to thin lines), respectively. The solid, dashed, and
dotted lines represent k � 0:01, 0.1, and 1h Mpc�1, respectively.
Lower panel: Dcb��a�=D��0�a� for a smaller neutrino mass
fraction, f� � 0:01. Note that the total mass of nonrelativistic
neutrinos is fixed to m�;tot � Nnr

� m� � 0:66 eV and 0.13 eV in
the upper and lower panels, respectively.
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the neutrino free-streaming. The suppression becomes
more significant at lower redshifts for a given wave num-
ber, or for higher frequency perturbations at a given red-
shift, because neutrino can grow together with CDM and
baryonic matter after the spatial scale of a given perturba-
tion has become larger than the neutrino free-streaming
scale that varies with redshift as given by Eq. (2). It is thus
expected that a galaxy survey with different redshift slices
can be used to efficiently extract the neutrino parameters,
Nnr
� and m�.
The upper and middle panels of Fig. 2 illustrate how

free-streaming of nonrelativistic neutrinos suppresses the
amplitude of linear matter power spectrum, P�k�, at z � 4.
083520
Note that we have normalized the primordial power spec-
trum such that all the power spectra match at k! 0 (see
Sec. III). To illuminate the dependence of P�k� on m�, we
fix the total mass of nonrelativistic neutrinos, Nnr

� m�, by
f� � 0:05 and 0.01 in the upper and middle panels, re-
spectively, and vary the number of nonrelativistic neutrino
species as Nnr

� � 1, 2, and 3. The suppression of power is
clearly seen as one goes from k < kfs�z� to k > kfs�z� [see
Eq. (2) for the value of kfs]. The way the power is sup-
pressed may be easily understood by the dependence of
kfs�z� on m�; for example, P�k� at smaller k is more sup-
pressed for a smaller m�, as lighter neutrinos have longer
-4
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free-streaming lengths. On very small scales, k� kfs�z�
(k * 1 and 0:1 Mpc�1 for f� � 0:05 and 0.01, respec-
tively), however, the amount of suppression becomes
nearly independent of k, and depends only on f� (or the
total neutrino mass, Nnr

� m�) as���������P
P

�������� 2f�

�
1�

3 ln�Dz�4�

5

�
 8f�: (5)

We therefore conclude that one can extract f� and Nnr
�

separately from the shape of P�k�, if the suppression ‘‘pat-
tern’’ in different regimes of k is accurately measured from
observations.

Are observations good enough? The shaded boxes in the
upper and middle panels in Fig. 2 represent the 1-� mea-
surement errors on P�k� expected from one of the fiducial
galaxy surveys outlined in Sec. V. We find that P�k� will be
measured with �1% accuracy in each k bin. If other
cosmological parameters were perfectly known, the total
mass of nonrelativistic neutrinos as small as m�;tot �
Nnr
� m� * 0:001 eV would be detected at more than 2-�.

This limit is much smaller than the lower mass limit
implied from the neutrino oscillation experiments,
0.06 eV. This estimate is, of course, unrealistic because a
combination of other cosmological parameters could
mimic the Nnr

� or f� dependence of P�k�. The lower panel
in Fig. 2 illustrates how other cosmological parameters
change the shape of P�k�. In the following, we shall
extensively study how well future high-redshift galaxy
surveys, combined with the cosmic microwave background
data, can determine the mass of nonrelativistic neutrinos
and discriminate between different Nnr

� , fully taking into
account degeneracies between cosmological parameters.
III. SHAPE OF PRIMORDIAL POWER SPECTRUM
AND INFLATIONARY MODELS

Inflation generally predicts that the primordial power
spectrum of curvature perturbations is nearly scale invari-
ant. Different inflationary models make specific predic-
tions for deviations of the primordial spectrum from a
scale-invariant spectrum, and the deviation is often pa-
rametrized by the ‘‘tilt,’’ ns, and the ‘‘running index,’’
�s, of the primordial power spectrum. As the primordial
power spectrum is nearly scale invariant, jns � 1j and j�sj
are predicted to be much less than unity.

This, however, does not mean that the observed matter
power spectrum is also nearly scale invariant. In
Appendix C, we derive the power spectrum of total matter
perturbations that is normalized by the primordial curva-
ture perturbation [see Eq. (C6)]

k3P�k; z�

2�2
� �2

R

�
2k2

5H2
0�m

�
2
D2

cb��k; z�T
2�k�

�

�
k
k0

�
�1�ns��1=2��s ln�k=k0�

; (6)
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where k0 � 0:05 Mpc�1, �2
R � 2:95� 10�9A, and A is

the normalization parameter given by the WMAP collabo-
ration [1]. We adopt A � 0:871, which gives �R � 5:07�
10�5. (In the notation of [54,55] �R � �� .) The linear
transfer function, T�k�, describes the evolution of the mat-
ter power spectrum during the radiation era and the inter-
action between photons and baryons before the decoupling
of photons. Note that T�k� depends only on noninflationary
parameters such as �mh

2 and �b=�m, and is independent
of ns and �s. Also, the effects of nonrelativistic neutrinos
are captured inDcb��k; z�; thus, T�k� is independent of time
after the decoupling epoch. We use the fitting function
found in [50,51] for T�k�. Note that the transfer function
and the growth rate are normalized such that T�k� ! 1 and
Dcb�=a! 1 as k! 0 during the matter era.

In Appendix B we describe generic predictions on ns
and �s from inflationary models. For example, inflation
driven by a massive, self-interacting scalar field predicts
ns � 0:94–0:96 and �s � �0:8–1:2� � 10�3 for the num-
ber of e-foldings of expansion factor before the end of
inflation of 50. This example shows that precision deter-
mination of ns and �s allows us to discriminate between
candidate inflationary models (see [8] for more details).
IV. MODELING GALAXY POWER SPECTRUM

A. Geometrical and redshift-space distortion

Suppose now that we have a redshift survey of galaxies
at some redshift. Galaxies are biased tracers of the under-
lying gravitational field, and the galaxy power spectrum
measures how clustering strength of galaxies varies as a
function of 3-dimensional wave numbers, k (or the inverse
of 3-dimensional length scales).

We do not measure the length scale directly in real
space; rather, we measure (i) angular positions of galaxies
on the sky, and (ii) radial positions of galaxies in redshift
space. To convert (i) and (ii) to positions in 3-dimensional
space, however, one needs to assume a reference cosmo-
logical model, which might be different from the true
cosmology. An incorrect mapping of observed angular
and redshift positions to 3-dimensional positions produces
a distortion in the measured power spectrum, known as the
‘‘geometrical distortion’’ [56–58]. The geometrical distor-
tion can be described as follows. The comoving size of an
object at redshift z in radial, rk, and transverse, r?, direc-
tions are computed from the extension in redshift, �z, and
the angular size, ��, respectively, as

rk �
�z
H�z�

; r? � DA�z���; (7)

where DA is the comoving angular diameter distance given
in the spatial sector of the Friedmann-Robertson-Walker
line element, dl2 � a2�d	2 �D2

Ad�� (	 is the comoving
radial distance). We assume a flat universe throughout this
paper, in which case 	 � DA. The comoving angular
-5
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distance out to a galaxy at redshift z is

DA�z� �
Z z

0

dz0

H�z0�
; (8)

where H�z� is the Hubble parameter given by

H2�z� � H2
0
�m�1� z�3 ����: (9)

Here �m ��� � 1, and �� � �=�3H2
0� is the present-

day density parameter of a cosmological constant, �. A
tricky part is that H�z� and DA�z� in Eq. (7) depend on
cosmological models. It is therefore necessary to assume
some fiducial cosmological model to compute the conver-
sion factors. In the following, quantities in the fiducial
cosmological model are distinguished by the subscript
‘‘fid’’. Then, the length scales in Fourier space in radial,
kfidk, and transverse, kfid?, directions are estimated from
the inverse of rfidk and rfid?. These fiducial wave numbers
are related to the true wave numbers by

k? �
DA�z�fid
DA�z�

kfid?; kk �
H�z�
H�z�fid

kfidk: (10)

Therefore, any difference between the fiducial cosmologi-
cal model and the true model would cause anisotropic
distortions in the estimated power spectrum in (kfid?,
kfidk) space.

In addition, shifts in z due to peculiar velocities of
galaxies distort the shape of the power spectrum along
the line-of-sight direction, which is known as the ‘‘-
redshift-space distortion’’ [59]. From azimuthal symmetry
around the line-of-sight direction, which is valid when a
distant-observer approximation holds, the linear power
spectrum estimated in redshift space, Ps�kfid?; kfidk�, is
modeled in [39] as

Ps�kfid?; kfidk� �
DA�z�2fidH�z�

DA�z�
2H�z�fid

�
1� 
�k; z�

�
k2
k

k2
? � k

2
k

�
2
b2

1P�k; z�; (11)

where k � �k2
? � k

2
k
�1=2 and


�k; z� � �
1

b1

d lnDcb��k; z�
d ln�1� z�

(12)

is a function characterizing the linear redshift-space dis-
tortion, and b1 is a scale-independent, linear bias parame-
ter. Note that 
�k; z� depends on both redshift and wave
number via the linear growth rate. In the infall regime, k	
kfs�z�, we have b1
�k; z�  �d lnD�z�=d ln�1� z�, while
in the free-streaming regime, k� kfs�z�, we have
b1
�k; z�  ��1� p�d lnD�z�=d ln�1� z�, where p is de-
fined below Eq. (4).

One might think that the geometrical and redshift-space
distortion effects are somewhat degenerate in the measured
power spectrum. This would be true only if the power
083520
spectrum was a simple power law. Fortunately, character-
istic, non-power-law features in P�k� such as the broad
peak from the matter-radiation equality, scale-dependent
suppression of power due to baryons and nonrelativistic
neutrinos, the tilt and running of the primordial power
spectrum, the baryonic acoustic oscillations, etc., help
break degeneracies quite efficiently [39– 44,47,57,58].

B. Comments on baryonic oscillations

In this paper, we employ the linear transfer function with
baryonic oscillations smoothed out (but includes nonrela-
tivistic neutrinos) [50,51]. As extensively investigated in
[39,44,47], the baryonic oscillations can be used as a
standard ruler, thereby allowing one to precisely constrain
H�z� and DA�z� separately through the geometrical distor-
tion effects (especially for a high-redshift survey).
Therefore, our ignoring the baryonic oscillations might
underestimate the true capability of redshift surveys for
constraining cosmological parameters.

We have found that the constraints on ns and �s from
galaxy surveys improve by a factor of 2–3 when baryonic
oscillations are included. This is because the baryonic
oscillations basically fix the values of �m, �mh2, and
�bh

2, lifting parameter degeneracies between �mh
2,

�bh
2, ns, and �s. However, we suspect that this is a rather

optimistic forecast, as we are assuming a flat universe
dominated by a cosmological constant. This might be a
too strong prior, and relaxing our assumptions about ge-
ometry of the universe or the properties of dark energy will
likely result in different forecasts for ns and �s. In this
paper we try to separate the issues of nonflat universe and/
or equation of state of dark energy from the physics of
neutrinos and inflation. We do not include the baryonic
oscillations in our analysis, in order to avoid too optimistic
conclusions about the constraints on the neutrino parame-
ters, ns, and �s.

Eventually, the full analysis including nonflat universe,
arbitrary dark energy equation of state and its time depen-
dence, nonrelativistic neutrinos, ns, and �s, using all the
information we have at hand including the baryonic oscil-
lations, will be necessary. We leave it for a future publica-
tion [60].

C. Parameter forecast: Fisher matrix analysis

In order to investigate how well one can constrain the
cosmological parameters for a given redshift survey de-
sign, one needs to specify measurement uncertainties of the
galaxy power spectrum. When nonlinearity is weak, it is
reasonable to assume that observed density perturbations
obey Gaussian statistics. In this case, there are two sources
of statistical errors on a power spectrum measurement: the
sampling variance (due to the limited number of indepen-
dent wave numbers sampled from a finite survey volume)
and the shot noise (due to the imperfect sampling of
fluctuations by the finite number of galaxies). To be more
-6



COSMOLOGY WITH HIGH-REDSHIFT GALAXY . . . PHYSICAL REVIEW D 73, 083520 (2006)
specific, the statistical error is given in [61,62] by�
�Ps�ki�
Ps�ki�

�
2
�

2

Nk

�
1�

1

�ngPs�ki�

�
2
; (13)

where �ng is the mean number density of galaxies and Nk is
the number of independent kfid modes within a given bin at
kfid � ki:

Nk � 2�k2�k��
�

2�

V1=3
s

�
�3
: (14)

Here 2�=V1=3
s is the size of the fundamental cell in k space,

Vs is the comoving survey volume, and � is the cosine of
the angle between kfid and the line of sight. Note that we
have assumed that the galaxy selection function is uniform
over the redshift slice we consider and ignored any bound-
ary effects of survey geometry for simplicity.

The first term in Eq. (13) represents sampling variance.
Errors become independent of the number density of gal-
axies when sampling variance dominates (i.e., Ps � �ng
over the range of k considered), and thus the only way to
reduce the errors is to survey a larger volume. On the other
hand, the second term represents shot noise, which comes
from discreteness of galaxy samples. When shot noise
dominates (Ps 	 �ng), the most effective way to reduce
noise is to increase the number density of galaxies by
increasing exposure time per field. Note that for a fixed
�ng the relative importance of shot noise contribution can be
suppressed by using galaxies with larger bias parameters,
b1, as Ps / b2

1. In Sec. V we shall discuss more about the
survey design that is required to attain the desired parame-
ter accuracy.

We use the Fisher information matrix formalism to
convert the errors on Ps�k� into error estimates of model
parameters [39]. The Fisher matrix is computed from

F�
 �
Vs

8�2

Z 1

�1
d�

Z kmax

kmin

k2dk
@ lnPs�k;��

@p�

@ lnPs�k;��
@p


�

�
�ngPs�k;��

�ngPs�k;�� � 1

�
2
; (15)

where p� expresses a set of parameters. One may evaluate
some derivative terms analytically:

@ lnPs�k;��
@�R

�
2

�R
; (16)

@ lnPs�k;��
@ns

� ln
k
k0
; (17)

@ lnPs�k;��
@�s

�
1

2

�
ln
k
k0

�
2
: (18)

The 1� error on p� marginalized over the other parameters
is given by�2�p�� � �F�1���, whereF�1 is the inverse of
the Fisher matrix. It is sometimes useful to consider pro-
083520
jected constraints in a two-parameter subspace to see how
two parameters are correlated. We follow the method
described around Eq. (37) in [53] for doing this. Another
quantity to describe degeneracies between given two pa-
rameters, p� and p�, is the correlation coefficient defined
as

r�p�; p
� �
�F�1��
�����������������������������������

�F�1����F
�1�



q : (19)

If jrj � 1, the parameters are totally degenerate, while r �
0 means they are uncorrelated.

To calculate F�
 using Eq. (15), we need to specify kmin

and kmax for a given galaxy survey. We use the upper limit,
kmax, to exclude information in the nonlinear regime,
where the linear theory prediction of density fluctuations,
Eq. (11), becomes invalid. Following [39], we adopt a
conservative estimate for kmax by imposing the condition
�mass�R; z� � 0:5, where �mass�R; z� is the rms mass fluc-
tuation in a sphere of radius R � �=�2kmax� at a given
redshift z. All the Fourier modes below kmax are considered
as in the linear regime. This idea is partly supported by the
simulation-based work in the literature [63–65], while a
more careful and quantitative study is needed to understand
the impact of nonlinearities on cosmological parameter
estimates as well as to study how to protect the cosmologi-
cal information against the systematics. Table I lists kmax

for each redshift slice of galaxy surveys we shall consider.
In addition, we shall show how the results will change with
varying kmax. As for the minimum wave number, we use
kmin � 10�4 Mpc�1, which gives well-converged results
for all the cases we consider.

D. Model parameters

The parameter forecasts derived from the Fisher infor-
mation formalism depend on the fiducial model and are
also sensitive to the choice of free parameters. We include a
fairly broad range of the CDM dominated cosmology: the
density parameters are �m�� 0:27�, �mh2�� 0:14�, and
�bh2�� 0:024� (note that we assume a flat universe); the
primordial power spectrum shape parameters are the spec-
tral tilt, ns�� 1�, the running index, �s�� 0�, and the
normalization of primordial curvature perturbation, �R��
5:07� 10�5� (the numbers in the parentheses denote the
values of the fiducial model). The linear bias parameters,
b1, are calculated for each redshift slice as given in Table I;
the fiducial values of the neutrino parameters, f� and Nnr

� ,
are allowed to vary in order to study how the constraints on
f� and Nnr

� change with the assumed fiducial values. For a
survey which consists ofNs redshift slices, we have 8� Ns
parameters in total.

As we shall show later, a galaxy survey alone cannot
determine all the cosmological parameters simultaneously,
but would leave some parameter combinations degener-
ated. This is especially true when nonrelativistic neutrinos
-7



TABLE I. Galaxy survey specifications that we assume in this paper (see Sec. V for the
details). We assume a fixed sky coverage (300 deg2) for all the surveys, and Vs and �ng are the
comoving survey volume and the comoving number density of sampled galaxies for each
redshift slice, respectively. zcenter denotes the center redshift of each redshift slice, and kmax is the
maximum wave number below which information in the linear power spectrum can be extracted.
(We do not use any information above kmax in the Fisher information matrix analysis.) ‘‘Bias’’
denotes the assumed linear bias parameters of sampled galaxies.

kmax �survey Vs �ng Pg �ng
Survey zcenter (hMpc�1) (deg2) (h�3 Gpc3) (10�3h3 Mpc�3) Bias (kmax)

G1 (0:5< z < 2) 0.75 0.14 300 0.33 0.5 1.22 4.83
1.25 0.19 300 0.53 0.5 1.47 2.49
1.75 0.25 300 0.64 0.5 1.75 1.38

G2 (2< z < 4) 2.25 0.32 300 0.68 0.5 2.03 0.80
2.75 0.41 300 0.69 0.5 2.32 0.46
3.25 0.52 300 0.67 0.5 2.62 0.27
3.75 0.64 300 0.64 0.5 2.92 0.16

SG (3:5< z < 6:5) 4 0.71 300 1.26 5 4 2.19
5 1.01 300 1.13 5 5 1.04
6 1.50 300 1.02 5 5.5 0.35
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are added. Therefore, it is desirable to combine the galaxy
survey constraints with the constraints from CMB tem-
perature and polarization anisotropy, in order to lift pa-
rameter degeneracies. When computing the Fisher matrix
of CMB, we employ 7 parameters: 6 parameters (the
parameters above minus the neutrino parameters and the
bias parameters) plus the Thomson scattering optical depth
to the last scattering surface, ��� 0:16�. Note that we
ignore the effects of nonrelativistic neutrinos on the
CMB power spectra: their effects are small and do not
add very much to the constraints from the high-z galaxy
survey. We then add the CMB Fisher matrix to the galaxy
Fisher matrix as F�
 � Fg

�
 � F
CMB
�
 . We entirely ignore

the contribution to the CMB from the primordial gravita-
tional waves. We use the publicly available CMBFAST code
[66] to compute the angular power spectrum of tempera-
ture anisotropy, CTT

l , E-mode polarization, CEE
l , and their

cross correlation, CTE
l . Specifically we consider the noise

per pixel and the angular resolution of the Planck experi-
ment that were assumed in [67]. Note that we use the CMB
information in the range of multipole 10 � l � 2000.

V. GALAXY SURVEY PARAMETERS

We define the parameters of our hypothetical galaxy
surveys so that the parameters resemble the future surveys
that are already being planned and seriously pursued. As
shown in Eq. (13), the statistical error of the galaxy power
spectrum measurement is limited by the survey volume,
Vs, as well as the mean number density of galaxies, �ng.
There are two advantages for the high-redshift galaxy
surveys. First, given a fixed solid angle, the comoving
volume in which we can observe galaxies is larger at higher
redshifts than in the local universe. Accordingly, it would
be relatively easy to obtain the well-behaved survey ge-
083520
ometry, e.g., a cubic geometry that would be helpful to
handle the systematics. Second, density fluctuations at
smaller spatial scales are still in the linear regime or only
in the weakly nonlinear regime at higher redshift, which
gives us more leverages on measuring the shape of the
linear power spectrum.

Of course, we do not always win by going to higher
redshifts. Detecting galaxies at higher redshifts is obvi-
ously more observationally demanding, as deeper imaging
capabilities and better sensitivity for spectrographs are
required. To increase the survey efficiency, the use of
Multi-Object Spectrographs (MOS) or Integral Field Unit
(IFU) spectrographs will be favorable. It is therefore un-
avoidable to have a trade-off in the survey design between
the number of spectroscopic targets and the survey volume:
for a fixed duration of the survey (or a fixed amount of
budget), the total number of spectroscopic targets would be
anticorrelated with the survey volume. As carefully dis-
cussed in [39], a survey having �ngPg * 3 over the range of
wave numbers considered is close to an optimal design.

To make the comparison between different survey de-
signs easier, we shall fix the total sky coverage of the
surveys to

�survey � 300 deg2;

for all cases. We choose to work with three surveys ob-
serving at three different redshift ranges:
(i) G
-8
1: 0:5< z< 2

(ii) G
2: 2< z< 4
(iii) S
G: 3:5< z< 6:5

where G1 and G2 stands for the ‘‘Ground-based galaxy
survey’’ 1 and 2, respectively, while SG stands for the
‘‘Space-based Galaxy survey.’’ Table I lists detailed survey
parameters for each survey design.
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A. G1: Ground-based galaxy survey at 0:5 < z < 2

The first survey design, G1, is limited to 0:5< z < 2 for
the following reasons. One of the reasonable target gal-
axies from the ground would be giant ellipticals or star-
forming galaxies because of their large luminosity. If spec-
troscopic observations in optical wavebands are available,
galaxies having either 3727 Å[OII] emission lines or
4000 Å continuum break may be selected, in which case
z � 1:3 would be the highest redshift bin, as these spectral
line features will move out of the optical wavebands oth-
erwise. If spectroscopy in the near infrared band is avail-
able, such as that proposed by the FMOS instrument on
Subaru telescope, one may select 6563 Å H� emission
lines which usually have the highest equivalent width
among the lines in a star-forming galaxy, in which case a
higher redshift, z & 2, may be reached. Based on these
considerations, we consider a survey of 0:5< z< 2 and
subdivide the survey into 3 redshift bins centering at z �
0:75, 1.25, and 1.75 with widths �z � 0:5. While it is
currently difficult to estimate the number density and
bias parameters for these galaxies with any certainty be-
cause we have a limited knowledge of how such galaxies
formed within the CDM hierarchical clustering scenario,
we follow the argument given in [39,40,42] and assume
�ng � 0:5� 10�3h3 Mpc�3. We determine b1 so that it
satisfies the condition �8;g � 1 at a given redshift, where

�8;g � b1�8;mass

��������������������������������
1�

2
m
3
�

2
m

5

s
; (20)

with 
m � �d lnD=d ln�1� z� (i.e. we do not include the
massive neutrino contribution when we estimate the fidu-
cial b1). Note that there is no a priori reason to believe that
the rms fluctuation of the number density of galaxies
within an 8h�1 Mpc sphere should be unity; this condition
is rather motivated by observations, and it does not have to
be true for arbitrary population of galaxies. Nevertheless,
this approach seems to provide reasonable values for b1,
and also it makes it easier to compare our results with the
previous work that used the same recipe [39,44]. The
values of kmax in Table I are computed by �mass�R; z� �
0:5, where �mass�R; z� is the rms mass fluctuation in a
sphere of radius corresponding to kmax, R � �=�2kmax�
(see Sec. IVA).

B. G2: Ground-based galaxy survey at 2 < z < 4

The second design, G2, probes higher redshifts than G1
by observing different tracers. The primary candidates
from the ground in this redshift range would be Lyman-
break galaxies or Lyman-� emitters, which are accessible
from a deep survey of 8-m class telescopes in optical
wavebands. This type of survey has been proposed by the
Hobby-Ebery Telescope Dark Energy eXperiment
(HETDEX) [48] and wide-field multiple object spectro-
graph (WFMOS) collaborations [47]. To make the com-
083520
parison easier, we shall assume the same number density as
for G1, 0:5� 10�3h3 Mpc�3, for G2. This number corre-
sponds to 4500 galaxies per square degrees, or 1.25 gal-
axies per square arcminutes for the surface density. We
subdivide the redshift range of G2 into 4 bins, 2.25, 2.75,
3.25, and 3.75, and again determine the bias parameters by
imposing �8;g�z� � 1 at center redshifts of each bin.

C. SG: Space-based galaxy survey at 4 < z < 6

The third design, SG, is a space-based observation
which targets galaxies at even higher redshifts, 4 & z &

6. The useful line features will be redshifted into infrared,
which makes such high-z galaxies accessible only from
space. We determine the survey parameters on the basis of
the Cosmic Inflation Probe (CIP) mission [49], one of the
nine studies selected by NASA to investigate new ideas for
future mission concepts within its Astronomical Search for
Origins Program. The CIP is a slitless-grating survey in the
near infrared, 2:5–5 �m, which detects H� emission lines
in star-forming galaxies at these redshifts. Being up in
space with low background, CIP can achieve a superb
sensitivity in infrared. We assume the number density of
5� 10�3h3 Mpc�3 [49], which is larger by one order
magnitude than that by the ground-based surveys. This
number density may be partly justified by the fact that
the Lyman-break galaxies or the Lyman-� emitters show
the similar number density at these redshifts as implied
from a deep imaging survey [68], and most of such gal-
axies are very likely to exhibit an even stronger H� emis-
sion line. For this survey, we assume the bias parameters,
b1 � 4:5, 5, and 5.5 for redshift slices of z � 4, 5, and 6
with redshift width �z � 1, respectively. The bias parame-
ters for this survey have been determined using a different
method. We used the mass-weighted mean halo bias above
a certain minimum mass, Mmin. The minimum mass was
found such that the number density of dark matter halos
above Mmin should match the assumed number density of
galaxies,

R
1
Mmin

dMdn=dM � 5� 10�3h3 Mpc�3.
Therefore, we basically assumed that each dark matter
halo above Mmin hosts one H� emitter on average. One
may improve this model by using the Halo Occupation
Distribution model, at the expense of increasing the num-
ber of free parameters.

Note that we chose these survey designs not to say these
are the optimal designs for doing cosmology with high-z
surveys, but rather to show how well these planned surveys
can constrain the neutrino and inflationary parameters. We
are hoping that our results provide some useful information
in designing high-z galaxy surveys.
VI. PARAMETER FORECAST: BASIC RESULTS

Tables II and III summarize the basic results of our
forecasts for the cosmological parameters from the
high-z galaxy redshift surveys combined with the Planck
-9



TABLE II. The projected 68% error on the cosmological parameters from Planck’s CMB data alone (the 1st row) and the high-z
galaxy survey data combined with the Planck data (from the 2nd to 5th rows). The quoted error for a given parameter includes
marginalization over the other parameter uncertainties. Note that the values with and without parenthesis in the 2nd column are the
errors for f� and m�;tot (eV), respectively. The fiducial values for the neutrino parameters are f�;fid � 0:05 [the neutrino mass fraction;
Eq. (1)] and Nnr

�;fid � 3 (the number of nonrelativistic neutrinos), while the fiducial values for the other parameters are given in
Sec. IV D. We also vary the fiducial value of Nnr

�;fid from 1 to 2 and 3 when quoting the projected errors for Nnr
� with f�;fid � 0:05 being

fixed, as indicated in the 3rd and 5th columns.

Nnr
�;fid � 1 Nnr

�;fid � 2 Nnr
�;fid � 3

Survey f��m�;tot eV� Nnr
� Nnr

� Nnr
� ns �s �m ln�R ln�mh

2 ln�bh
2

Planck alone � � � � � � � � � � � � 0.0062 0.0067 0.035 0.013 0.028 0.011
G1 0.0045(0.059) 0.31 0.64 1.1 0.0038 0.0059 0.0072 0.0099 0.0089 0.0075
G2 0.0033(0.043) 0.20 0.49 0.90 0.0037 0.0057 0.0069 0.0099 0.0086 0.0072
SG 0.0019(0.025) 0.14 0.40 0.80 0.0030 0.0024 0.0041 0.0090 0.0055 0.0050
All (G1� G2� SG) 0.0018(0.024) 0.091 0.31 0.60 0.0026 0.0023 0.0030 0.0089 0.0043 0.0048

TABLE III. Same as in the previous table, but for the smaller fiducial neutrino mass fraction, f�;fid � 0:01.

N�;fid � 1 N�;fid � 2 N�;fid � 3
Survey f��m�;tot eV� Nnr

� Nnr
� Nnr

� ns �s �m ln�R ln�mh2 ln�bh2

G1 0.0044(0.058) 2.2 7.1 14 0.0037 0.0059 0.0069 0.0099 0.0085 0.0073
G2 0.0033(0.043) 2.1 7.1 13 0.0036 0.0058 0.0059 0.0098 0.0075 0.0066
SG 0.0021(0.028) 1.9 6.4 13 0.0028 0.0021 0.0034 0.0090 0.0048 0.0048
All (G1� G2� SG) 0.0019(0.025) 1.1 3.7 7.4 0.0021 0.0016 0.0017 0.0087 0.0030 0.0045
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data. Each column shows the projected 1-� error on a
particular parameter, marginalized over the other parame-
ter uncertainties. The 1st row in Table II shows the con-
straints from the Planck data alone, while the other rows
show the constraints from the Planck data combined with
each of the high-z galaxy surveys outlined in the previous
section. The final row shows the constraints from all the
data combined. The difference between these two tables is
the fiducial value for f� � ��=�m: Table II uses f� �
0:05, whereas Table III uses a lower value, f� � 0:01, as
the fiducial value. In addition, in each table the fiducial
value for the number of nonrelativistic neutrino species,
Nnr
� , is also varied from Nnr

� � 1 to 2 to 3. Therefore, in
Table II the fiducial mass of individual nonrelativistic
species changes from m� � 0:66 to 0.33 to 0.22 eV,
whereas in Table III it changes from m� � 0:13 to 0.066
to 0.044 eV for Nnr

� � 1, 2, and 3, respectively. It is also
worth showing how the parameter errors are correlated
with each other, and we give the parameter correlations
in Table VII for the case of SG combined with Planck in
Appendix D.

A. Neutrino parameters

In this paper, we are particularly interested in the capa-
bility of future high-z redshift surveys to constraining the
neutrino parameters, f� and Nnr

� , as well as the shape of the
primordial power spectrum, the tilt (ns) and the running
spectral index (�s). First, we study the neutrino
parameters.
083520
The upper panel of Fig. 3 shows error ellipses in the
subspace of (f�, Nnr

� ). Two ‘‘islands’’ show two different
fiducial models: the left island is �f�; Nnr

� � � �0:01; 1�,
while the right island is (0.05, 3). We find that the errors
on f� and Nnr

� are only weakly degenerate with each other,
implying that the constraints on the two parameters come
from different regions of P�k� in k-space, which can be
seen more clearly from Fig. 2.

1. Total neutrino mass

As we have shown in Sec. II, galaxy surveys constrain
the total mass of nonrelativistic neutrinos by measuring the
overall suppression of power at small scales compared with
the scales larger than the neutrino free-streaming length,
�P�k�=P�k� ’ �8f� [Eq. (5)]. Tables II and III and Fig. 3
(the widths of the error ellipses show the accuracy of
constraining the total neutrino mass, Nnr

� m�) show that
the high-z galaxy surveys can provide very tight constraints
on the total neutrino mass, m�;tot � Nnr

� m�, and the con-
straint improves steadily by going to higher redshifts for a
given survey area. The projected error (assuming f� �
0:05) improves from ��m�;tot� � 0:059 to 0.025 eV for
G1 to SG. (The constraint onm�;tot is very similar for f� �
0:01.) This is because the suppression rate of the amplitude
of the linear power spectrum on small scales can be pre-
cisely measured by the galaxy survey when combined with
the tight constraint on the amplitude of the spectrum on
large scales from Planck (also see Tables V and VII in
Appendix D). The steady improvement at higher redshifts
-10



FIG. 4 (color online). The projected 68% error on f� (upper
panel) and Nnr

� (lower panel) against the maximum wave num-
ber, kmax, assuming the information in the linear power spectrum
at k � kmax can be used in the Fisher matrix analysis. The arrows
in the above x-axis indicate our nominal kmax used in the analysis
at each redshift (see Table I). Note that f�;fid � 0:05 and Nnr

�;fid �

3 are assumed.

FIG. 3 (color online). Upper panel: Projected 68% error ellip-
ses in the neutrino parameter, (f�-Nnr

� ) plane, expected from the
high-z galaxy survey data combined with the Planck data (see
Table I for the survey definition). The two fiducial models for f�
and Nnr

� are considered: the left contours assume �f�;fid; Nnr
�;fid� �

�0:01; 1�, while the right contours assume �f�;fid; Nnr
�;fid� �

�0:05; 3�. The outer thin lines and the middle light-gray contours
are the forecasts for SG (the space-based mission at 3:5< z <
6:5) plus Planck, without and with a prior on the running spectral
index, �s � 0, respectively. The innermost, dark gray contours
show the forecasts when all the galaxy surveys (two ground-
based surveys and SG) and Planck are combined. The vertical
dashed and dotted lines show the lower limits on f� implied from
the neutrino oscillation experiments assuming the normal and
inverted mass hierarchy models, respectively. The dashed and
dotted curves then show the effective number of nonrelativistic
neutrino species, Neff , for the two hierarchy models [see Eq. (21)
for the definition]. Lower panel: The projected 68% on Nnr

� as a
function of the fiducial value of f�. The thick solid, dashed, and
dotted lines use the fiducial values of Nnr

�;fid � 1, 2, and 3,
respectively. The dot-dashed curve shows the difference between
Neff for the normal and inverted mass hierarchy models. The
leftmost thin solid line shows the error expected from a hypo-
thetical full-sky SG survey for Nnr

�;fid � 1.
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is simply because surveys at higher redshifts can be used to
probe smaller spatial scales (i.e., larger kmax; see Table I).
We find that it is crucial to increase kmax as much as
possible in order to improve the constraints on the neutrino
parameters. Figure 4 shows how one can reduce the errors
on f� and Nnr

� by increasing kmax.
These results are extremely encouraging. If we a priori

assume three-flavor neutrinos in compatible with the neu-
083520
trino oscillation experiments, then it is likely that one can
determine the sum of neutrino masses using the high-z
galaxy redshift surveys, as the current lower bounds im-
plied from the neutrino oscillation experiments are
m�;tot * 0:06 and 0.1 eV for the normal and inverse mass
hierarchies, respectively. It should also be noted that a
detection of the total mass in the range of m�;tot < 0:1 eV
gives an indirect evidence for the normal mass hierarchy,
thereby resolving the mass hierarchy problem.

Our results may be compared with the previous work
[31], where ��m�;tot�  0:3 eV (1�) was obtained; there-
fore, our errors are smaller than theirs by a factor of 5–10,
even though the survey volume that we assumed is larger
only by a factor of 1.5–3 than what they assumed. What
drives the improvement? There are two reasons. The first
reason is because we consider high-z galaxy surveys, while
[31] considered low-z surveys, such as the Sloan Digital
Sky Survey, which suffer from much stronger nonlinearity.
We are therefore using the information on the power
spectrum down to larger wave numbers (i.e., kmax is larger).
Figure 4 shows that all the galaxy surveys have essentially
equal power of constraining the neutrino parameters, when
the information up to the same kmax is used. However, one
cannot do this for low-z surveys because of strong non-
linearity. As long as we restrict ourselves to the linear
regime, a higher redshift survey is more powerful in terms
of constraining the neutrino parameters. Interestingly, the
error on the neutrino parameters appears to be saturated at
kmax � 1 Mpc�1; thus, the space-based mission, SG, is
already nearly optimal for constraining the neutrino pa-
rameters for the survey parameters (especially the number
density and bias parameters of sampled galaxies that de-
termine the shot noise contribution to limit the small-scale
-11
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measurements). The second reason is because our parame-
ter forecast uses the full 2D information in the redshift-
space power spectrum [see Eq. (11)] that includes effects
of the cosmological distortion and the redshift-space dis-
tortion due to peculiar velocity. These effects are very
useful in breaking parameter degeneracies. Table V shows
that the constraint on m�;tot would be significantly de-
graded if we did not include the distortion effects. In
particular, ignoring the information on the redshift-space
distortion, which is consistent with the analysis of [31],
leads to a similar-level constraint on m�;tot as theirs. The
inclusion of the redshift-space distortion helps break de-
generacy between the power spectrum amplitude and the
galaxy bias, which in turn helps determine the small-scale
suppression due to the neutrino free-streaming.

The projected error on the neutrino total mass might also
depend on the fiducial value of �mh

2, as the effect of
neutrinos on the power spectrum depends on f� /
m�;tot=��mh2� [Eq. (1)] [31]. For a given f�, a variation
in �mh

2 changes m�;tot. Now that �mh
2 has been con-

strained accurately by WMAP, however, we find that our
results are not very sensitive to the precise value of �mh

2.
We have repeated our analysis for �mh2 � 0:1, the
2�-level lower bound from the WMAP results [1], and
found very similar results.

2. Number of nonrelativistic neutrino species

Galaxy surveys could also be used to determine the
individual mass of nonrelativistic neutrinos, m�. As we
have shown in Sec. II, galaxy surveys can constrain m� by
determining the free-streaming scale, kfs�z� / m� [Eq. (2)],
from distortion of the shape of the galaxy power spectrum
near kfs�z�.

Neutrino oscillation experiments have provided tight
limits on the mass square differences between neutrino
mass eigenstates as jm2

2 �m
2
1j ’ 7� 10�5 eV2 and jm2

3 �
m2

2j ’ 3� 10�3 eV2, where mi denotes mass of the ith
mass eigenstates. We model a family of possible models
by the largest neutrino mass,m�, motivated by the fact that
structure formation is sensitive to most massive species.
We may define the effective number of nonrelativistic
neutrino species as

Nnr
eff � 1�

mi

m�
�
mj

m�
; (21)

which continuously varies between 1 � Nnr
eff � 3. The to-

tal neutrino mass is given by m�;tot � Nnr
effm�. We then

consider two neutrino mass hierarchy models (we shall
assume, by convention, that m2 � m1):
(i) N
ormal mass hierarchy: m� � m3

In this model, m3 is assumed to be the largest mass,
and m1 <m2 <m3 are allowed. When m2; m1 	
m3 (the extreme case m1 � 0 eV), Nnr

eff ’ 1. On the
other hand, when m1 and m2 are comparable to the
mass difference between m2 andm3, we have Nnr

eff ’
083520-12
3 (i.e., three masses are nearly degenerate). Hence,
the ‘‘normal mass hierarchy’’ model allows Nnr

eff to
vary in the full parameter space, 1 � Nnr

eff � 3.

(ii) I
nverted mass hierarchy, m1 �m2 � m�

In this model, m3 is assumed to be the smallest
mass, and m3 <m1 <m2. A peculiar feature of
this model is that Nnr

� cannot be less than 2: when
m3 � 0, the possible solutions allowed by the neu-
trino oscillation experiments are m2 ’ 0:055 eV
and m1 ’ 0:047 eV or m�;tot ’ 0:1 eV; thus, m1

and m2 must be very similar, giving Nnr
� ’ 2.

Again, when m3 is comparable to the mass differ-
ence between m2 and m3, all three masses are
degenerate, Nnr

eff ’ 3. Hence, the ‘‘inverted mass
hierarchy’’ model allows Nnr

eff to vary only in the
limited parameter space, 2 � Nnr

eff � 3.

In the upper panel of Fig. 3, we show Nnr

eff for the normal
mass hierarchy model (dashed line) and for the inverted
mass hierarchy model (dotted line). One can see that the
two models are indistinguishable (all masses are degener-
ate) for f� * 0:02.

How do we constrain Nnr
� ? We measure m�;tot from the

overall suppression of power at small scales, as described
in the previous section. Then we measure m� from the
‘‘break’’ of the power spectrum caused by the free-
streaming scale, kfs�z�. The number of nonrelativistic neu-
trinos is finally constrained asNnr

� � m�;tot=m�, which tells
us about the neutrino mass hierarchy. In the 3rd to 5th
columns in Table II, we show the projected error on Nnr

�
from high-z galaxy surveys combined with the Planck data,
assuming the fiducial neutrino mass fraction of f� � 0:05.
As the error depends very much on the fiducial value of
Nnr
� , we explore three different fiducial values, Nnr

�;fid � 1,
2, and 3. As we have described above, however, the first
two fiducial values, Nnr

�;fid � 1 and 2, are inconsistent with
the neutrino oscillation experiments if f� � 0:05 (all the
masses must be nearly degenerate); thus, only the 5th
column is actually realistic if there is no sterile neutrino.
We find that Nnr

� is going to be difficult to constrain: even
when we combine all the high-z galaxy surveys, G1, G2,
and SG, the projected error is �Nnr

� � 0:6. This implies
that it is not possible to discriminate between Nnr

� � 2 and
3 at more than 2-�, while one can rejectNnr

� � 1. When the
fiducial value of f� is small enough to allow for Nnr

� � 2,
f� � 0:01, the constraints are too weak to be useful (see
the 3rd to 5th columns in Table III).

As explained above, if the total neutrino mass is larger
than 0.2 eV, Nnr

eff ’ 3 is expected from the neutrino oscil-
lation experiments. The lower panel of Fig. 3 shows the
projected error on Nnr

� for the SG survey. A model with
Nnr
� � 3 can be detected at more than 1� level only if f� *

0:04 (m�;tot * 0:52 eV). Nevertheless, it should be noted
that exploring the constraint on Nnr

� with future surveys is
extremely important because any finding of a model with
Nnr
� � 3 in this range of f� may provide valuable informa-



FIG. 5 (color online). The projected 68% error on ns (upper
panel) and �s against kmax, as in Fig. 4.
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tion for the existence of sterile neutrino or new physics.
The general trend is that the error on Nnr

� increases as m�
decreases (i.e., the fiducial value of f� decreases or Nnr

�
increases). This is because the neutrino free-streaming
scale, kfs, is proportional to m�: when m� is too small, kfs

will go out of the k range accessible by galaxy surveys. A
possible way to overcome this obstacle is to enlarge the
survey volume which, in turn, can lower the minimum
wave number sampled by the survey. The leftmost curve
shows the projected error on Nnr

� for Nnr
�;fid � 1 from a

hypothetical full-sky SG survey at 3:5< z< 6:5. We find
that such a survey will be able to distinguish between two
mass hierarchy models in principle.

B. Shape of the primordial power spectrum

The amplitude of the primordial power spectrum ap-
pears to be one of the most difficult parameters to measure
very accurately. Adding the galaxy survey does not help
very much: the constraint on the amplitude improves only
by a factor of 1.5 at most, even by combining all the data
sets. (See the 9th column of Tables II and III.) This is
because the Planck experiment alone can provide a suffi-
ciently tight constraint on the amplitude: Planck allows us
to break degeneracy between the amplitude and the optical
depth � by measuring the CMB polarization with high
precision (the current accuracy of determining the ampli-
tude, obtained from the WMAP, is about 10%). Adding
galaxy surveys does not improve the accuracy of normal-
ization due to the galaxy bias. The constraint on the am-
plitude could be further improved by adding the weak
gravitational lensing data (e.g. see [53–55]), which di-
rectly measures the dark matter distribution. Also, the
lensing data are actually sensitive to mass clustering in
the nonlinear regime, and thus would be complementary to
the galaxy surveys probing the linear-regime fluctuations.

The interesting parameter is the running spectral index,
�s. Actually G1 or G2 does not improve the constraint on
�s at all: the error shrinks merely by 20%; however, the
space-based survey, such as CIP, provides a dramatic im-
provement over the Planck data, by a factor of nearly 3.
This indicates that SG alone is at least as powerful as
Planck in terms of constraining �s. (We shall come back
to this point below.) The driving force for this improvement
is the value of the maximum usable wave number for SG,
kmax � 1 Mpc�1, which is substantially greater than that
for G1, kmax � 0:2 Mpc�1, and that for G2, kmax �
0:5 Mpc�1. Our study therefore indicates that one needs
to push kmax at least up to kmax � 1 Mpc�1 in order to
achieve a significant improvement in the constraint on �s,
for the survey parameters (the number density and bias
parameters of sampled galaxies) we have considered. This
can be also clearly found from Fig. 5.

On the other hand, the improvement on the tilt, ns, at
k0 � 0:05 Mpc�1 is similar for G1, G2, and SG: from a
factor of 1.5 to 2. The interpretation of this result is,
083520
however, complicated by the fact that the actual constraint
depends very much on the value of the pivot scale, k0, at
which ns is defined. The current value, k0 � 0:05 Mpc�1,
was chosen such that the Planck data would provide the
best constraint on ns. On the other hand, as the galaxy
survey data probe fluctuations on the smaller spatial scales
(larger k), the optimal pivot wave number for the galaxy
surveys should actually be larger than 0:05 Mpc�1: the
optimal pivot wave numbers for G2 and SG are k0pivot �

0:18 and 0:48 Mpc�1, respectively, where k0pivot was com-
puted such that the covariance between ns�k0pivot� and �s
should vanish at k0pivot and the two parameters would be
statistically independent (see [31] for more discussion on
this issue; see also [39] for the similar method for con-
straining the dark energy equation of state at pivot red-
shift). Table IV lists k0pivot for G1, G2, and SG, and the
errors on ns�k0pivot� and �s;pivot. Note that we do not use the
CMB information on ns and �s to derive k0pivot (but
include the CMB information on the other parameters).
This table therefore basically shows how the galaxy survey
data alone are sensitive to the shape of the primordial
power spectrum. The striking one is SG: the errors on
ns�k0pivot� and �s are 0.0033 and 0.0070, respectively,
which should be compared with those from the Planck
data alone, 0.0062 and 0.0067. Therefore, SG alone is at
least as powerful as Planck, in terms of constraining the
shape of the primordial power spectrum.

The correct interpretation and summary of these results
is the following. The Planck data alone cannot constrain
the value of ns very well at small spatial scales (the
uncertainty diverges at larger k0), and the galaxy survey
data alone cannot do so at large spatial scales (the uncer-
tainty diverges at smaller k0). However, when two data sets
are combined, the accuracy in determining ns becomes
nearly uniform at all spatial scales, and the constraint
-13



TABLE IV. Projected 68% errors on the parameters that characterize the shape of the
primordial power spectrum, the tilt (ns) and the running index (�s). The left block is the
same as the 6th and 7th columns in Table II, which combines the galaxy survey data with the
CMB data from Planck, while the right block shows the constraints when the CMB information
on ns and �s are not used. The left block lists the constraints on ns and �s using k0 �
0:05 Mpc�1 [see Eq. (C6)] which was chosen such that the Planck data would yield the best
constraints. The 1st column in the right block shows the pivot wave number at which the errors
on ns and �s are uncorrelated for a given galaxy survey, and the 2nd and 3rd columns show the
constraints on ns and �s at the pivot wave number, respectively. The space-based galaxy survey
at 3:5< z < 6:5, SG, on its own yields better constraints on ns and comparable constraints on �s
compared to Planck alone, when evaluated at its pivot wave number. Note that f�;fid � 0:05 and
Nnr
�;fid � 3 are assumed.

� full Planck (@k0 � 0:05 Mpc�1 @k � kpivot

ns �s k0;pivot �Mpc�1� ns �s

Planck alone 0.0062 0.0067 � � � � � � � � �

G1 0.0038 0.0059 0.030 0.086 0.035
G2 0.0037 0.0057 0.18 0.018 0.025
SG 0.0030 0.0024 0.48 0.0033 0.0070
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becomes nearly independent of a particular choice of k0.
This is in fact a huge improvement of the situation, which
may not be seen very clearly from just an improvement of
ns defined at a particular k0. This is probably best repre-
sented by the constraint on �s we described above: the
significant reduction in the uncertainty in �s for SG in-
dicates that SG in combination with Planck has nearly
uniform sensitivity to the shape of the primordial power
spectrum from CMB to galaxy scales. This is exactly what
one needs for improving constraints on inflationary
models.

The left panel of Fig. 6 summarizes the constraints on�s
and ns at k0 � 0:05 Mpc�1. This figure shows the pro-
jected error ellipses in the (ns, �s) subspace. The overall
improvement on the parameter constraint in the 2D sub-
space is quite impressive, and it clearly shows the impor-
FIG. 6. Left panel: Projected 68% error ellipses in the �ns; �s� pl
galaxy surveys combined with Planck. The dashed and dot-dashed
while the dotted contour is SG (3:5< z < 6:5). The highest redshif
primordial power spectrum. The innermost shaded area shows the co
panel: Degradation in the constraints on ns and �s as a function of
The effect of nonrelativistic neutrinos hardly affects the constraints
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tance of high-z galaxy surveys for improving constraints
on the shape of the primordial power spectrum.

Yet, one might be worried about the presence of non-
relativistic neutrinos degrading the constraints, �s in par-
ticular, as the neutrinos might mimic the effect of a
negative �s by suppressing the power more at smaller
spatial scales. The right panel of Fig. 6 basically shows
that there is no need to worry: the constraints on ns and �s
are hardly affected by the nonrelativistic neutrinos for
f� � 0–0:05 (the errors on ns and �s are degraded less
than by �10%). This is because the inflation parameters
and the nonrelativistic neutrinos change the shape of the
galaxy power spectrum in modestly different ways, as
explicitly demonstrated in the lower panel of Fig. 2, and
the high-z galaxy surveys are capable of discriminating
these effects. Figure 7 shows the error ellipses in the
ane from Planck alone (the outermost contour), and the high-z
contours are G1 (0:5< z < 2) and G2 (2< z < 4), respectively,
t survey, SG, provides very tight constraints on the shape of the
nstraint from all the galaxy surveys and Planck combined. Right
the nonrelativistic neutrino contribution, f�, for SG plus Planck.
on ns and �s.

-14



FIG. 7. Projected 68% error ellipses in the �f�; ns� (left panel) and �f�; �s� (right panel) planes, respectively, for SG combined with
Planck. Note that the fiducial values of f�;fid � 0:01 and Nnr

�;fid � 1 are assumed.
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subspaces of �f�; ns� (left panel) and �f�; �s� (right panel).
We find that the correlation between ns and f� is modest
[the correlation coefficient defined by Eq. (19) is 0.55; see
also Table VII], while the correlation between �s and f� is
weaker. The most important result from this study is there-
fore that the 2D joint marginalized constraint on infla-
tionary parameters, ns and �s, is hardly affected by the
presence of nonrelativistic neutrinos.

C. Information from geometric and redshift-space
distortion

In Table V we summarize what happens when we throw
away some information from our analysis. Without CMB
information, the errors on the neutrino parameters inflate
significantly by more than an order of magnitude, while the
error on the matter density parameter, �m, is still compa-
rable to or better than that from Planck alone. (Why this is
so is explained in the next paragraph.) The errors on ns and
�s at k0 � 0:05 Mpc�1 also inflate.

The geometric distortion effect helps to constrain �m

from galaxy surveys alone. The radial distortion constrains
the expansion rate, H�z�, while the transverse distortion
constrains the angular diameter distance, DA�z�. Since
H�z� and DA�z� have different dependences on �m and h
for a flat universe, the distortion can determine �m and h
simultaneously (�m and �mh2 for our parameter set). The
galaxy surveys at higher redshifts benefit more from the
geometric distortion effect.

The redshift-space distortion helps to constrain the neu-
trino parameters, by lifting degeneracy between the neu-
TABLE V. Parameter degradation when some information is throw
distortion, or the redshift-space distortion has been removed from th

No CMB No geom
Survey f� Nnr

� �m0 ns �s f� Nnr
�

G1 0.19 11 0.037 0.31 0.22 0.0052 1.0 0
G2 0.082 4.1 0.023 0.10 0.060 0.0043 0.78 0
SG 0.044 2.6 0.0064 0.057 0.013 0.0033 0.64 0
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trino parameters and the galaxy bias. We demonstrate it in
the third block of Table V. The errors on the neutrino
parameters increase up to nearly a factor of 5 for SG, if
we ignore the information from the redshift-space distor-
tion. The other parameters are not strongly affected.

D. Variations with survey parameters

To guide the survey design, we show how parameter
forecasts vary with two key survey parameters, the number
density of galaxies and the survey volume. Table VI shows
how much one can reduce the projected errors on the key
cosmological parameters by increasing the number density
of galaxies or the survey volume or both by a factor of 5.
These advanced survey parameters are named as
(i) V
n away f
e analy

etric dist
�m0

.0074 0

.0073 0

.0064 0

-15
1N5: The survey volume is kept the same, while
the number density of galaxies is increased by a
factor of 5.
(ii) V
5N1: The survey volume is increased by a factor
of 5, while the number density of galaxies is kept
the same.
(iii) V
5N5: Both the survey volume and the number
density of galaxies are increased by a factor of 5.
Figure 8 shows how the error ellipses for f� and Nnr
� will

shrink for these advanced parameters.
We find that the most effective way to improve determi-

nation of the neutrino parameters, particularly Nnr
� , is to

increase the survey volume. One may understand this from
Fig. 4—the information on the neutrino parameters satu-
rates at kmax � 1 Mpc�1, and thus there is not much to gain
by reducing the power spectrum errors at large k.
rom the analysis. From left to right, CMB, the geometric
sis. Note that f�;fid � 0:05 and Nnr

�;fid � 3 are assumed.

ortion No redshift-space distortion
ns �s f� Nnr

� �m0 ns �s

.0039 0.0059 0.017 3.8 0.0073 0.0039 0.0060

.0039 0.0057 0.015 3.0 0.0070 0.0038 0.0058

.0038 0.0025 0.011 2.3 0.0048 0.0032 0.0027



TABLE VI. Projected 68% errors on the neutrino and power spectrum shape parameters for advanced survey parameters. ‘‘V1N5’’
has a factor of 5 larger number density of galaxies than the fiducial survey, ‘‘V5N1’’ has a factor of 5 larger survey volume, and
‘‘V5N5’’ has a factor of 5 increase in the both quantities. Note that f�;fid � 0:05 and Nnr

�;fid � 3 are assumed, while f�;fid � 0:01 and
Nnr
�;fid � 1 are assumed for Nnr

� in the parentheses.

V1N5 V5N1 V5N5
f� Nnr

� ns �s f� Nnr
� ns �s f� Nnr

� ns �s

G1 0.0038 0.83(2.0) 0.0037 0.0059 0.0033 0.59(1.4) 0.0036 0.0057 0.0029 0.50(1.3) 0.0034 0.0057
G2 0.0024 0.71(1.8) 0.0034 0.0052 0.0025 0.59(1.4) 0.0034 0.0051 0.0021 0.46(1.2) 0.0028 0.0040
SG 0.0018 0.66(1.6) 0.0026 0.0018 0.0017 0.49(1.1) 0.0023 0.0018 0.0016 0.42(0.97) 0.0019 0.0013
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On the other hand, one can still improve determination
of the parameters that determine the shape of the primor-
dial power spectrum, ns and �s, by increasing the number
density of galaxies. This is especially true for SG, which
probes the largest kmax. Therefore, one can achieve even
better accuracies for constraining inflationary models by
either increasing the survey volume or the number density
of galaxies, in principle; however, in reality one is even-
tually going to be limited by our understanding of the
galaxy power spectrum in the weakly nonlinear regime at
large k. In other words, there is not much to gain by
reducing the power spectrum errors at large k, if the error
is already as small as theoretical uncertainty in the model-
ing of galaxy power spectrum at the same k. Therefore,
increasing the survey volume is probably the best way to
improve accuracies of both the neutrino parameters and the
inflationary parameters.
FIG. 8 (color online). The same as Fig. 3, but for advanced
survey parameters for SG combined with Planck, as in Table VI.
‘‘V1N1’’ is the nominal survey parameters given in Table I. Note
that zero running, �s � 0, is assumed as a prior, and f�;fid �
0:05 and Nnr

�;fid � 3 are assumed.
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VII. CONCLUSIONS AND DISCUSSIONS

The nonrelativistic neutrinos and the tilt and running
index of the primordial power spectrum cause scale-
dependent modifications in the linear power spectrum
probed by galaxy redshift surveys. We have shown that
one can determine these parameters precisely by fully
exploiting the two-dimensional information of galaxy clus-
tering in angular and redshift directions from high-redshift
galaxy surveys, when combined with the CMB data from
the Planck experiment. The main results are summarized in
Tables II and III, and may be graphically viewed in Figs. 3
and 6. Our conclusions are twofold.

The first conclusion is for the neutrino parameters. We
have found that the future galaxy surveys with �s �
300 deg2 can provide very tight constraints on the total
neutrino mass. The neutrino oscillation experiments have
given the solid lower bound on the total neutrino mass,
m�;tot * 0:06 eV, which is actually larger than the pro-
jected error on the total neutrino mass expected from the
high-redshift galaxy surveys we have considered, up to by
a factor of 2.5 for the space-based survey targeting galaxies
at 3:5< z< 6:5. If two neutrino species have nearly equal
masses (the inverted hierarchy), then the lower bound from
the neutrino oscillation experiments, m�;tot * 0:1 eV, is up
to 4 times larger than the projected errors of cosmological
experiments. Overall, the high-redshift galaxy surveys
combined with Planck allow a positive detection of the
total neutrino mass rather than the upper limit, improving
the constraints on the total neutrino mass by a factor of 20–
40 compared with the current cosmological constraints.
The error on m�;tot that we have found is smaller than
that shown in the previous work (e.g., see [31]) by a factor
of 5–10, despite the fact that the survey volume we as-
sumed is larger than theirs only by a factor 1.5–3. The
main reason for the significant improvement is because our
analysis exploits the full two-dimensional information in
the galaxy power spectrum in redshift space. In particular,
the redshift-space distortion due to peculiar velocity field
significantly helps improve the parameter determinations
by breaking degeneracies between the cosmological pa-
rameters and the galaxy bias (also see Table V).

In addition, we have carefully investigated how one can
use the future surveys to constrain the number of non-
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relativistic neutrino species, which should play an impor-
tant role in resolving the neutrino mass hierarchy problem
as well as the neutrino absolute mass scale, independently
of the total neutrino mass. While we have found that the
accuracy needed to discriminate between two models with
the samem�;tot but different Nnr

� ,��Nnr
� � & 1, is going to be

difficult to achieve for the nominal survey designs we
considered, one may achieve the desired precision by
enlarging the survey volume. It should be stressed here
that it is extremely important to exploit independent con-
straints on m�;tot and Nnr

� from future cosmological obser-
vations, as any results unexpected from the point of view of
the standard three-flavor neutrino model would imply
anomalies in our understanding of the neutrino physics
and hints for the new physics. Needless to say, controlling
the systematics in such observations is also a crucial issue.

The second conclusion is for the shape of the primordial
power spectrum. We have graphically summarized the
expected performance of the future galaxy surveys for
constraining the tilt, ns, and the running index, �s, of the
primordial power spectrum in Fig. 6. Compared with the
constraints from the CMB data alone, the galaxy surveys
we have considered can improve the determinations of ns
and �s by a factor of 2 and 3, yielding ��ns� � 0:003 and
���s� ’ 0:002, respectively. The high-redshift galaxy sur-
veys allow us to probe galaxy clustering in the linear
regime down to smaller length scales than at low redshifts.
It is also important to note that the galaxy survey and CMB
are sensitive to the primordial power spectrum shape at
different k ranges, and therefore these two probes are
nicely complementary to each other in terms of constrain-
ing the tilt and the running index at different k. We have
explicitly shown that the space-based galaxy survey (SG),
such as CIP, has a similar level of precision for constrain-
ing ns and �s at the pivot scale k0pivot � 0:5 Mpc�1, to the
Planck experiment at k0 � 0:05 Mpc�1 (see Table IV).
While it is sometimes argued that simple inflationary mod-
els should predict negligible amounts of running index
which are out of reach of any experiments, our results
show that the projected error on �s from the SG survey
with 5 times more survey volume is actually as small as �s
predicted by the simple model based on a massive, self-
interacting scalar field, �s � ��0:8–1:2� � 10�3. Our re-
sults for ns and �s are still on the conservative side, as we
have ignored the baryonic oscillations in the analysis. We
have found that one can reduce the uncertainties in ns and
�s by a factor of 2–3 by including the baryonic oscilla-
tions—however, in that case one might also have to worry
about the effect of curvature of the universe and dark
energy properties. We report the results of the full analysis
elsewhere.

Throughout this paper, we have assumed the standard
three-flavor neutrinos, some of which have become non-
relativistic by the present epoch, as favored by neutrino
oscillation experiments and the current theory of particle
083520
physics. On the other hand, cosmological observations
such as CMB and the large-scale structure can also put
independent constraints on the number of relativistic,
weakly interacting particles just like neutrinos, as a change
in the relativistic degrees of freedom directly affects the
expansion rate of the universe during the radiation era. For
example, an increase in the relativistic degrees of freedom
delays the matter-radiation equality, to which the CMB and
large-scale structure observables are sensitive. The number
of relativistic particles (minus photons) is conventionally
expressed in terms of the effective number of neutrino
species (i.e., the temperature of additional relativistic spe-
cies is assumed to be �4=11�1=3 of the temperature of
photons, just like ordinary neutrinos). The current cosmo-
logical bound is N� � 4:2�1:2

�1:7 (95% C.L.) [69], while the
standard model predicts N� � 3:04 [70] (also see [71] for
the constraint on the abundance and mass of the sterile
neutrinos based on the recent cosmological data sets).
Hence, it is interesting to explore how one can simulta-
neously constrain the number of relativistic degrees of
freedom before the photon decoupling epoch as well as
the number of nonrelativistic particle species at low red-
shifts, Nnr

� , using the future cosmological data sets.
Properties of such weakly interacting particles are still
difficult to measure experimentally.

It has been shown in the literature that the weak gravi-
tational lensing [53,72,73] or the number count of galaxy
clusters [74,75] can also be a powerful probe of the cos-
mological parameters. Different methods are sensitive to
the structure formation at different ranges of redshifts and
wave numbers, and have different dependence on the cos-
mological parameters. More importantly, they are subject
to very different systematics. Hence, by combining several
methods including the galaxy surveys considered in this
paper, one can check for systematics inherent in one par-
ticular method. The combination of different methods may
also reduce statistical errors on the cosmological parame-
ters. While it is worth exploring this issue carefully, we can
easily imagine that, for the neutrino parameters, the weak
lensing or the cluster number count does not improve Nnr

�

very much. To constrain Nnr
� better, one has to find a way to

probe very large spatial scales, larger than the neutrino
free-streaming scales; however, these methods probe only
very small spatial scales where fluctuations have already
become nonlinear. (They may provide improvements in the
determination of m�;tot.)

There is a promising way to check for systematics and
improve the parameter determinations using the galaxy
survey alone. While we have been assuming that perturba-
tions are strictly linear and hence perfectly Gaussian, in
reality small nonlinearity always exists. The corrections to
the power spectrum due to such small nonlinearity may be
calculated analytically using the higher-order cosmologi-
cal perturbation theory (see [76] for a review), which
works extremely well at z > 2 [77]. Using the same
-17
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higher-order cosmological perturbation theory, one may
also compute the higher-order statistics, such as the bis-
pectrum, which is a very powerful tool to check for system-
atics due to nonlinearity in matter clustering, redshift-
space distortion, and galaxy bias [78,79]. Also, the bispec-
trum and power spectrum have different cosmological
dependences [53,80]; thus, it is naturally expected that
combining the two would improve the determinations of
cosmological parameters. The results of our investigation
along these lines will be reported elsewhere.

No matter how powerful the bispectrum could be in
terms of checking for systematics, better models for non-
linearity in redshift-space distortion and galaxy bias are
definitely required for our projected errors to be actually
realized. The good news is that we do not need a fully
nonlinear description of either component: we always
restrict ourselves to the ‘‘weakly nonlinear regime’’ where
perturbation theory should still be valid. Having an accu-
rate model for the redshift-space distortion in the weakly
nonlinear regime is important for the precise determination
of the total neutrino mass, as the redshift distortion plays a
major role in lifting the degeneracy between the galaxy
bias and the matter power spectrum amplitude (see in
Table V what happens when the redshift-space distortion
is ignored). Recently, a sophisticated model of the distor-
tion effect including the weak nonlinear correction was
developed in [81] based on the analytic method as well as
the simulations. Likewise, it will be quite possible to
develop a sufficiently accurate, well-calibrated model of
the distortion effect at least on large length scales, based on
adequate simulations. While we have employed a scale-
independent linear bias throughout this paper, this model
must break down even at weakly nonlinear regime.
Analytical [82] as well as numerical [64,65,83] work has
shown that deviations from a scale-independent bias do
exist even on large spatial scales. This effect would also
become particularly important for the precision measure-
ments of the baryonic oscillations for constraining proper-
ties of dark energy. Therefore, careful and systematic
investigations based on both analytical and numerical tools
are needed to understand the realistic effect of scale-
dependent bias on estimates of the cosmological parame-
ters. As we have mentioned already, information from the
higher-order statistics in the galaxy clustering would be a
powerful diagnosis tool to check for systematics due to
nonlinear bias. As perturbation theory predicts that the
galaxy power spectrum and bispectrum should depend on
the galaxy bias differently, one can directly determine the
galaxy bias and cosmological parameters simultaneously,
by combining the two statistical quantities [78–80,84,85].
This method should also allow us to see a potential scale-
dependent biasing effect from the epoch of reionization
[86].

Finally, let us comment on survey parameters. In order
to make our discussion general, we have considered three
083520
hypothetical surveys which are different in their redshift
coverage and the number density of targeted galaxies (see
Sec. V for the survey definition). We have also explored
how the parameter errors would change when the survey
parameters are varied from the fiducial values (see
Table VI and Fig. 8). Increasing a survey volume has a
greater impact on the parameter errors compared with
increasing the numbers of targeted galaxies for a given
survey volume. We are hoping that our results provide
useful information to help to define an optimal survey
design to attain the desired accuracy on the parameter
determinations, given the limited observational resources
and budget.
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APPENDIX A: PROPERTIES OF COSMOLOGICAL
NEUTRINOS

1. Mass density

The present-day mass density of nonrelativistic neutri-
nos is given by

�nr
� �

XNnr
�

i�1

m�;in�;i; (A1)

where i runs over the neutrino species that are nonrelativ-
istic, and Nnr

� is the number of nonrelativistic neutrino
species. We assume that some of the standard three active
neutrinos are massive and thus 0 � Nnr

� � 3. These neu-
trinos were in thermal equilibrium with other particles at
early times until they decoupled from the primordial
plasma slightly before electron-positron annihilation.
Since they were still relativistic when they decoupled, their
distribution function after decoupling is still given by that
of a massless fermion. After electron-positron annihilation,
the temperature of photons became higher than the tem-
perature of neutrinos by a factor of �11=4�1=3. Thus, the
neutrino number density of each species, n�, at a redshift
relevant for a galaxy survey is given by the relativistic
formula:

n� �
3��3�

2�2 T
3
� ’ 112�1� z�3 cm�3; (A2)

where ��3� ’ 1:202 and T� � �4=11�1=3T0�1� z�, where
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T0 is the present-day photon temperature and we have
assumed T0 � 2:725 K [52]. Note that the number den-
sity includes the contribution from antineutrinos as well,
and does not depend on neutrino species, n� � n�;i. The
density parameter of nonrelativistic neutrinos is thus given
by

�� �
8�G�nr

�

3H2
0

�
8�Gn�

3H2
0

XNnr
�

i�1

m�;i ’

P
i
m�;i

94:1h2 eV
: (A3)

Since ��h2 must be less than the density parameter of dark
matter, �cdmh2 ’ 0:112, the total mass of nonrelativistic
neutrinos must satisfy the following cosmological bound:XNnr

�

i�1

m�;i & 10:5 eV: (A4)

2. Nonrelativistic epoch

Neutrinos became nonrelativistic when the mean energy
per particle, given by

hEi �
7�4

180��3�
T� ’ 3:15T�; (A5)

fell below the mass energy, m�;i. The temperature at which
a given neutrino species became nonrelativistic, Tnr

�;i, is
thus given by

Tnr
�;i �

180��3�

7�4 m�;i ’ 3680
�
m�;i

1 eV

�
K: (A6)

The redshift at which a given neutrino species became
nonrelativistic is

1� znr;i ’ 1890
�
m�;i

1 eV

�
: (A7)

As the current constraints from the galaxy power spectrum
at z� 0 already suggest m�;i & 1 eV, it is certain that
neutrinos became nonrelativistic during the matter-
dominated era. The comoving wave number corresponding
to the Hubble horizon size at znr is thus given by

knr;i �
H�znr;i�

1� znr;i
�

�1=2
m h�1� znr;i�

1=2

2998 Mpc

’ 0:0145
�
m�;i

1 eV

�
1=2

�1=2
m h Mpc�1: (A8)

Note that this value is smaller than that given in [31] by a
factor of ’

���������
3:15
p

. They assumed that neutrinos became
nonrelativistic when T� � m�, rather than T� �
�180��3�=7�2�m� ’ m�=3:15.

3. Neutrino free-streaming scale

Density perturbations of nonrelativistic neutrinos grow
only when the comoving wave number of perturbations is
below the free-streaming scale, kfs, given by

kfs;i�z� �

���
3

2

s
H�z�

�1� z��v;i�z�
; (A9)
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where �2
v;i�z� is the velocity dispersion of neutrinos and

given in [25] as

�2
v;i�z� �

R d3pp2=m2

exp
p=T��z���1R d3p
exp
p=T��z���1

�
15��5�
��3�

T2
��z�

m2
�;i

�
15��5�
��3�

�
4

11

�
2=3 T2

�0��1� z�2

m2
�;i

; (A10)

where ��5� ’ 1:037. Hence,

kfs;i�z� ’
0:677

�1� z�1=2

�
m�;i

1 eV

�
�1=2

m h Mpc�1: (A11)

Neutrino density perturbations with k > kfs;i cannot grow
because pressure gradient prevents neutrinos from collaps-
ing gravitationally; thus, neutrinos are effectively smooth
at k > kfs;i, and the power spectrum of neutrino perturba-
tions is exponentially suppressed. Note that Eq. (A9) is
exactly the same as the Jeans scale in an expanding uni-
verse for collisional particles, if�v is replaced by the speed
of sound.
APPENDIX B: INFLATIONARY PREDICTIONS

1. Generic results

Inflationary predictions are commonly expressed in
terms of the shape of the primordial power spectrum of
curvature perturbations in comoving gauge, R:

hRkR
�
k0 i � �2��

3PR�k���3��k� k0�; (B1)

where

k3PR�k�

2�2
� �2

R

�
k
k0

�
�1�ns��1=2��s ln�k=k0�

: (B2)

Here, ns and �s are called the tilt and ‘‘running index’’ of
the primordial power spectrum. These parameters are re-
lated to the shape of potential, V���, of an inflaton field,�,
a field which caused inflation, as [8]

ns � 1 � M2
pl

�
�3

�
V 0

V

�
2
� 2

�
V00

V

��
; (B3)

�s � 2M4
pl

�
4
�
V 0

V

�
2
�
V00

V

�
� 3

�
V0

V

�
4
�

�
V0V 000

V2

��
; (B4)

where primes denote derivatives with respect to �, and
Mpl � �8�G�

�1=2 � 2:4� 1018 GeV is the reduced
Planck mass. Successful inflationary models must yield a
sufficiently large number of e-folds for the expansion of
the universe, N, before inflation ends at tend when � rolls
down on the potential to � � �end:

N �
Z tend

t
dtH�t� 

1

M2
pl

Z �

�end

d�
V
V 0
; (B5)

which has to be at least as large as 50. This condition
requires jns � 1j and j�sj to be much less than unity, while
exact values depend on specific inflationary models [i.e.,
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the shape of V���]. Therefore, precision determination of
ns and �s is a very powerful tool for constraining infla-
tionary models.

2. Specific examples

An illustrative example of inflationary models is infla-
tion caused by a massive, self-interacting real scalar field:

V��� � 1
2m

2
��

2 � 1
4��

4; (B6)

where m� is the mass of � and ��>0� is the coupling
constant of self-interaction. The mass term and the inter-
action term equal when � � �c, where

�c � m�

����
2

�

s
: (B7)

The mass term dominates when �<�c, while the inter-
action term dominates when �>�c. One obtains

N 
�2

8M2
pl

�
�2
c

16M2
pl

ln
�

1� 2
�2

�2
c

�
; (B8)

ns � 1 � �
8M2

pl

�2

1� 5
2
�2

�2
c
� 3 �4

�4
c

�1� �2

�2
c
�2

; (B9)

�s��
32M4

pl

�4

�1�2�
2

�2
c
��1�3�

2

�2
c
�2�

4

�4
c
�3�

6

�6
c
�

�1��2

�2
c
�4

: (B10)

Let us take the limit of mass-term driven inflation, �	
�c. One finds

N !
�2

4M2
pl

; (B11)

ns � 1! �
8M2

pl

�2 � �
2

N
; (B12)

�s ! �
32M4

pl

�4 � �
2

N2 : (B13)

For N � 50, ns � 0:96 and �s � �0:8� 10�3. In the
opposite limit, self-coupling driven inflation, �� �c,
one finds

N !
�2

8M2
pl

; (B14)

ns � 1! �
24M2

pl

�2 � �
3

N
; (B15)

�s ! �
192M4

pl

�4 � �
3

N2 : (B16)

For N � 50, ns � 0:94 and �s � �1:2� 10�3. These
simple examples show that a precision of ��ns� � 10�3
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is sufficient for discriminating between models, while
���s� � 10�3 may allow us to detect �s from simple
(though not the simplest) inflationary models driven by a
massive scalar field with self-coupling.
APPENDIX C: NORMALIZING POWER
SPECTRUM

While inflation predicts the power spectrum of R, what
we observe from galaxy redshift surveys is the power
spectrum of matter density fluctuations, �m. In this section
we derive the conversion from R during inflation to �m at a
particular redshift after the matter-radiation equality.

Let us begin by writing the Poisson equation in Fourier
space,

�k2�k�a� � 4�G�m�a��m;k�a�a
2 �

3H2
0�m

2

�m;k�a�
a

;

(C1)

where � is gravitational potential in the usual (Newtonian)
sense (g00 � �1� 2�). Cosmological perturbation the-
ory relates � after the matter-radiation equality to R
during inflation as

�k�a� � �
3

5
RkT�k�

Dcb��k; a�
a

; (C2)

where Dcb��k; a� is the linear growth factor of total matter
perturbations including CDM, baryons, and nonrelativistic
neutrinos, and T�k� is the linear transfer function. Note that
the transfer function and the growth rate are normalized
such that T�k� ! 1 as k! 0 and Dcb�=a! 1 as k! 0
during the matter era. (We assume that neutrinos became
nonrelativistic during the matter-dominated era.) Hence,

�m;k�a� �
2k2

5H2
0�m

RkT�k�Dcb��k; a�; (C3)

which gives the power spectrum of �m,

P�k; a� �
�

2k2

5H2
0�m

�
2
PR�k�T2�k�D2

cb��k; a�; (C4)

after the matter-radiation equality. The WMAP collabora-
tion has determined the normalization of k3PR�k�=�2�

2� at
k � k0 � 0:05 Mpc�1 as

�2
R � 2:95� 10�9A; (C5)

where A is a constant of order unity (Eq. [32] of [87]).
Putting these results together, we finally obtain the power
spectrum of density perturbations normalized to WMAP:

k3P�k; z�

2�2 � 2:95� 10�9A
�

2k2

5H2
0�m

�
2
D2

cb��k; z�T
2�k�

�

�
k
k0

�
�1�ns��1=2��s ln�k=k0�

: (C6)
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APPENDIX D: CORRELATIONS BETWEEN PARAMETER ESTIMATES

It is worth noting how the parameter estimations are correlated with each other for a given survey, which can be
quantified by the correlation coefficients defined by Eq. (19). Table VII gives the correlation matrix for the parameters for
SG combined with Planck.
TABLE VII. The correlation matrix for parameter estimation errors for SG combined with Planck.

�m �R f� Nnr
� ns �s �mh

2 �bh
2 � b1�z � 4� b1�z � 5� b1�z � 6�

�m 1 0.079 �0:28 �0:79 �0:68 �0:32 0.94 �0:41 �0:073 �0:96 �0:96 �0:96
�R 0.079 1 0.81 0.24 0.10 �0:17 0.090 �0:001 0.98 �0:14 �0:16 �0:17
f� �0:28 0.81 1 0.39 0.55 �0:26 �0:27 0.033 0.86 0.30 0.28 0.27
Nnr
� �0:79 0.24 0.39 1 0.30 0.45 �0:70 0.43 0.34 0.79 0.78 0.78

ns �0:68 0.10 0.55 0.30 1 �0:29 �0:64 0.25 0.24 0.64 0.64 0.63
�s �0:32 �0:17 �0:26 0.45 �0:29 1 �0:29 0.17 �0:13 0.35 0.35 0.35
�mh

2 0.94 0.090 �0:27 �0:70 �0:64 �0:29 1 �0:10 �0:073 �0:90 �0:90 �0:90
�bh

2 �0:41 �0:001 0.033 0.43 0.25 0.17 �0:10 1 0.022 0.40 0.40 0.40
� �0:073 0.98 0.86 0.34 0.24 �0:13 �0:073 0.022 1 0.0071 �0:0086 �0:021
b1�z � 4� �0:96 �0:14 0.30 0.79 0.64 0.35 �0:90 0.40 0.0071 1 0.99 0.99
b1�z � 5� �0:96 �0:16 0.28 0.78 0.64 0.35 �0:90 0.40 �0:0086 0.99 1 0.99
b1�z � 6� �0:96 �0:17 0.27 0.78 0.63 0.35 �0:90 0.40 �0:021 0.99 0.99 1
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