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Inhomogeneous alternative to dark energy?
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Recently, there have been suggestions that the apparent accelerated expansion of the universe is not
caused by repulsive gravitation due to dark energy, but is rather a result of inhomogeneities in the
distribution of matter. In this work, we investigate the behavior of a dust-dominated inhomogeneous
Lemaı̂tre-Tolman-Bondi universe model, and confront it with various astrophysical observations. We find
that such a model can easily explain the observed luminosity distance-redshift relation of supernovae
without the need for dark energy, when the inhomogeneity is in the form of an underdense bubble centered
near the observer. With the additional assumption that the universe outside the bubble is approximately
described by a homogeneous Einstein-de Sitter model, we find that the position of the first peak in the
cosmic microwave background (CMB) power spectrum can be made to match the WMAP observations.
Whether or not it is possible to reproduce the entire CMB angular power spectrum in an inhomogeneous
model without dark energy is still an open question.
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I. INTRODUCTION

The first indications that the universe is presently in a
state of accelerated expansion were given by J.-E. Solheim
as far back as 1966 [1]. Using the observed luminosity of
several cluster galaxies he found that the model giving the
best fit to the data was one with a nonvanishing cosmo-
logical constant and negative deceleration parameter. It is,
however, only after the more recent observations of the
luminosity of supernovae of type Ia (SNIa) that this claim
has grown in popularity. The first SNIa observations sup-
porting this claim were those of Riess et al. in 1998 [2] and
Perlmutter et al. in 1999 [3]. Since then, more recent
observations of supernovae seem to strengthen this claim
even further [4–6]. Other independent observations that
appear to favor the picture of a universe in a phase of
accelerating expansion are the measurements of the anisot-
ropies in cosmic microwave background (CMB) tempera-
ture [7] and the galaxy surveys [8]. With these observations
in mind, the current period of accelerated expansion seems
to be well established. The physical mechanism that drives
this accelerated expansion is, however, still an open ques-
tion. It is usually ascribed to an exotic energy component
dubbed dark energy, whose nature remains a mystery.

Recently, there have been several papers discussing the
possibility that the apparent accelerated expansion of the
universe is not caused by this mysterious dark energy, but
rather by inhomogeneities in the distribution of matter.
Most of these papers look at the backreaction effects aris-
ing from perturbing homogeneous models, and try to ex-
plain the accelerated expansion as corrections to the zeroth
order evolution from the higher-order, inhomogeneous
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terms (see e.g. [9–15]). However, several papers criticizing
some of this work have appeared [16–20].

Another approach is to look at inhomogeneities of a
larger scale in the form of underdense bubbles. The basic
idea behind this line of explanation is that we live in an
underdense region of the universe, and the evolution of this
underdensity is what we perceive as an accelerated expan-
sion. An analysis of early supernova data by Zehavi et al.
gave the first indications that there might indeed exist such
an underdense bubble centered near us [21].

Specific models that give rise to such underdensities
have been studied previously in the form of a local homo-
geneous void [22–24]. In these works both the underden-
sity and the region outside it are assumed to be perfectly
homogeneous Friedmann-Robertson-Walker (FRW) mod-
els with a singular mass shell separating the two regions.
The inhomogeneity manifests itself as a discontinuous
jump at the location of the mass shell.

In this article, we wish to investigate more realistic
models where there is a continuous transition between
the inner underdensity and the outer regions. Therefore
we consider an isotropic but inhomogeneous dust-
dominated universe model, where the inhomogeneity is
spherically symmetric. The model can then be described
within the Lemaı̂tre-Tolman-Bondi (LTB) class of spheri-
cally symmetric universe models [25–27]. To make con-
tact with the ordinary FRW models, we assume that the
universe is homogeneous except for an isotropic inhomo-
geneity of limited spatial extension, where the transition
between these two regions is continuous.

In a homogeneous universe, it is possible to infer the
time evolution of the cosmic expansion from observations
along the past light cone, since the expansion rate is a
function of time only. In the inhomogeneous case, how-
ever, the expansion rate varies both with time and space.
-1 © 2006 The American Physical Society
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Therefore, if the expansion rates inferred from observa-
tions of supernovae are larger for low redshifts than higher
redshifts, this must be attributed to cosmic acceleration in a
homogeneous universe, whereas in our case it can simply
be the consequence of a spatial variation, with the expan-
sion rate being larger closer to us. As shown in [28], this
results in an expression for the luminosity distance-redshift
relation where the inhomogeneity mimics the role of the
cosmological constant in homogeneous models.

However, the supernova observations are not the only
data that support the claim of an accelerating expansion.
As mentioned above, CMB observations also seem to lend
support to this claim. Therefore, in order for our model to
be considered realistic, it should also be able to explain the
observed CMB temperature power spectrum. We will not
attempt to reproduce the whole CMB temperature spec-
trum for our inhomogeneous model in this paper. For
simplicity, we will limit ourselves to the location of the
first acoustic peak. As we will show in Sec. III, it is
possible to obtain a very good match to both the supernova
data and the location of the first acoustic peak simulta-
neously. In fact, the match to the supernova data is better
than for the �CDM model.

The observed isotropy of the CMB radiation implies that
we must be located close to the center of the inhomoge-
neity. According to this picture, we are positioned at a
rather special place in the universe. On the other hand,
this model has the attractive feature that there is no need for
dark energy. Also, the model is sufficiently simple so that it
can be solved exactly. It is therefore a good toy model for
testing the ideas of inhomogeneities as a solution to the
mystery of the dark energy.

The structure of this paper is as follows: First, we will
present our model in Sec. II, parameterized by two func-
tions ��r� and ��r� related to the distribution of matter and
spatial curvature, respectively. Still in Sec. II, we present
the formalism needed in order to obtain the luminosity
distance-redshift relation for spherically symmetric, inho-
mogeneous models. In Sec. III we discuss the physics
behind the first peak of the CMB spectrum and define a
shift parameter that quantifies the deviation of the location
of this peak relative to that of the concordance �CDM
model. In Sec. IV we present the results from the con-
frontation of our model with the physical tests presented in
the preceding sections, and discuss briefly the possibility of
using the recently detected baryon oscillations in the mat-
ter power spectrum to constrain the model even further.
Finally, in Sec. V we summarize our work.
II. SPHERICALLY SYMMETRIC,
INHOMOGENEOUS UNIVERSE MODELS

The line element for a general, spherically symmetric,
inhomogeneous universe model may be written

ds2 � �dt2 � X2�r; t�dr2 � R2�r; t�d�2: (1)
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The Einstein equations are

G�� � R�� �
1
2g��R � �T�� (2)

where � � 8�G and the energy-momentum tensor is as-
sumed to be T�� � diag��; 0; 0; 0�, i.e. containing matter
only.

Solving the equation G01 � 0 gives

X�r; t� �
R0�r; t��������������������
1� ��r�

p (3)

where ��r� is an arbitrary function of r. Throughout this
paper, we will use a 0 � d=dr to denote differentiation with
respect to r and : � d=dt for differentiation with respect to
t.

The Einstein equations for the dust-dominated
Lemaı̂tre-Tolman-Bondi universe models take the form

H2
? � 2HkH? �

�

R2 �
�0

RR0
� ��; (4)

�6H2
?q? � 2H2

? � 2
�

R2 � 2HkH? �
�0

RR0
� ��� (5)

where H? � _R=R, Hk � _R0=R0, and q? � �R �R= _R2.
Adding Eqs. (4) and (5), we obtain

2R �R� _R2 � �: (6)

Integration of this equation leads to

H2
? �

�

R2 �
�

R3 (7)

where � is a function of r.
Hence, the dynamical effects of � and � are similar to

those of curvature and dust, respectively.
Differentiating Eq. (7) with respect to r and inserting the

result into Eq. (5), we obtain the density distribution as

�� �
�0

R2R0
: (8)

Substituting Eqs. (6) and (7) into the expression for the
deceleration parameter yields

q? �
1

2

�

R _R2
�

1

2

�
�� �R

: (9)

Obviously, this quantity is non-negative (since � � 0) and
equal to the usual value q? � 0:5 for a spatially flat, dust-
dominated universe. Thus, an inhomogeneous, dust-
dominated universe cannot be accelerating in the sense of
having a negative deceleration parameter.

Since we are interested in the late time behavior of this
model, we will define t � 0 as the time when photons
decoupled from matter, i.e. the time of last scattering.
Furthermore, we define R�r; t � 0� � R0�r� and introduce
a conformal time � by �1=2dt � Rd�. Integrating Eqs. (4)
and (5) with �> 0 yields
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R �
�

2�
�cosh�� 1� � R0

�
cosh��

�������������������
�� �R0

�R0

s
sinh�

�
;

(10)

����
�

p
t �

�
2�
�sinh�� ��

� R0

�
sinh��

�������������������
�� �R0

�R0

s
�cosh�� 1�

�
; (11)

which is an exact solution of Einstein’s equations for this
class of models.

The ordinary dust-dominated solution for a universe
with negative spatial curvature is found by choosing

� � H2
0�m0r3; � � H2

0�k0r2; and R0 � 0;

(12)

yielding

R �
1

2

�m0r
�k0

�cosh�� 1� � ra���; (13)

t �
1

2H0

�m0

�3=2
k0

�sinh�� �� � t���; (14)

and �� � 3H2
0�m0a

�3. Here, a��� is recognized as the
scale factor in the FRW model, while �m0 and �k0 are the
matter and curvature density today, respectively.

Since we are interested in studying a universe with an
underdensity at the center, we choose the � and � func-
tions so that they interpolate between two such homoge-
neous solutions:

��r� � H2
?;0r

3

�
�0 � ��

�
1

2
�

1

2
tanh

r� r0

2�r

��
; (15)

��r� � H2
?;0r

2

�
�0 � ��

�
1

2
�

1

2
tanh

r� r0

2�r

��
: (16)

Here, H?;0 is the value of the transverse Hubble parameter
in the outer homogeneous region today, while �0 and �0

are given by the matter and curvature density in this region,
respectively. Furthermore, �� and �� specify the differ-
ences in the parameters between the two regions, and r0

and �r specify the position and width of the transition.
The function R0�r� can be chosen freely by a suitable

choice of coordinates r (if the universe has a finite size at
t � 0). To match our solution to a homogeneous FRW
solution in the outer region, we choose R0 � a�r, where
a� is the scale factor of the homogeneous model at
recombination.

To relate the � and � functions to observable quantities,
we define relative matter and curvature densities from the
generalized Friedmann equation (4) as

�m �
��

H2
? � 2HkH?

; (17)
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�k � 1��m: (18)

Note that for the homogeneous case, with H? � Hk, these
expressions coincide with the usual definitions.

Furthermore, we need to find the luminosity distance-
redshift relation in this model for comparison with super-
nova observations. The photons arriving at r � 0 today
(defined as t � t0) follow a path t � t̂�r� given by

dt̂
dr
� �

R0�r; t̂��������������
1� �
p (19)

with t̂�0� � t0. Following Iguchi et al. [29], we find the
redshift z � z�r� of these photons from

dz
dr
� �z� 1�

_R0�r; t̂��������������
1� �
p (20)

with the initial condition z�0� � 0. The position of the last
scattering surface (i.e. the position of the CMB photons
that we observe today, at the time of last scattering) is given
by t̂�r�� � 0, and we define t0 by z�r�� � z� ’ 1100. An
accurate formula for z� in terms of the matter contents of
the universe has been given by Hu and Sugiyama [30].

The luminosity distance is then given by the usual ex-
pression

dL�z� � �1� z�
2R�r; t̂� (21)

and the angular diameter distance is

dA�z� � R�r; t̂�: (22)
III. THE COSMIC MICROWAVE BACKGROUND

To confront our model with observations of the CMB,
we would, in principle, need to study perturbations in an
inhomogeneous universe. However, since our model is
homogeneous outside a limited region at the center, we
will assume that the evolution of perturbations is identical
to that in a homogeneous universe until the time of last
scattering. This means that we can use the ordinary results
for the scale of the acoustic oscillations at the last scatter-
ing surface. On the other hand, the angular diameter dis-
tance, which converts this scale to a corresponding angle
on the sky, is sensitive to the inhomogeneity at the center.
As a simple test we will use the position of the first peak in
the CMB spectrum to constrain our inhomogeneous
models.

The position of the mth Doppler peak in the CMB
spectrum can be written as [31]

lm � �m� ’m�lA (23)

where lA is the acoustic scale and’m is a small shift mainly
due to the projection of the three-dimensional temperature
power spectrum onto a two-dimensional angular power
spectrum.
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FIG. 1 (color online). CMB angular power spectra for the
�CDM model and two Einstein-de Sitter models, normalized
to the height of the first Doppler peak.
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The acoustic scale is given by

lA � �
dA
rs

(24)

where dA is the angular diameter distance to the last
scattering surface and rs is the sound horizon at recombi-
nation. In a standard FRW cosmology, these two quantities
are approximately given by (in comoving coordinates)

rs �
Z t

0

cs�t0�
a�t0�

dt0 (25)

and

dA �
1

H0

������������
j�k0j

p Sk

�
H0

������������
j�k0j

q Z z�

0

dz
H�z�

�
(26)

where cs is the sound speed of the baryon-photon plasma
prior to recombination and z� � 1=a� � 1 is the redshift at
the time of recombination. The function Sk depends on the
spatial curvature and is defined as

Sk�x� �

8><>:
sinx �k < 0;
x �k � 0;
sinhx �k > 0:

(27)

A fitting formula for the dependence of ’1 on !b and !m,
where !i � �ih

2 is the density of energy component i,
can be found in Ref. [32]. The formula can be written as

’1 � a1

� !	

!ma�

�
a2

(28)

where a1 and a2 are given by

a1 � 0:286� 0:626!b; (29)

a2 � 0:1786� 6:308!b � 174:9!2
b � 1168!3

b: (30)

To reduce the effect of the approximations made in the
above formulas, we will introduce a shift parameter that
measures the position of the first Doppler peak for a given
model relative to the concordance �CDM model. That is,
we define

S � l1=l
�CDM
1 (31)

where l�CDM
1 is the peak position for the current concord-

ance model, with !k � 0, !m � 0:135, !b � 0:0224,
!	 � 4:2	 10�5, and !� � 0:368. To be in agreement
with the WMAP observations, the shift parameter should
be within the range S � 1:00
 0:01. In fact, the relative
error in the peak position from the WMAP data [33] is
0:8=220:1 ’ 4	 10�3. However, the approximations
made in the formula in Eq. (31) are probably of the same
order of magnitude. Therefore it is safe to say that models
with jS � 1j> 0:01 are ruled out, whereas models with S
within a percent of the �CDM value are probably worth a
closer look. After all, there is still a long way to go from the
083519
correct position of one peak to a perfect match with the
entire CMB angular power spectrum.

In addition to the correct peak position, !b should be
within the range predicted by big bang nucleosynthesis
[34], !b � 0:020
 0:002. For simplicity, we will use the
best-fit value given by the WMAP team [7], !b � 0:0224.

Inserting the value for l�CDM
1 , Eq. (31) becomes

S � 0:014 19�1� ’1�
dA
rs
: (32)

As an example, an Einstein-de Sitter (EdS) model with
�m � 1, Hubble parameter h � 0:71, and !b � 0:0224
has S � 0:916, whereas the same model with h � 0:51 has
S � 0:998. In comparison, CMBFAST [35] yields the values
S � 0:914 and S � 0:998 for these two models. As we can
see, the formalism accurately describes the position of the
first peak. The CMB temperature power spectra of these
three models are plotted in Fig. 1. Note that the second and
third peaks will also have approximately correct positions
when the shift parameter is close to 1, since the ’m’s in
Eq. (23) are relatively small. For instance, the EdS model
with h � 0:51 has l2 � 530 and l3 � 784, whereas the
best-fit values from [36] are l2 � 529 and l3 � 781. Also
note that the relative errors in the location of the second
and third peaks are larger than for the first peak, at around
3%.

The relative heights of the peaks, on the other hand, have
a more complicated dependence on the parameters of the
model; see e.g. [31]. We will postpone discussing these
features of the CMB spectrum until we have a better
understanding of the evolution of perturbations in an in-
homogeneous model. Note, however, that it is possible to
make matter-dominated homogeneous models that fit the
observed CMB spectrum; see e.g. [37].
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In our case, we must use expression (22) for the angular
diameter distance to the last scattering surface when we
calculate the shift parameter in Eq. (32). On the other hand,
we can still use the expression for the sound horizon as
defined in the homogeneous case in Eq. (25), since our
model is assumed to be homogeneous close to the last
scattering surface.
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FIG. 2 (color online). The spatial variation of the Hubble
parameters at t � t0.
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FIG. 3 (color online). Distance modulus vs redshift for our
standard model together with supernova observations.
IV. RESULTS

When going from a homogeneous to an inhomogeneous
universe model, the parameters describing the model (!m
and !k) become functions of r. This means that we in-
troduce, in principle, an infinite number of new degrees of
freedom. However, for the purpose of studying the possi-
bility of explaining the current observations without intro-
ducing dark energy into the model, we have restricted
ourselves to a very simple ‘‘toy model’’: an underdense
region close to us, surrounded by a flat, matter-dominated
universe. This means that we must choose �0 � 1 and
�0 � 0. Furthermore, we put �� � ���. This leaves
four parameters—��, r0, �r, and the physical Hubble
parameter at the origin, Hk�0; t0� � 100h km

s�Mpc—to be

fitted to the observations.
Let us first focus on the two main observations: the

supernova Hubble diagram and CMB angular power spec-
trum. A good fit to the supernova data requires the Hubble
parameter inside the underdensity, hin, to be around hin ’
0:65. On the other hand, a good fit to the CMB spectrum for
a flat matter-dominated model requires the Hubble parame-
ter outside the underdensity to be hout ’ 0:5. This more or
less determines the two parameters �� and h.

Next, the shape of the transition between the underdense
and the homogeneous region is specified by r0 and �r.
These values dictate the redshift-magnitude relationship,
and must be chosen to fit the supernova Hubble diagram.
There are lots of choices for the parameters that give a very
good fit to both the supernovae and the position of the first
acoustic peak in the temperature power spectrum.
However, we want the underdensity in our model to be
such that the matter density is compatible with the current
model independent observations of �m0. An excellent
candidate for such observations is the mass-to-light ratio
measurements made by the 2dF team [38]. These yield
�m0 � 0:24
 0:05 from observations of galaxies with
redshifts z < 0:12. We will therefore choose the free pa-
rameters such that the mass density parameter at the origin
is within this range in addition to giving a good fit to the
supernova measurements and the CMB peak. The model
which we adopt as our ‘‘standard model’’ gives a matter
density at the center of the underdensity of �m0 � 0:20. A
plot of the spatial variation today of the Hubble parameters
of our standard model is given in Fig. 2. Furthermore, a plot
of the distance modulus of this model together with the
supernova observations can found in Fig. 3.
083519
Note that the 
2 value for our model is 
2 � 176:5,
when compared to the ‘‘gold’’ data set of Riess et al. [6].
This is slightly better than that of the concordance �CDM
model [6], 
2

�CDM � 178.
The spatial shapes of the underdensity at the initial time

and today are plotted in Fig. 4 as functions of the physical
distance today. This illustrates the time evolution of the
underdensity. As we can see, the shape stays almost con-
stant. This is due to the Hubble parameters Hk and H?
being roughly constant in space.

Although the matter distribution is clearly inhomoge-
neous close to the observer, we wish to point out that this
does not necessarily contradict the data from the galaxy
surveys. One often hears the claim that these surveys show
the local distribution of matter to be homogeneous.
However, it is probably more correct to say that they are
-5
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HÅVARD ALNES, MORAD AMARZGUIOUI, AND ØYVIND GRØN PHYSICAL REVIEW D 73, 083519 (2006)
shown to be compatible with a homogeneous universe
rather than actually proving it. The key point here is that,
in order to determine, for example, the number counts of
galaxy clusters, one needs to make an assumption about
galaxy evolution and how likely it is to observe a galaxy
with a certain luminosity at a certain redshift. As pointed
out in e.g. [39], one usually assumes a homogeneous uni-
verse in order to deduce the effects of source evolution.
Therefore, using this deduced evolution to claim observed
homogeneity in the number counts amounts only to circu-
lar argumentation. Furthermore, it is explicitly shown in
[39] that given any LTB model it is always possible to find
a source evolution that agrees with the observed number
counts.

The inhomogeneity at the center gives only a minor
change of the angular diameter distance to the last scatter-
ing surface. In fact, our model has dA � 10:4 Mpc, which
is the same value as we find for the Einstein-de Sitter model
with h � 0:51. (Note that these values are physical, not
comoving, distances.) Our model, with Hubble parameter
h ’ 0:51 in the homogeneous region, thus yields a CMB
angular power spectrum very similar to the one plotted in
Fig. 1, at least for large l values. Using the formula (32), we
find S � 1:006, i.e. an almost perfect match for the posi-
tion of the first Doppler peak. For smaller l values, the
CMB pattern will be affected by our position relative to the
center of the underdensity. This has been studied in the
previously mentioned void model of Tomita [22], who
concluded that relatively large displacements from the
center of the underdensity were fully consistent with the
observed CMB dipole and quadrupole. Furthermore,
Moffat [13] argues that such a displacement could even
explain the detected alignment of the CMB quadrupole and
octopole [40].

A rough estimate of the apparent peculiar velocity for an
off-center observer is [22]
083519
vp ’ �hk;in � hk;out�l0 � 100 km=s (33)

where l0 is the distance from the observer to the center,
measured in Mpc. If we, for instance, require that vp must
be less than the estimated peculiar velocity of the local
group [41], which is of the order of 600 km/s, this means
that the observer must be within 40 Mpc from the center of
the inhomogeneity. Even stronger constraints might be
obtained by considering the peculiar velocities of nearby
clusters; see e.g. [42].

Recently, Eisenstein et al. announced the detection of
baryon oscillations in the Sloan Digital Sky Survey (SDSS)
galaxy power spectrum [43]. This represents additional,
independent data that can be used to constrain our model
even further. The physical length scale associated with
these oscillations is set by the sound horizon at recombi-
nation. Measuring how large this length scale appears at
some redshift in the galaxy power spectrum allows us to
constrain the time evolution of the universe from recom-
bination to the time corresponding to this redshift [30,44–
48].

A length scale quoted by Eisenstein et al. is the ratio of
the effective distance to the chosen redshift in the galaxy
survey to the angular diameter distance to the last scatter-
ing surface,

R0:35 �
dV�zsdss�

dA�z��
; (34)

where zsdss � 0:35. The effective distance dV is defined in
Eq. (2) in Ref. [43] as a mix of radial and angular distances,
taking into account that these scale differently. The value
they measure for this ratio is R0:35 � 79:0
 2:9. Note that
this value differs from that quoted in [43]. The reason for
this is that we have chosen to give the distances dV and dA
in physical coordinates, while Eisenstein et al. quote them
as comoving.

Calculating this ratio for our model, we find the value
Rinhom

0:35 � 107:1. Comparing this value with that quoted by
Eisenstein et al., one might be tempted to claim that the
model is ruled out. However, in order to say something
conclusive using this constraint, we need to be sure that the
‘‘measured’’ value of R0:35 is model independent. But when
the authors derived this constraint they assumed a �CDM
model. This makes it a little unclear how to use this
constraint for non-�CDM models or, indeed, whether it
is even possible to use it for such models. Ideally, one
would need to repeat the analysis of Eisenstein et al.
assuming our inhomogeneous model as the base model.
We will therefore be careful not to rule out the model based
on this parameter alone.

The main features of our standard model are summa-
rized in Table I. Note that the age of the universe is
12.8 Gyr in our model. This is significantly less than the
value for the concordance �CDM model, 13.7 Gyr, but it is
still in agreement with observations of globular clusters
-6



TABLE I. The parameters and features of our adopted standard
inhomogeneous model.

Description Symbol Value

Density contrast parameter �� 0.90
Transition point r0 1.35 Gpc
Transition width �r=r0 0.40
Fit to supernovae 
2

SN 176.5
Position of first CMB peak S 1.006
Age of the universe t0 12.8 Gyr
Relative density inside underdensity �m;in 0.20
Relative density outside underdensity �m;out 1.00
Hubble parameter inside underdensity hin 0.65
Hubble parameter outside underdensity hout 0.51
Physical distance to last scattering surface DLSS 11.3 Gpc
Length scale of baryon oscillation from SDSS R0:35 107.1

INHOMOGENEOUS ALTERNATIVE TO DARK ENERGY? PHYSICAL REVIEW D 73, 083519 (2006)
[49], which put a lower limit of 11.2 Gyr on the age of the
universe.

V. SUMMARY AND CONCLUSIONS

The main goal of this paper has been to present a simple
model with the ability to explain the apparent accelerated
expansion of the universe without the need to introduce
dark energy. Inspired by the recent discussions about the
possibility of explaining the apparent acceleration by in-
homogeneities in the matter distribution, we have studied a
model where the observer is assumed to be situated near
the center of an underdense bubble in a flat, matter-
dominated universe. If this model is realistic, we live in a
perturbed Einstein-de Sitter universe within 130	 106

light years from the center of an underdensity that extends
about 5	 109 light years outwards. Under the assumption
of spherical symmetry, this universe is described by the
Lemaı̂tre-Tolman-Bondi space-time.

The two main observations we sought to explain were
the luminosity distance-redshift relation inferred from
SNIa observations and the CMB temperature power spec-
trum. These two sets of observations are made at opposite
ends of the redshift spectrum, respectively, low redshifts
for the supernovae and high redshifts for the CMB. The
fact that our model is inhomogeneous allows us therefore
to choose the geometry and matter distribution such that
083519
the physical conditions are favorable for explaining the
SNIa at low redshift while they, at the same time, are
favorable for explaining the CMB at high redshifts. We
find that a very good fit to the supernova data is obtained if
we allow the transverse Hubble parameter to decrease with
the distance from the observer. On the other hand, we get a
good fit to the location of the first peak of the CMB power
spectrum if we assume the universe to be flat with a value
of 0.51 for the Hubble parameter outside the inhomogene-
ity. Interpolating between these two limiting behaviors we
get a good fit to both the supernova data and the location of
the first peak.

Our model yields a better fit to the Riess data set of
supernovae than the concordance �CDM model. However,
for the CMB fit, we tested only for the location of the first
peak. Although the model yields a good fit to this, it does
not necessarily mean that it matches the whole CMB
spectrum. Indeed, since the physics responsible for the
acoustic peaks is determined by the pre-recombination
era, we would expect the peaks to look more or less the
same as for a flat, homogeneous model with h � 0:51. This
suggests that our model might fail to explain the third peak.
Furthermore, the model does not appear to be able to
explain the observed length scale of the baryon oscillations
in the SDSS matter power spectrum either, although one
may question whether the data quoted by the SDSS team
can be used directly to test our model.

The most powerful way to rule out inhomogeneous
universe models would be to do a full analysis of the
evolution of perturbations in these models. In that way,
one could confront the model with both the full CMB
angular power spectrum and the matter power spectrum.
Only after such an analysis is carried out can one say
whether our model is ruled out or if it is a viable alternative
to dark energy.
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