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Cosmology of mass-varying neutrinos driven by quintessence: Theory and observations
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The effects of mass-varying neutrinos on cosmic microwave background (CMB) anisotropies and large
scale structures (LSS) are studied. In these models, dark energy and neutrinos are coupled such that the
neutrino masses are functions of the scalar field playing the role of dark energy. We begin by describing
the cosmological background evolution of such a system. It is pointed out that, similar to models with a
dark matter/dark energy interaction, the apparent equation of state measured with SNIa can be smaller
than —1. We then discuss the effect of mass-varying neutrinos on the CMB anisotropies and the matter
power spectrum. A suppression of power in the CMB power spectrum at large angular scales is usually
observed. We give an explanation for this behavior and discuss different couplings and quintessence
potentials to show the generality of the results obtained. We perform a likelihood analysis using wide-
ranging SNIa, CMB, and LSS observations to assess whether such theories are viable. Treating the
neutrino mass as a free parameter we find that the constraints on the coupling are weak, since CMB and
LSS surveys give only upper bounds on the neutrino mass. However, fixing a priori the neutrino masses,
we find that there is some evidence that the existence of such a coupling is actually preferred by current

cosmological data over the standard ACDM cosmology.
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I. INTRODUCTION

Recent cosmological observations indicate that the ex-
pansion of the universe is accelerating [1-3]. It follows
from general relativity that the dominant energy compo-
nent today must have negative pressure. Many candidates
have been proposed over the years, including scalar field
models, which are well motivated from the point of view of
particle physics theories, see e.g. [4—7]. The main predic-
tion of these types of models is that the dark energy
equation of state becomes a dynamical quantity, and can
vary from the usual value of w = —1 for a cosmological
constant. Although such models are very attractive, they
are plagued with several theoretical difficulties, such as the
stability of the potential under quantum corrections [8] or
why the dark energy scalar field seems not to mediate a
force between normal matter particles [9]. In addition, the
energy scale of the scalar field is put in by hand and usually
not connected to a more fundamental energy scale.
However, attempts have been made to address these prob-
lems, such as models with ultralight pseudo-Nambu-
Goldstone bosons (see, for example, [10—12]; for a review,
see [13]).

It is expected that any explanation for dark energy will
involve physics beyond the standard model of particle
physics. Recently, a new class of models have been pro-
posed, which entertain the idea of a possible connection
between neutrinos and dark energy. Their theoretical and
observational consequences have already been studied
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very extensively [14—48]. The main motivation for a con-
nection between dark energy and neutrinos is that the
energy scale of dark energy (O(1073) eV) is of the order
of the neutrino-mass scale. In these models the neutrino-
mass scale and the dark energy scale are linked to each
other, and hence the observed nonzero neutrino masses
(see [49-51]) cannot be understood without an under-
standing of dark energy. Also, one may hope that these
models might provide an explanation for the coincidence
problem [18].

In this paper we investigate the cosmology of neutrino
models of dark energy. We take into account the full
evolution of the neutrinos, i.e. studying the relativistic
and nonrelativistic regimes and the transition in between.

Armed with a complete numerical model for the evolu-
tion of the coupled neutrinos, we compare the background
evolution with Supernova data and study how the modified
perturbations affect the cosmic microwave background
radiation (CMB) temperature anisotropies and large scale
structures (LSS) matter power spectrum. We thereby
present the details of the results outlined in [28] and dis-
cuss other forms of coupling between dark energy and
neutrinos and potentials for the dark energy field.

The paper is organized as follows: In Sec. II we discuss
the background evolution of the coupled dark energy-
neutrino system in the context of a typical quintessential
potential. In Sec. III we derive the evolution equations for
cosmological perturbations in neutrino models of dark
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energy, and present the modified CMB and matter power
spectra. In Sec. IV we discuss other couplings and poten-
tials, such as inverse power-law potentials and field-
dependent couplings. In Sec. V we compare our theory
with data, using a public Markov-Chain Monte Carlo data
analysis program. We conclude in Sec. VL.

II. THE COSMOLOGICAL BACKGROUND
EVOLUTION

In a flat, homogeneous, Friedmann-Robertson-Walker
universe with line-element

ds* = a*(1)(—dt* + 5,»jdxidxj), (1)

the Einstein equations describe the evolution of the scale
factor a(7):

N2 8
d /a dar
- <5> = —3 Ga’*(p + 3p). 3)

In these equations, p(7) and p(7) are the total energy
density and pressure, respectively, and the dot refers to
the derivative with respect to conformal time 7. Defining
Q, = p;/p., where p, is the critical energy density for a
flat universe and p; are the energy densities of the individ-
ual matter species, the equations above require that ) =
> :Q); = 1. In the following we will set 87G = 1.

In our model we consider a universe with the usual
energy-matter composition. At early times, the energy
density is dominated by the relativistic species—radiation
and highly relativistic neutrinos. As the universe expands
the energy density in radiation decays, and the universe
becomes matter dominated. The dominant matter species is
assumed to be cold dark matter (CDM), which is non-
relativistic, weakly interacting and behaves like a perfect
pressureless fluid. At this time there are also contributions
to ) from baryons and neutrinos (which having cooled
behave in a manner similar to CDM). At late times the
matter energy densities also decay away, and we enter the
dark energy dominated epoch. In common with standard
quintessence models we describe the dark energy sector
using a dynamical scalar field with potential V(¢), where
the form of the potential is chosen (and fine-tuned) to
produce the necessary late-time acceleration. The energy
density and pressure of the scalar field are defined by the
usual expressions,

1 .
po =52+ V() )

Py = ziazdﬂ — V(). (5)

In this paper, we consider the consequences of a cou-
pling between neutrinos and dark energy. To describe this
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coupling, we follow [18]: the coupling of dark energy to
the neutrinos results in the neutrino mass becoming a
function of the scalar field, i.e. m, = m,(¢), and so the
mass of the neutrinos changes as the scalar field evolves.
For our purposes it does not matter if the neutrinos are
Majorana or Dirac particles, and for simplicity we assume
three species of neutrinos with degenerate mass' It is well
known [8] that the light mass of the quintessence potential
results in it being highly unstable to radiative corrections,
and that the addition of a coupling between the dark energy
and other matter species only serves to further exacerbate
this problem. In this regard it is important that both the
quintessence potential and the neutrino mass are regarded
as classical, effective quantities, which already include
radiative corrections.

It is also important to note that our theory differs sig-
nificantly in one key aspect from the work of [18]. In our
models, the dark energy sector is described by a light scalar
field, with a mass which is at most of order H. The
potential chosen by Fardon et al. was such that the mass
of the scalar field is much larger than H for most of its
history, and this can have significant implications upon the
behavior of the neutrino background and the growth of
perturbations [33] as we will discuss later.

To fully describe the evolution of cosmological neutri-
nos, we must calculate their distribution function
f(xi, pi, 7) in phase space. An important fact to note is
that even though the neutrinos interact with dark energy,
we treat the interaction classically and, as will be shown in
Eq. (22), they can be thought as free-falling in a metric
given by

ghp = my($)gap- (6)

Thus, the theory we are going to consider is a special type
of scalar-tensor theory, in which the scalar degree of free-
dom couples only to neutrinos. It follows that the neutrino
phase-space density is incompressible and we can treat the
neutrinos as collisionless particles throughout the period of
interest as long as we keep track of the evolution of the
neutrino mass. We therefore need to solve the Boltzmann
equation in collisionless form simultaneously with the
scalar field evolution equations. Once the distribution func-
tion is known, the pressure and energy density of the
neutrinos can be calculated. In this section we will discuss
the background evolution only; in the next section we will
discuss cosmological perturbations in these models.
The energy density stored in the neutrinos is given by

1
Pr="3 f q*dqdQefy(q), (7)

'In fact, such an assumption is quite natural and has no strong
consequences to this work. In the mass regions detectable in
astronomical observations, the three neutrino masses are nearly
degenerate. Adding to that, cosmology is in leading order
sensitive to > m,,.
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and the pressure by

1 2 q2
o= [ PdgdQ o)L, ®)
a €

where f(q) is the usual unperturbed background neutrino
Fermi-Dirac distribution function

folo =5

% eE/kBTU + 1’

€))

and €2 = ¢ + m2(¢)a’ (g denotes the comoving momen-
tum). As usual, g, hp and kg stand for the number of spin
degrees of freedom, Planck’s constant and Boltzmann’s
constant, respectively. In the following we will assume
that the neutrinos decouple while they are still relativistic,
and therefore the phase-space density only depends upon
the comoving momentum. Taking the time-derivative of
Eq. (7), it can be easily shown that

dlnm,
d¢o

We describe the dark energy sector using a scalar field
with potential V(¢). Taking into account the energy con-
servation of the coupled neutrino-dark energy system, one
can immediately find that the evolution of the scalar field is
described by a modified Klein-Gordon equation

" . ,dV._ ,dlnm,

d+2HD + a dd a dd
This equation contains an extra source term with respect to
the uncoupled case, which accounts for the energy ex-
change between the neutrinos and the scalar field.

For the remainder of this section and the next, we con-
sider a typical exponential form for the dark energy poten-
tial, namely

é(p, —3p,). (10

p,+3H(p, +p,) =

(p, —3p,). (A1)

V(gp) = Voe ¢ (12)
and define o = \/gxl. We also choose to take

m,(¢) = MoeP?. 13)

The exponential potential can produce a nonscaling
solution that may give late-time acceleration, depending
upon the steepness of the potential, o (see e.g. [34—
37,52]). In an uncoupled system with o < +/6 there exists
a critical point that is stable for o> < 3(1 + w), where w
stands for the equation of state of matter or radiation, and
in which Q4 = 1. This solution will lead to acceleration
provided that o < /2. The existence of scaling solutions
depends upon the equation of state of the other components
present in the universe. Choosing o> > 3(1 + w) leads to a
scaling solution with Q4 = 3(1 + w)/ o2 [34]. (See also
[53], who use the exponential potential as a dark energy
model.) The requirement that the present day dark energy
density is ), ~ 0.7 is hard to reconcile with the scaling
solution at early times, since in this case it follows that
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Q, =4/ o, while big bang nucleosynthesis requires that
the dark energy density in the early universe is very small
[38].

In this section we focus our discussion on models with
o <+/2, which with an appropriate choice of V,, can
provide late-time acceleration with {2, ~ 0.7 today (note
that the late-time attractor (), = 1 lies in the future). This
choice of o also ensures that the energy density in the form
of dark energy at the time of BBN is very small, because
for early times the quintessence field is frozen and acts like
a cosmological constant with an energy density similar to
the observed dark energy density today.

The presence of neutrino coupling can potentially affect
this result, as the coupled field begins to evolve at earlier
redshifts (z ~ 107), however the fraction of the total energy
stored in the scalar field at early times remains insignifi-
cant. Note that this choice of potential reduces to the
cosmological constant case for a perfectly flat potential
with zero coupling.

From the neutrino energy conservation Eq. (10), and for
our choice of m,(¢) and V(¢), one can see that the
dynamics of the scalar field can be described by an effec-
tive potential

Veff = V(¢) + (ﬁv - 3ﬁv)eﬁ¢r (14)

where 5, = p,e P? and p, = p,e #? are independent of
¢. It can be shown that the effective potential will only
have a minimum when 8o > 0. For the neutrinos we have
numerically evaluated the integrals (7) and (8), which then
have been used in the Klein-Gordon Eq. (11) to find the
evolution of the scalar field.

Figure 1 shows some typical examples of how the cou-
pling of the neutrinos to the scalar field causes the mass of
the neutrinos to evolve with time. Deep within the radiation

2.0f :
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0.0t . . .
700 107 104 106 108
z+1
FIG. 1. Plot showing the evolution of the neutrino mass for an

exponential potential and coupling (solid line: 8 =0, A = 1;
short-dashed line: 8 =1, A = 1; dotted line: 8 = —0.79, A =
1; long-dashed line 8 =1, A = 0.5). In all models, we have
arranged that m, = 0.314 eV today.
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dominated epoch, at times when the neutrinos are highly
relativistic, the scalar field is Hubble damped and therefore
the neutrino mass is (almost) constant. For quintessence
models, qﬁ is at most of order H, and therefore for relativ-
istic species the coupling term in Eq. (10) is clearly sup-
pressed relative to the Hubble damping term. As the
universe expands the neutrinos cool and become nonrela-
tivistic at a temperature corresponding to the neutrino
mass. Hence, the extra coupling terms in Egs. (10) and
(11) become more and more important, allowing energy to
be exchanged between the neutrinos and the scalar field.
This interaction causes the scalar field, and hence the
neutrino mass, to evolve.

It is important to note the two different types of behavior
seen in Fig. 1 for the evolution of the neutrino mass. For
models which have Bo > 0 the effective potential pos-
sesses a minimum, and after some time the field passes
through this minimum, slows down, stops and eventually
rolls back towards the minimum. For models which do not
posses an effective minimum ¢ is always negative, and the
scalar field will continue to roll down the effective poten-
tial unimpeded. We compare the behavior of our light
scalar field with the heavy acceleron field used in [18]—
in their model the scalar field sits in the effective minimum
of its potential for most of the time during the cosmic
history, and it is the evolution of the effective minimum
which drives the dynamics of the neutrino mass. As dis-
cussed in [18], the mass of their neutrinos increases as the
universe expands, whereas in our model the neutrinos are
heavier in the past and become lighter (although as we will
discuss in Sec. IV, suitable choices of coupling and poten-
tial can realize coupled neutrino-quintessence models with
neutrinos which are lighter in the past).

For the model described in this section the coupled
neutrinos are heavier in the past than uncoupled neutrinos,
which implies that the energy density stored in the neutri-
nos is larger than would normally be expected. This means
that the evolution of the neutrino density parameter (),
depends on the evolution of the neutrino mass, which in
turn depends on the choice of the coupling 8 and the slope
of the potential o. This can be seen from Fig. 2. The
coupling of neutrinos to dark energy significantly alters
the evolution of the cosmological background. In particular
it can be seen that the extra energy stored in the neutrinos
in the past can alter the redshift of matter-radiation
equality.

Typically one expects nonrelativistic neutrinos to be-
have in a similar manner to CDM, however the interaction
between the neutrinos and the scalar field modifies the
scaling behavior of the nonrelativistic neutrinos. It can be
seen that the neutrino energy density dilutes away faster
than that of CDM, which is especially notable for large
values of coupling. The evolution of ¢ caused by the
transfer of energy between the coupled neutrinos and scalar
field also results in the energy density of the quintessence
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FIG. 2. Background evolution: In the upper panel, we plot the
evolution of the density parameters for a model with 8 = 0, A =
1. In the middle panel the corresponding plot with 8 =1 is
shown, while the lower plot shows the case 8 = —0.79, A = 1.
(Neutrinos: solid line, CDM: dot-dashed line, scalar field: dotted
line, and radiation: dashed line.) In all cases, the mass of the
neutrinos is m, = 0.314 eV today. We consider a flat universe
with Q,h% = 0.022, Q k%> = 0.12, Q,h*> = 0.01, and h = 0.7.

field becoming dominated by kinetic energy. Finally at a
redshift of the order of unity the potential energy of the
scalar field begins to dominate, and all other matter species
decay away.

A final point we would like to raise is the fact the
apparent equation of state measured by an observer is
not given by

wy =122, (15)
P¢

where p4 and p, are defined in Egs. (4) and (5). One of the
usual assumptions made in the measurements of the dark
energy equation of state using supernovae is that matter
(dark, baryonic or neutrinos) is decoupled from dark en-
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FIG. 3. The apparent equation of state, as defined in Eq. (16),
as a function of redshift z (solid line: 8 =0, A = 1; short-
dashed line: B =1, A =1; dotted line: B8 = —0.79, A = 1;
long-dashed line 8 =1, A = 0.5.)

ergy. At low redshifts, all these components are assumed to
scale like a~3. This is clearly not the case with the coupled
neutrinos here. It was pointed out in [54], that the apparent
equation of state is given by?

Wap = m’ (16)
with
P,0 mV(¢)
=L —1 17
ol ] a

In this equation, the subscript O denotes the quantities at the
present epoch. We emphasize that this quantity is not the
effective equation of state of dark energy, which is defined
as

p o+ 3Hpy(l+ wep) =0, (18)

while assuming that the neutrino density and neutrino
pressure evolve according to Eq. (10). Using the Klein-
Gordon equation, one finds that the effective equation of
state can be written as

L Bd s

. 19
H o (19)

Weff = Wo

In Fig. 3, we plot the apparent equation of state w,, as a
function of redshift. Note that w,, can be less than —1, as
was pointed out in [54-56] in the context of models with
dark matter/dark energy interaction.

To conclude this part, even if dark energy couples only
to a subdominant component such as neutrinos, the appar-
ent equation of state can be less than — 1, without introduc-

The authors of [54] called this quantity an effective equation
of state. However, we will define an effective equation of state
below.
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ing phantom fields. As it can be seen from Fig. 3, the
apparent equation of state might even cross the boundary
w=—1.

III. PERTURBATION EVOLUTION

Let us now turn our attention to the evolution of cosmo-
logical perturbations in our model. We adopt the conven-
tions of Ma and Bertschinger [57] and work in the
synchronous gauge, taking the line element to be

dS2 = _aszz + az(Bij + h,j)dx'dx] (20)

(For a review of cosmological perturbation theory, see
[58,59] or [60].)

As already mentioned in the last section, to fully de-
scribe the evolution of cosmological neutrinos, we must
calculate their distribution function f(x!, p’, 7) in phase
space. We can treat the neutrinos as collisionless particles
throughout the period of interest, and hence we can find the
neutrino distribution function by solving the collisionless
Boltzmann equation [57]

af  dx" af dqdf dn' of

— + - + + - = (), 21
or dt ox' drt aq drt an' @h

where the comoving momentum is g; = ap,. It is conve-
nient to rewrite the comoving momentum in terms of its
magnitude and direction: ¢’ = gn. The last term in
Eq. (21) is a second order quantity and will be neglected
in the following linear perturbation formalism.

The path of a neutrino in spacetime is governed by the
general action

5= [me)n/=ds 22)
which can be minimized to derive the neutrino geodesic

equation

apr dlnm,
e O ¢
or a d¢ dx,

(23)

where P# is the proper momentum of the neutrino. Taking
the zeroth component of this equation and using the rela-
tion P’ = ea~?, one finds that the comoving three-
momentum of the neutrinos is given by

dq 1 .
This equation does not depend explicitly on the coupling or
the scalar field perturbations. Following [57], we write the
phase-space distribution of the neutrinos as a zeroth order
distribution plus a small perturbation

f&py 1) = fol@ll + ¥(x', g, n;, 7)) (25)

Substituting this expression into the Boltzmann equation
and performing a Fourier transformation, we find
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1 ) +
87' dlnq

(26)

In this equation [and in Egs. (29) and (31), given later],
and & are the standard scalar parts of the metric perturba-
tion h;;. It is clear that Eq. (26) does not contain terms
proportional to dlnm,/d¢. Therefore, the equations for
the neutrino hierarchy derived in [57] do not change.
However, the expressions for the perturbed neutrino energy
density and neutrino pressure, which will be calculated
using f, are modified. The perturbed energy density is
given by

o0, = [ aaatus(ew+ Lo M 54,
a d¢
which can be written as
dlnm,
8p, ——/ q*dqdQefo(q)¥ + 5¢ P “(py = 3p,)-
(28)

Similarly, the expression for the perturbation in the neu-
trino pressure is given by

dlnm,, q2m2a2>

do e

The expressions for the neutrino shear and energy flux
remain unchanged as they do not depend explicitly upon
m,,. Finally, the perturbed Klein-Gordon equation is given
by

1 2
8py =37 4[q2dqdﬂfo(q)<q—‘1’—3¢
a €

8¢+2H6¢+<k2+ a’ ¢>6¢+ ho

d*1nm

d¢?

dl
=—a2[ ;Z”(5py—35py)+ — 5 0d(p, — 3py)}
(29)

To calculate the temperature anisotropy spectrum and
matter power spectrum we apply these modifications to
CAMB [61]. This code calculates the linear cosmic back-
ground anisotropy spectra by solving the Boltzmann equa-
tion which governs the evolution of the density
perturbations, and integrating the sources along the photon
past light cone. To ensure the accuracy of our calculations,
we directly integrate the neutrino distribution function,
rather than using the standard velocity weighted series
approximation scheme. We do not consider lensing effects,
nor tensor contributions.

The results of the neutrino-dark energy coupling on the
temperature anisotropy spectrum can be seen in Fig. 4. The
most obvious modifications to the anisotropy spectrum
occur for large angular scales, with € < 100, although for
some choices of parameters the positions and relative
heights of the peaks are also affected. We generally ob-
serve an increase in power for 10 < € < 100, while for € <
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FIG. 4. The CMB anisotropy spectrum (unnormalized) for
exponential coupling and potential. Solid line: 8 =0, A = 1;
short-dashed line: 8 =1, A = 1; dotted line: 8 = —0.79, A =
1; long-dashed line: 8 = 1, A = 0.5. Error bars denote WMAP
data.

10 we find either an excess or reduction in power depend-
ing upon our choice of parameters. Note that this is in
marked contrast to models of coupled CDM, where an
increase in power on large scales is usually observed
[62]. For the models where the neutrinos were much heav-
ier in the past than today, we also observe a slight shift in
the acoustic peaks and a change in their relative
amplitudes.

For scales larger than a degree (¢ < 100), the dominant
contribution to the anisotropy spectrum is the Integrated
Sachs-Wolfe Effect (IWS). This arises due to the evolution
of the gravitational potentials along the photon path from
the surface of last scattering. The modification to the
cosmological background arising from the neutrino cou-
pling can have a significant effect upon the evolution of the
perturbations. In particular there is a larger energy density
in neutrinos in coupled models during the transition period
when the neutrinos become nonrelativistic. As a result, the
intermediate regime between radiation and matter domi-
nation is prolonged, and so the evolution of the gravita-
tional potentials are significantly modified. The evolution
of the sum of the metric perturbations @ and V¥ is shown in
Fig. 5. The modifications to the behavior of the metric
perturbations for the different models is immediately
apparent.

For very large scales (£ = 20) anisotropies arise primar-
ily from the late-time Integrated Sachs-Wolfe effect (ISW),
which is caused by the evolution of the metric perturba-
tions for redshifts in the range 0 < z < 2. In particular, p,
and p, as well as the equation of state of dark energy affect
the late-time behavior of cosmological perturbations. As
mentioned above, the evolution of the scalar field is influ-
enced by the presence of the coupling to the neutrinos and
hence the equation of state of dark energy depends upon S3.
Likewise, the clustering properties of dark energy depends
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FIG. 5. Evolution of the sum of the metric perturbations ® +
V. Solid line: B = 0, A = 1; short-dashed line: B =1, A = 1;
dotted line: 8 = —0.70, A = 1; long-dashed line: B =1, A =
0.5. The scale is k = 1073 Mpc ™.

on the neutrino coupling (see [63] for a discussion on the
clustering of dark energy and its impact on the CMB). The
neutrinos will generally tend to fall into the potential wells
of dark matter, although at a rate slightly dependent on the
coupling to the scalar field. The scalar field itself will
cluster together with the neutrinos and thereby affecting
the gravitational potential.

Let us turn our discussion to the evolution of neutrino
perturbations. Figure 6 shows the effects of neutrino cou-
pling on the matter power spectrum. Here we typically
observe damping, and our results appear similar to stan-
dard models of CDM and hot dark matter, where a similar
reduction in power could be achieved with a heavier neu-
trino mass.

We can use the perturbed part of the energy momentum
conservation equation for the coupled neutrinos

107k

109
70570470370270"

k (h/Mpc)
FIG. 6. Plot of the matter power spectrum. From the top curve
to the bottom curve: (8 =0, A=1), (B=1, A=05), (B=

—0.79, A = 1). The matter power spectrum for (8 =1, A = 1)
is indistinguishable from the (8 = 0, A = 1) curve.

109 107
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dlnm,
déo

to calculate the evolution equations for the neutrino per-
turbations (75 stands for the trace of the neutrino energy
momentum tensor and the semicolon denotes the covariant
derivative). Taking y = 0 we derive the equation govern-

ing the evolution of the neutrino density contrast, §, ‘Spp z

while taking y = i (spatial index) yields the velocity per-
turbation equation 6, = ik;v’,, with the coordinate veloc-

17
T’Y;,M -

——¢,Tq (30)

ity vi, = dx'/dr:
1 6p1/ h
6, =3(H + ,8¢)<w,, - >5V . wy)<9,, + _>
op, 2
+ B(1 —3w,)8¢ + §¢5¢(1 —3w,), 31
6,=—H( —3w,)0, ——"" g + 8p”/8p”k25y
I+w, 1+w,
+ ,8 3W”k25¢ —B(1-3w,)¢8, — Ko,  (32)

The variable o, represents the neutrino anisotropic stress
and we have used the more general definition 8 =
dlnm,/d¢, which in general might be not constant.
Furthermore the neutrino equation of state is given by
w, = p,/p,.

It is the presence of the additional coupling terms in
these expressions for the growth of the neutrino density and
velocity perturbations, as well as the modifications to the
evolution of the cosmological background, which alters the
behavior of the neutrino perturbations in comparison with
the standard uncoupled case.

Figure 7 shows the evolution of the neutrino and CDM
density contrasts, comparing the uncoupled model with an
extreme coupled case with 8 = —0.79, for which the mass

10°

1073 107% 107!
Qa

1078 70‘5 1707*

FIG. 7. Evolution of the neutrino (lower curves) and CDM
(upper curves) density contrasts. The solid line shows the un-
coupled case, i.e. 8 = 0, whereas the dashed line shows the case
for B = —0.79. The scale is k = 0.1 Mpc~!.
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of the neutrinos is m, = 2.5 eV at z = 1400 but m, =
0.3 eV today. Deep inside the radiation dominated epoch
the neutrinos are highly relativistic and their density con-
trast grows in a similar manner to radiation. In the un-
coupled models the growth of the density perturbations of
the neutrinos makes a transition to matter—like behavior
once the neutrinos become nonrelativistic. The neutrinos
will fall into the CDM potential wells, which is the domi-
nant component at recombination. At small wavelengths
(large wave numbers), the neutrinos undergo free stream-
ing, which prevents neutrinos from clustering at an arbi-
trary small scale. The free-streaming length scale after the
neutrinos become nonrelativistic can be estimated to be
[57] (reinstating Newton’s constant G)

47Gpa®
k(a) = —5—, (33)
Umed
where p is the background total density. The median
neutrino speed is given by

Vg = 15a_1<;no"—£2> kms~ 1. (34)
Since the neutrino momentum decays like a~!, the neu-
trino velocity behaves like (am,(a)) !, taking into account
that the neutrino mass evolves with time. Free streaming
stops as soon as k < kg, allowing the neutrino density
contrast to grow. This behavior can clearly be seen in
Fig. 7 for both the uncoupled and coupled cases. At around
z =~ 10* the neutrinos become nonrelativistic and start to
freestream immediately, as can be seen from the oscillating
behavior of §,. At this stage k;, < k. However, as soon as
k¢, = k freestreaming stops, and 6, can grow unimpeded.
The case with neutrino-dark energy coupling differs from
the uncoupled case since in the result shown the neutrinos
are heavier in the past, so for a given redshift kg is larger.
This means that freestreaming stops earlier than in the
uncoupled case. This behavior is apparent in Fig. 7 (dashed
lines), where we see that §,, starts to grow earlier than in
the uncoupled case (solid lines). The neutrino-coupling
also has an effect on the growth of the density contrast
itself since we observe that §, grows slower than in the
uncoupled case. This is probably because the rate of gravi-
tational infall of the neutrinos tends to be reduced by the
presence of the much less clustered dark energy. Also, the
coupling has a slight effect on the growth of the dark matter
density contrast, which arises from the fact that the back-
ground evolution is modified.

IV. ANOTHER CHOICE OF COUPLING AND
POTENTIAL

So far we have restricted our discussion to one choice of
quintessence-neutrino coupling and one form for the dark
energy potential. At this stage, the reader might wonder
whether the results obtained so far are simply due to our
choice of potential and coupling. For a scalar field with
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standard kinetic term, the exponential potential is not a
favored model for a quintessential potential, since the
initial value of the scalar field has to be fine-tuned to obtain
scalar field domination today [64]. The interesting alter-
native possibility of a global attractor unfortunately does
not seem to be viable due to the large perturbation growth
[62]. The coupling of the scalar field to neutrinos does not
cure the fine-tuning problem of the exponential potential.
For our second form of coupling we choose

m,(p) = MyeP?’, (35)

which was also recently used in a model with dark matter/
dark energy coupling in [65]. The effect of this choice is
that the coupling function dlnm,/d¢ becomes field-
dependent, whereas it has been constant so far.
Depending on how the field evolves with time, the coupling
can either grow or become smaller during the cosmic
history. Field-dependent couplings are not uncommon in
higher-dimensional theories and can appear in brane-world
theories, see for example [66] or [67].

For the potential, we choose an inverse power-law po-
tential, which is a well-motivated candidate for a quintes-
sence field (see e.g. [68,69]). To be concrete, we use

6
Vo) =T 36)
With these choices for the potential and coupling, the
effective minimum will exist if 8> 0.

The results for the neutrino-mass evolution, the apparent
equation of state and the CMB anisotropy power-spectrum
are shown in Figs. 8—10.

The biggest difference to the case of a purely exponen-
tial coupling is that for positive 3 the neutrinos are lighter
in the past, as can be seen from Fig. 8. Thus, with a
convenient choice of potential and coupling, the neutrinos
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FIG. 8. The evolution of the neutrino mass for the inverse
power-law potential with m,(¢p) = myeP?” (solid line: B = 0;
short-dashed line: 8 = 0.2; dotted line: 8 = —0.2; long-dashed
line B8 = 0.27.)
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FIG. 9. The evolution of the apparent dark energy equation of
state for the inverse power-law potential with m,(¢) = myeP®’
(solid line: B8 = 0; short-dashed line: 8 = 0.2; dotted line: 8 =
—0.2; long-dashed line 8 = 0.27.)

can become heavier as the universe expands. In the case of
a negative (3, the effective potential does not have a mini-
mum and the neutrinos become lighter as the universe
expands. The results for the apparent equation of state
are shown in Fig. 9. The results are similar to the ones
found in Sec. II: w,;, can be smaller than —1 and can cross
the boundary of the cosmological constant with w = —1.
As it can be seen in Fig. 9, the apparent equation of state
varies substantially in the redshift range z = 0 — 2 if B is
nonzero. A strongly, however, varying equation of state is
not preferred by the data. Finally, the effects on the CMB
anisotropies are similar to the ones found in Sec. III, as can
be seen from Fig. 10. The only visible deviation from 8 =
0 is the case with negative 3, in which a reduction of power
at low multipoles can be observed. The cases with positive
BB can not be distinguished from the uncoupled case. The
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FIG. 10. The CMB anisotropy spectrum (unnormalized) for an
exponential potential and m,($) = myeP®’ (solid line: B = 0;
short-dashed line: 8 = 0.2; dotted line: 8 = —0.2; long-dashed
line B8 = 0.27.)
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reason is that the neutrino density is smaller in the past than
in the uncoupled case for this choice of potential and
coupling. Hence, neutrinos are less important for the dy-
namics of the universe, and their imprint upon the CMB is
correspondingly reduced.

In essence, the physical explanations of the model pre-
sented in our earlier paper [28] and in Secs. I and IIT
remain valid even for other choices of the potential and
couplings, since they show how to relate the general be-
havior of a dynamical neutrino mass to the cosmological
evolution.

V. PARAMETER CONSTRAINTS

In the earlier sections we demonstrated that models of
coupled dark energy and neutrinos could produce a detect-
able signature in cosmological surveys. Indeed, the mod-
ifications to the background evolution (mainly to the dark
energy equation of state), temperature anisotropy spectrum
and matter power -spectrum should allow us to constrain
our model using current data sets.

We perform our likelihood analysis using COSMOMC
[70]. This program uses a Markov-Chain Monte Carlo
(MCMC) engine to efficiently explore the cosmological
parameter space. Typically we run five chains for each
simulation, with no less than 35000 samples per chain.
We perform the usual convergence checks on the individ-
ual chains to ensure that the chains have fully sampled our
parameter space. As well as visually confirming that the
individual chains converge, we check the Gelman and
Rubin R statistic (variance of chain means/mean of chain
variances) for each parameter, and ensure that the Raftery
and Lewis convergence diagnostic is satisfied.

We take advantage of the wide range of cosmological
data which is currently available to constrain our model.
The CMB temperature anisotropy spectrum is constrained
using WMAP [71,72], CBI [73], ACBAR [74], and VSA
[75] datasets. The neutrino-dark energy coupling can also
affect the formation of large scale structure which is sensi-
tive to the neutrino mass, and so we use data from the Sloan
Digital Sky Survey [76] to further constrain our model.
Data from the Supernova Cosmology Project [77] can also
be used to constrain the equation of state of dark energy,
and thus place further constraints on our model.

We choose to perform the data analysis using our usual
choice of potential and coupling, namely V(¢) = Vye 7%
and m,(¢) = MyeP?®. We choose to focus on these poten-
tials because they embody the typical behavior observed
for most models of coupled neutrinos, and they easily
reduce to the standard ACDM case (8 = o = 0). These
potentials also have the advantage that the initial choice of
¢; does not affect the evolution of the cosmology, as
changes to the initial choice of ¢ are equivalent to rescal-
ings of the mass parameters M, and V. For general choices
of potentials and couplings this useful degeneracy does not
exist, as the neutrino-dark energy coupling can severely
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restrict the range of attractor solutions. Consequently the
increased number of fine-tuned free parameters required
for these models would compromise the goodness of fit
compared to simpler models.

Throughout our analysis we assume a flat universe, with
Q) = 1. Initially we use the standard parameterization for
our cosmological model, and vary the following parame-
ters: Q,h%, Qcpmh?, h, 7. (the redshift of reionization),
Q,h?%, n, (the spectral index), 10'°A; (the initial scalar
perturbation amplitude) and the dark energy parameters
o and 8. We show the results from this initial analysis is
Fig. 11.

Clearly Fig. 11 shows that current cosmological data
places no constraints on our new coupling parameters. It is
well known that the current best-fit analysis of cosmologi-
cal data can only place an upper limit on the mass of the
neutrino, and that massless neutrinos are not excluded by
most cosmological data sets. However the results presented
so far in this paper require that the neutrinos having a
significant mass; indeed for low mass neutrinos the effects
observed in this paper become largely insignificant.
Despite this, as we will show later, the strength of the
neutrino coupling can still be constrained by the require-
ment for later time acceleration.

Current cosmological data requires that the universe
contains approximately 70% of dark energy, 30% of dark
matter and some minor quantities of baryons and neutrinos.
In the dynamics of our model there could exist only one
critical point able to guarantee such proportions in its
vicinity (see e.g. [62]). When exactly reached, this point
is characterized by the total domination of the scalar field
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and exists only for || < +/6 = 2.5. Indeed our computed
likelihood will be shown to be contained in such bounda-
ries. A preferred range for the parameter 8 is more difficult
to predict, however, because of the previously described
effects induced on the background and perturbation at
different stages of the evolution, although it is clear that
very large values of 8 will not be favored by the data. But it
is very important to emphasize that values of S of the order
of unity are perfectly acceptable.

Another consideration when choosing the scalar field
parameters is the BBN constraint resulting from the early
time modification of the scale factor evolution due to the
presence of dark energy [34,38]. As discussed earlier, the
neutrino coupling to dark energy in our model does not
modify the energy density of the dark energy at the time of
BBN (when the neutrinos are highly relativistic, and the
coupling terms are negligible). For a quintessence potential
with a scalar field dominated late-time attractor the BBN
constraints of [38] are easily satisfied. We have confirmed
this numerically for our coupled models (for instance, in
the case of B =1, O, ~ 107 at z ~ 10%). Note that, in
principle, our parameter space includes both the late-time
attractor and scaling solutions (that evolve like radiation or
matter and which would provide a non-negligible contri-
bution to the energy density at the time of BBN). We find,
however, that the scaling solution for the exponential po-
tential is already strongly disfavored by the observations
that we have used for our analysis and therefore additional
BBN constraints would not modify our findings.

Recent works [78] have used data from X-ray clusters to
reduce the uncertainties on the lower bound for the neu-

0.02

FIG. 11.

Posterior constraints for 9 parameter model described in the text. Shading denotes the mean likelihood of the samples, while

the contours show the 68% and 95% confidence limits from the marginalized distribution. Solid lines on the 1D plots show the
marginalized posterior, while the dotted curves denote the mean likelihood of the samples.
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trino mass, finding a value for the neutrino masses of
> m, =0.56%332 eV. Notice though that the upper
bounds could in fact go up to > m, =2 eV, depending
on the datasets used and the assumed priors [79].
Measurements of atmospheric neutrino oscillations sug-
gest that there is at least one neutrino species with m, >
0.05 eV [49]. The Heidelberg-Moscow experiment,
searching for neutrinoless double beta decay claim detec-
tion of electron neutrino-mass m,_between 0.2 eV and
0.6 eV, with best fit m,, = 0.36 eV [80].

We therefore choose to perform our analysis using two
values of the neutrino mass today, m, = 0.2 eV and m, =
0.3 eV, to investigate whether models of neutrino-dark
energy coupling could in principle be constrained if neu-
trinos were independently confirmed to have a significant
(m, = 0.1 eV) mass, consistent with current experiments
measuring the neutrino mass.

By choosing to fix the value of the neutrino mass today,
we are required to specify the current value for the energy
density stored in neutrinos and value of the Hubble con-
stant as the neutrino mass, the critical energy density in
neutrinos and the Hubble constant are related via the usual
formula

2 2m,
@,h 932 eV’ (37)
We also choose to fix the value of Q,h> as we do not
expect the behavior and constraints of the baryon energy
density to be significantly modified by our neutrino-dark
energy coupling, as the observed effects on the anisotropy
spectrum are largely limited to relatively low multipoles.
The values for H, and Q,h> can be determined inde-
pendently from the cosmological data used in our MCMC
analysis. The value of H, = 72 kms ™! Mpc~! can be ob-
tained from the best fit of the Hubble Space Telescope Key
Project [81], while the baryon density parameter Q,h’> =
0.022 is favored by big bang nucleosynthesis models [82].
We are therefore left with a cosmological model requiring
6 parameters: 3, o, Qcpmh?, Zre» Ay, and n;.
The results of the MCMC analysis for neutrinos with a
mass today of m, = 0.2 eV can be found in Table I, while
the results for m, = 0.3 eV are given in Table II. We quote

TABLE I. Marginalized parameter constraints for our 6 pa-
rameter model with fixed m, = 0.2 eV, Q,h%> = 0.022 and h =
0.72. For this model we find y?/dof = 1570.1/1459. This
compares with a y?/dof = 1610.1/1461 for a best-fit ACDM
model using the same parameter set with o = g = 0.
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the marginalized probability distributions and confidence
intervals. Figs. 12 and 13 show the 2D probability distri-
butions for the m, = 0.2 eV and m, = 0.3 eV models,
respectively.

As expected, the neutrino coupling has little effect on the
value of Qcpyh? as the peak structure of the temperature
anisotropy spectrum is largely unaffected. The value found
for n, is also within the usual range for parameter analysis
of cosmological models which neglect tensor
contributions.

For both the m, = 0.2 eV and m, = 0.3 eV models we
find that nonzero values of neutrino-coupling strengths are
preferred by the data. We also see that for these models a
non-zero value for o is preferred over the usual cosmo-
logical constant, although o = 0 is not excluded at the
68% level. This is not surprising since we have seen that
the equation of state of the dark energy for some choices of
parameters in our coupled models is entirely consistent
with the preferred value of w,, ~ —1 found from super-
nova surveys. It is clear that models with heavier neutrinos
allow stronger constraints to be placed upon the strength of
the coupling. Indeed, for the 0.3 eV neutrinos we find that
neutrino-dark energy coupling is preferred at the 1 sigma
confidence level. This is to be expected as a larger neutrino
mass today is equivalent to a higher energy density in
neutrinos, and so any modification to the neutrino evolu-
tion will have a larger impact on the CMB and LSS for
models with greater densities of neutrinos. In particular we
have seen that there exist a range of nonzero S values
capable of reducing power at low CMB multipoles. This
last effect is most probably the cause for the relative peak
in the likelihood for B of order unity. Furthermore a
sharper drop at large values of S is observed in the like-
lihood most likely to limit the excessive growth at multi-
poles 10 < € < 100.

It is however important to make clear that these con-
straints rely upon the assumption that the neutrino mass is
known, and that the neutrinos have a mass m, = 0.1 eV.
Although this assumption is consistent with current neu-
trino experiments, we can only make the statement that
should the mass of the neutrino be found to be greater than

TABLE II. Marginalized parameter constraints for our 6 pa-
rameter model with fixed m, = 0.3 eV, Q,h%> = 0.022 and h =
0.72. In this case we find y?/d.o.f. = 1593.7/1459. This com-
pares with a y?/d.o.f. = 1636.8/1461 for a best-fit ACDM
model using the same parameter set with o = g = 0.

Parameter Mean likelihood  68% interval 95% interval Parameter Mean likelihood  68% interval 95% interval
Qepmh? 0.102 = 0.004  0.099 —0.106 0.096 — 0.110 Qcpmh?® 0.100 = 0.003  0.097 —0.104 0.094 — 0.107
Zre 17.6 = 3.7 16.0 — 19.8 10.7 — 23.2 Zre 20.5 = 3.1 19.4 —22.0 15.0 — 25.1
o 0.43 £0.32 0.29 — 0.60 0.13 — 0.95 o 0.52 = 0.29 0.40 — 0.67 0.00 — 0.97
B 0.75 = 0.64 0.64 — 0.98 0.11 — 1.18 B 0.62 = 0.21 0.58 — 0.74 0.15 — 0.86
ng 0.96 £ 0.01 0.95 — 0.97 0.93 — 0.99 ng 0.97 £0.01 0.96 — 0.99 0.95 — 1.00
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FIG. 12. Posterior constraints for 6 parameter model, with m, = 0.2 eV, Qbh2 = 0.022 and & = 0.72. Shading denotes the mean
likelihood of the samples, while the contours show the 68% and 95% confidence limits from the marginalized distribution. Solid lines
on the 1D plots show the marginalized posterior, while the dotted curves denote the mean likelihood of the samples.
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FIG. 13. Posterior constraints for 6 parameter model, with m, = 0.3 eV, Q,h* =0.022 and h = 0.72. Shading denotes the mean
likelihood of the samples, while the contours show the 68% and 95% confidence limits from the marginalized distribution. Solid lines
on the 1D plots show the marginalized posterior, while the dotted curves denote the mean likelihood of the samples.

0.1 eV, then cosmological data can be used to constrain the

strength of any neutrino-dark energy coupling; indeed we VL. CONCLUSIONS

find that there is some evidence that the existence of such a We have investigated models of dark energy which
coupling is actually preferred by current cosmological data ~ couple a quintessence scalar field to massive neutrinos.
over the standard ACDM cosmology. In these models, dark energy and neutrinos are coupled
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such that the neutrino masses become functions of the
scalar field. The effects of such models on the cosmologi-
cal background evolution, on the cosmic microwave back-
ground anisotropies, and on the formation of large scale
structures were analyzed. Additionally, we have also per-
formed a likelihood analysis on the parameter space of
such theories.

We have focused on two specific models: In the first, the
coupling between neutrinos and dark energy is constant
and the quintessential potential is an exponential. The
second model, which is better motivated from the particle
physics point of view, has a neutrino-coupling which de-
pends on the quintessence field (hence changes with time),
while the scalar field has a power-law potential. In spite of
some specific differences between these two models (such
as the energy density stored in the scalar field at recombi-
nation, for example), the effects of the coupling on the
CMB anisotropies and on the matter power spectrum are
nevertheless explainable by the basic mechanisms that we
have identified earlier. Namely, the coupling modifies the
background history and induces an ISW contribution to the
CMB spectrum; the matter power spectrum is modified by
the magnitude of the neutrino mass during structure for-
mation. Given the generality of these explanations, the
conclusions drawn from this investigation could probably
be applied to any similar model with a neutrino-dark
energy coupling.

It is important to note that in our models, the dark energy
sector is described by a light scalar field, with a mass which
is at most of order H. This is in contrast to previous models
[18] in which the mass of the scalar field is much larger
than H for most of its history. The latter can have signifi-
cant effects upon the behavior of the neutrinos and the
growth of their perturbations, and which is difficult to
reconcile with current astronomical data [33].

Solving the collisionless Boltzmann equation for the
neutrinos, we have investigated the relativistic and non-
relativistic regimes and the transition period in between.
Initially the neutrinos are highly relativistic, and during
this period the quintessence field is frozen. The mass of the
neutrinos therefore remains constant. As the neutrinos
become nonrelativistic they begin to exchange energy
with the quintessence field via the coupling term. At a
temperature scale comparable to the neutrino mass, the
neutrinos become nonrelativistic, while the quintessence
field is dominated by kinetic energy. It is at this point that
the neutrino mass begins to evolve significantly. The de-
tails of this behavior and evolution depends on the choice
of the coupling 8 and the potential parameter o In fact, the
masses of the neutrinos can be heavier or lighter in the past
depending on the choice of potential and coupling
parameters.

The coupling of neutrinos to dark energy slightly alters
the evolution of the cosmological background. It was found
that similarly to models with a dark matter/dark energy
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interaction, the apparent equation of state measured with
Type Ia Supernovae at high redshift can be smaller than
—1, without introducing phantom fields, and might even
cross the boundary w = —1.

The most obvious modifications to the CMB anisotropy
spectrum occur for large angular scales, with € < 100,
where the dominant contribution to the anisotropies is
generated by the integrated Sachs-Wolfe effect (IWS).
This arises due to the evolution of the gravitational poten-
tials along the photon path from the surface of last scatter-
ing. The modification to the cosmological background
arising from the neutrino coupling can also have a signifi-
cant effect upon the evolution of the perturbations. We
generally observe an increase in power for 10 < € < 100,
while for € < 10 we find either an excess or reduction in
power depending upon our choice of parameters. For the
models where the neutrinos were much heavier in the past
than today, we also observe a slight shift in the peaks and a
modification in their relative amplitude.

The matter power spectrum exhibits free-streaming
damping even in the presence of dark energy-neutrino
coupling. However, since the damping scale is mainly
dependent on the value of the neutrino mass at the end of
their relativistic stage, our results appear similar to the
standard models with CDM and hot dark matter in which
the mass is fixed at the relativistic plateau. It is obvious that
the mass infered from the damping of the matter power
spectrum is, in general, different from the neutrino mass
measured with experiments in the laboratory.

We performed a likelihood analysis using SNIa, CMB,
and LSS datasets. Initially, we used the standard parame-
terization for our cosmological model, characterized by
exponential dependence of the dark energy potential and
neutrino mass on the scalar field. For a flat universe we
varied all of the matter parameters, the Hubble constant,
the initial power-spectrum spectral index and amplitude
and the instantaneous reionization parameter 7. As ex-
pected, the cosmological data did not place strong con-
straints on our new coupling parameters. This is no
surprise, since it is well known that the current best-fit
analysis of cosmological data can only place an upper limit
on the mass of the neutrino, and a zero neutrino mass is not
excluded by most cosmological data sets. An interesting
outcome was that couplings of order unity are perfectly
acceptable with the actual data.

To proceed, we chose to perform an analysis using two
values of the neutrino mass today, m, = 0.2 eV and m, =
0.3 eV, to investigate whether models of neutrino-dark
energy coupling could in principle be constrained if neu-
trinos were independently confirmed to have a significant
mass (m, = 0.1 eV), consistent with current experiments.

For both the m, = 0.2 eV and m, = 0.3 eV models we
found that nonzero values of neutrino-coupling strengths of
order unity are preferred by the data. We also saw that for
these models a nonzero value for o is preferred over the
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usual cosmological constant, although o = 0 is not ex-
cluded at the 68% level. Models with heavier neutrinos
allow stronger constraints to be placed upon the strength of
the coupling. Indeed, for the 0.3 eV neutrinos we found that
neutrino-dark energy coupling is preferred at the 1 sigma
confidence level.

One should note that these constraints rely upon the
assumption that the neutrino mass is known, and that the
neutrinos have a mass m, = 0.1 eV. Although this as-
sumption is consistent with current neutrino experiments,
we can only make the statement that should the mass of the
neutrino be found to be greater than 0.1 eV, then current

PHYSICAL REVIEW D 73, 083515 (2006)

cosmological data can be used to constrain the strength of
any neutrino-dark energy coupling.
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