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Dynamics and non-Gaussianity in the weak-dissipative warm inflation scenario
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We calculate the general solutions for a warm inflationary scenario with weak dissipation, reviewing the
dissipative dynamics of the two-fluid system, and calculate the bispectrum of the gravitational field
fluctuations generated in the case where dissipation of the vacuum potential during inflation is the
mechanism for structure formation, but is the subdominant effect in the dynamics of the scalar field during
slow-roll. The bispectrum is nonzero because of the self-interaction of the scalar field. We compare the
predictions with both those of standard, or ‘‘supercooled‘‘, inflationary models, and warm inflation models
with strong dissipation and consider the detectability of these levels of non-Gaussianity in the bispectrum
of the cosmic microwave background. We find that the levels of non-Gaussianity for warm and super-
cooled inflation are an order of magnitude different.
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I. INTRODUCTION

The standard model of Hot Big Bang, or Friedmann-
Robertson-Walker, cosmology with a simple, single-field
supercooled inflationary phase, is highly supported by
large scale structure [1], cosmic microwave background
[2] and weak lensing [3] observations, where supercooled
inflation describes inflation without interactions between
fields. It is the most popular and developed model for use in
parameter estimation, using the general assumption that
the resulting perturbation spectrum is close—to scale free
and Gaussian. The scenario has long been known, however,
to contain a small but nonzero non-Gaussian effect due to
the self-interaction of the inflaton field. This signal was
quantified in its contribution to the bispectrum statistic in
[4], neglecting the effect of parametric amplification at
inflation exit [5,6].

The challenge remains to make inflation, and cosmo-
logical parameter estimation using inflation, self-
consistent, and to constrain parameters within every physi-
cally likely inflationary scenario. Warm Inflation [7] de-
scribes the set of models where the presence of interactions
between fields during slow-roll is included in the analysis
of inflation. The dynamics and observational consequences
of warm inflation have been explored in several recent
papers [8–12]. The production of radiation from the dis-
sipation of the scalar field potential, which results from the
presence of interactions, can lead to scenarios with levels
of radiation density which are approximately stable. It has
been shown that inflation can occur in the presence of a
thermal component to the energy in the Universe. Several
viable mechanisms for implementing such dissipation dur-
ing inflation have been proposed in [13–16]. The popular
standard, or supercooled, inflation scenario is one of the
limiting cases of warm inflation. In that case there is no
radiation present either due to a lack of radiation produc-
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tion or due to the levels of radiation produced being red-
shifted away in the exponential expansion of the Universe
during inflation.

A second limiting case for the warm inflation scenario is
inflation with strong dissipation where the interaction
terms are greater in magnitude than the Hubble friction
term of standard slow-roll inflation. In [7,9,17–19] solu-
tions for the equation of motion of the scalar field have
been calculated for the case of strong dissipation during
inflation. There is a further limiting possibility out of this
set of models, the weak dissipation scenario [20–22]
where a constant radiation component is created from
dissipation which is the subdominant effect in the dynam-
ics of the inflaton during slow-roll.

In this paper we will present an analysis of the fluid
dynamics of warm inflation which includes a more com-
plete derivation of the energy constraints on warm infla-
tion than has been previously outlined (i.e. in [20]).
The solutions for the equations of motion of the scalar
field and its spectrum of perturbations are then calculated
for warm inflation with weak dissipation for polyno-
mial potentials. In Sec. III of the paper we use the solutions
to provide an estimate of non-Gaussianity of the perturba-
tions from warm inflation with weak dissipation which
can be compared with the predictions for strong dissip-
ation which are quantified in [9] for various warm infla-
tionary potentials, and with the predictions for supercooled
inflation calculated in [4]. Consistency tests of the form
of the fluctuations generated together with accurate pre-
dictions of non-Gaussianity should be an important tool
in discriminating between structure formation theories.
We will conclude in Sec. V with a discussion on the
validity of these analyses in the wake of a recent preheating
calculation for supercooled inflation [23] which suggests
that the non-Gaussianity from standard supercooled infla-
tion has been previously greatly underestimated and may
be of a level already ruled out by high resolution astro-
physical data.
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FIG. 1. Evolution with efold of inflation, N, of scalar field ��
and radiation �r energy densities for �=H � 10�5.
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II. THE BACKGROUND DYNAMICS OF THE
2-FLUID SYSTEM DURING WARM INFLATION

In warm inflation, as is the case in supercooled inflation,
the presence of the scalar field dominates the dynamics of
the system. The energy density and energy pressure of the
scalar field have the form:

�� �
_�2

2
� V��� (1)

p� �
_�2

2
� V���; (2)

with V � _�2=2. The potential energy of the scalar field
dominates the system. The equation of motion of the scalar
field can also be represented by the scalar field energy
being divided into two fluids. The first fluid, representing
the dynamical part of the scalar field, has an energy pres-
sure equal to its energy density. The second fluid, repre-
senting the greater part of the energy, has an energy
pressure equal to �1� its energy density. Interactions
and dissipation of the scalar field during slow-roll are, in
this analysis, modeled by a constant cross-section dissipa-
tion term. So the equation of motion of the scalar field
during warm inflation has the form

��� 3H _�� � _�� V0��� � 0; (3)

where the overdots represent time derivatives,H � _R
R is the

Hubble parameter; R�t� is the cosmic expansion factor. � is
a friction term which incorporates the interactions of the
scalar field with an environment of particles, as warm
inflation models inflation occurring in a heat bath (see
e.g. [24]). � does not represent the inflaton decay rate at
the end of inflation in the supercooled case, which would
be modeled by rapid oscillations of the inflaton field at the
base of the inflaton potential.

To analyze the evolution of the energies in the system as
a result of the constant radiation production during this
scenario of inflation we require a 2-fluid model. We label
the two fluids in the following calculations with the sub-
scripts � � f�; rg corresponding to the scalar field energy
density and the radiation energy density. The stress-energy
conservation equations of the scalar field and of the radia-
tion must contain an energy transfer term, Q�, between the
fluids.

_� � � �3H��� � p�� �Q�; (4)

such that
P
�Q� � 0. From Eq. (1) and (2)

_�� � �3H _�2 �Q�; (5)

�
@��
@�

_�: (6)

The equation of motion Eq. (3) substituted into Eq. (5)
together with the slow-roll assumption of inflation ��� _�
gives the form of the energy transfer term.
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Thus

_� r � �4H�r � � _�2: (7)

The evolution equation of the inflaton reduces to

d�
dt
� �

1

3H � �

dV���
d�

(8)

and the slow-roll condition to �3H � ��j _�j � j ��j.
The dissipation causes radiation to be produced contin-

uously from conversion of scalar field vacuum energy. In a
preliminary work leading to the development of the warm
inflation scenario [20], comparing temperature and ther-
malization scales with the Hubble scale during inflation it
was shown that a dissipative component as small as � *

10�5H was adequate to realize T >H.
We have evolved the fluid interactions of Eqs. (5)–(7)

with a numerical simulation, where the dynamic part of the
scalar field energy makes up 1% of the total inflaton
energy. Figure 1 demonstrates that once the system is in
the state _�r 	 0, it remains in this state until the slow-roll
conditions are violated.

In this paper, expressions will be obtained which apply
to the weak-dissipative regime, �� H, so that the domi-
nant friction term in the equation of motion is due to the
Hubble expansion, and Eq. (8) is further reduced to

d�
dt
� �

V 0

3H
; (9)

while the radiation temperature resulting from weak dis-
sipation, T >H, means that we are dealing with a ther-
malized system in every efold of inflation.

We can now evolve the behavior of the inflaton in the
weak-dissipative warm inflation regime for a range of
polynomial potentials.

Focussing first on the background dynamics of the in-
flaton field in this regime, we start with this general form
for the potential:
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V��� �
�
n!
�n (10)

in the region 0<�<M where M is MGUT � 1014 GeV.
Solving Eq. (9) for these potentials leads to, for n � 2

��t� � M
�
Mn�2�n� 2�

�n� 1�!

�t
3H
� 1

�
�1=�n�2�

(11)

and for n � 2

��t� � M exp
�
�

�
3H

t
�
: (12)

III. THE EVOLUTION OF INFLATON
PERTURBATIONS DURING WARM INFLATION

We assume that the production of radiation during in-
flation will influence the seeds of density fluctuations, and
we hold that this will apply when the temperature during
inflation is greater than the Hubble parameter, T >H, and
that in these bounds the thermal fluctuations of the scalar
field must dominate over the quantum fluctuations.

In order to treat the fluctuations of the inflaton field
���x; t�, we utilize the same stochastic approach which
has been used in the calculations of non-Gaussianity which
have been carried out for strong dissipative warm inflation
and supercooled inflation [4,9]. And also corresponding to
the approach of [4,9] the effect of the self-interaction of the
scalar field is treated preferentially above the back-reaction
on the Hubble constant. It is assumed that the fluctuations
are small—the full inflaton field is expressed as ��x; t� �
�0�t� � ���x; t� with �0 being the homogeneous coarse-
grained averaged field, ���x; t� � �0�t�, the scale over
which the average is taken being larger than any scale of
cosmological interest. From this the equation of motion for
the full inflaton field with fluctuations emerges as

d��x; t�
dt

�
1

3H

e�2Htr2��x; t� � V 0���x; t�� � ��x; t��;

(13)

where ��x; t� is a Gaussian noise term modelling thermal
fluctuations with a magnitude �kFT=2�2�1=2 [19] from the
inflaton effectively sitting in a heat bath. kF is the wave-
number of a perturbation as it exits the inflationary causal
horizon.

The fluctuation-dissipation theorem determines the
properties of the noise, as in [9]. With respect to physical
coordinates and in momentum space, these properties,
modeled in the simplest case are

h�i � 0 (14)

h��k; t���k0; t0�i � 2�T�2��3��3��k� k0���t� t0�: (15)

The choice of physical coordinates arises since we are
interested in the evolution of the inflaton mode while they
are subhorizon scale and the heat bath controls the
fluctuations.
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In order to calculate the predicted bispectrum from
Eq. (13), the inflaton fluctuations must be expanded to first
and second order: ���x; t� � ��1�x; t� � ��2�x; t�,
where ��1 � O���� and ��2 � O���2�.

We will follow the modes through their fluctuations
inside the horizon, and through freeze-out at each scale
of fluctuation. On this scale comparative energetics control
the scalar perturbation. We treat the physical modes adia-
batically with respect to the characteristic macroscopic
time scale, the Hubble time	1=H. Therefore it is sensible
to use physical and not comoving momenta:

k phys � kcome�Ht: (16)

The evolution of each mode can be integrated through
steps of Hubble time 	1=H, and the combination of
Hubble time-steps will result in the complete solution.
Hereafter for physical momenta the notation will have no
subscripts kphys � k, and magnitudes will be denoted with-
out boldfacing as k � jkj.

Within each efold of inflation, inside the horizon:

d
dt
���1�k; t�� �

1

3H

�k2��1�k; t� � V

00��o�t����1�k; t�

� ��k; t�� (17)

d
dt
���2�k; t�� �

1

3H

�
�k2��2�k; t�

� V00��o�t����2�k; t�

�
1

2
V000��o�t����1�k; t�

2

�
: (18)

Dividing cosmic time into successive time intervals of
order 1=H, tn � tn�1 � 1=H, the solutions of Eqs. (17) and
(18) for tn�1 < t < tn are respectively

��1�k; t� � A�k; t� tn�1�
Z t

tn�1

dt0
��k; t0�

3H

� A�k; t0 � tn�1�
�1

� A�k; t� tn�1���1�ke�H�tn�tn�1�; tn�1� (19)

��2�k; t� � A�k; t� tn�1�
Z t

tn�1

dt0B�t0�
�Z dp3

�2��3
��1�p; t0�

���1�k�p; t
0�

�
A�k; t0 � tn�1�

�1

�A�k; t� tn�1���2�ke�H�tn�tn�1�; tn�1�; (20)

where

A�k; t� � exp
�
�
Z t

to

�
k2

3H
�
V00��o�t

0��

3H

�
dt0
�

(21)

B�t� � �
V000��o�t��

3H
: (22)
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IV. THE WARM INFLATION BISPECTRUM

Single-field inflation models broadly predict Gaussian
primordial density fluctuations. Multiple field inflation
models may lead to a non-Gaussian distribution (e.g. chi-
squared). When second-order effects are taken into ac-
count, however, there are corrections to these general
predictions. There is a resulting non-Gaussian signal in
the cosmic microwave background radiation (CMB), the
magnitude of which varies depending upon the self-
interaction of the inflaton field [4,25,26].
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A perfect Gaussian distribution would imply that the
perturbations in the energy density have no connected
correlations higher than the 2-point correlation function
in real and Fourier space.

We will now calculate the bispectrum statistic, the three-
point correlation function of the density perturbation dis-
tribution in Fourier space. This quantity simply translates
to the harmonic bispectrum of the CMB [27].

The leading order contribution to this three-point corre-
lation function comes from two first-order and 1 s-order
fluctuation as
h���k1; t����k2; t����k3; t�i � A�k3; t� t60 � 1=H�
Z t60

t60�1=H

A�1�k3; t0 � t60 � 1=H�B�t0�

�

�Z dp3

�2��3
h��1�k1; t1���1�p; t

0�ih��1�k2; t2���1�k3 � p; t
0�i

�

� A�k3; t� t60 � 1=H�h��1�k1; t60���1�k2; t60���2�k3e�1; t60 � 1=H�i

� �k1 $ k3�� � �k2 $ k3��: (23)

Thus Eq. (23) becomes

h���k1; t����k2; t����k3; t�i  B�t60��tF

�Z dp3

�2��3
h��1�k1; t1���1�p; t0�ih��1�k2; t2���1�k3 � p; t0�i

� �k1 $ k3�� � �k2 $ k3�

�
: (24)
It is possible to write a general expression for the bis-
pectrum for slow-roll, single-field, supercooled inflation
models as well as for the set of warm inflation models in
terms of products of power spectra and a prefactor, Ainf ,
which depends upon the interactions during inflation, on
the shape of the inflationary potential and upon the shape
of the triangles used to measure the bispectrum statistic.

h��k1���k2���k3�i � Ainf�2��3�3�k1 � k2 � k3�

� 
P��k1�P��k2� � perms� (25)

The relation between the scalar field fluctuation and the
gravitational field has the simple form (from [28])

��k� � �
3

5

H
_�
���k�; (26)

thus Ainf calculated using equilateral bispectrum triangles
for a weakly dissipative warm inflation regime is

Aweak
inf � �

10

3

� _�
H

��
V 000��o�tF��

3H

�
; (27)

which, plugging in the temperature T calculated using the
relation �r � �g��2=30�T4, where g� is the number of
relativistic fields 	150, and taking into account the rela-
tion between the radiation energy density and the scalar
field potential �� ’ V���, given in Eq. (10), and the CMB
amplitude, given by

�H �
2

5

H
_�
��; (28)
which, from CMB results of the Wilkinson Microwave
Anisotropy Probe, is �H � 1:94� 10�5 [29–31], gives
for a quartic potential a value of Aweak

inf � 7:65� 10�3.
Our derivation of Ainf mirrors the derivation of this value,
the coefficient of the bispectrum of the scalar field gravi-
tational potential, and also the coefficient of the bispectrum
of the CMB in the Sachs-Wolfe region, of [9].
V. CONCLUSIONS

We have followed the behavior of the inflaton field and
of radiation during warm inflation in the limit of weak
dissipation. We have evolved the scalar field perturbation
up to second order and calculated the non-Gaussian signal
in the bispectrum statistic which results from the self-
interaction of the scalar field. The value we obtain Aweak

inf �
7:65� 10�3 is an order of magnitude smaller than the
corresponding signal for a quartic inflationary potential
for the strong dissipative and cool inflationary scenarios
[4,9].

At the time of the publication of [9] it was believed by
the authors that the difference in the prediction for the
bispectrum statistics of warm inflation with strong dissi-
pation: Astrong

inf � 7:44� 10�2; and the prediction for
supercooled inflation: Acool

inf � 5:56� 10�2 [4]; would be
overwhelmed by a contribution from general relativistic
second-order perturbation theory of Ainf 	 1 [32].
However, an energetic analysis of the evolution of
second-order perturbation theory [33] has since shown
that this is not the case.
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However, one incentive for the use of the warm inflation
model over the supercooled inflation model, the implica-
tions of the preheating mechanism on the radiation pertur-
bations, has a new possible observational implication. In
[23] it is demonstrated that parametric resonance during
preheating can enhance the non-Gaussianity such that Acool

inf
can easily become as large as 	100. The implication of
this for the result of this paper is that the difference
between the predictions of Gaussianity for strongly and
for weakly dissipative warm inflation may be both signifi-
cant and observable in the future. Although this will not be
distinguishable with the simple observation of the bispec-
083514
trum with satellite CMB data, the best predicted constraint
on this from the upcoming Planck satellite being �Ainf �
10 [34], the difference between the non-Gaussian signals
from the strongly and weakly dissipative warm inflation
scenarios might be tested for with others of the many non-
Gaussianity statistics i.e. the trispectrum [35] and the two-
point correlation of peaks [36].
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