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Superacceleration as the signature of a dark sector interaction

Subinoy Das,1,2 Pier Stefano Corasaniti,1 and Justin Khoury3

1ISCAP, Columbia University, New York, New York 10027, USA
2Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, New York 10003, USA

3Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 6 November 2005; published 6 April 2006)
1550-7998=20
We show that an interaction between dark matter and dark energy generically results in an effective
dark-energy equation of state of w<�1. This arises because the interaction alters the redshift
dependence of the matter density. An observer who fits the data treating the dark matter as noninteracting
will infer an effective dark-energy fluid with w<�1. We argue that the model is consistent with all
current observations, the tightest constraint coming from estimates of the matter density at different
redshifts. Comparing the luminosity and angular-diameter distance relations with �CDM and phantom
models, we find that the three models are degenerate within current uncertainties but likely distinguishable
by the next generation of dark-energy experiments.
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I. INTRODUCTION

Nature would be cruel if dark energy were a cosmologi-
cal constant. Unfortunately this daunting possibility is
increasingly likely as observations converge towards an
equation of state of w � �1. Combining galaxy, cosmic
microwave background (CMB) and Type Ia supernovae
(SNIa) data, Seljak et al. [1] recently found �1:1 & w &

�0:9 at 1�. On the one hand, a cosmological constant is
theoretically simple as it involves only one parameter.
However, observations would offer no further guidance
to explain its minuteness, whether due to some physical
mechanism or anthropic reasoning [2].

A more fertile outcome is w � �1. This implies dy-
namics—the vacuum energy is changing in a Hubble
time—and hence, new physics. A well-studied candidate
is quintessence [3,4], a scalar field � rolling down a self-
interaction potential V���. Its equation of state,

w� �
_�2=2� V���
_�2=2� V���

; (1)

can be <� 1=3 for sufficiently flat V��� and thus lead to
cosmic speed-up. Whether dark energy is quintessence or
something else, this case offers hope that further observa-
tions, either cosmological or in the solar system, may
unveil the underlying microphysics of the new sector.

An even more exciting possibility is w<�1. In fact
there are already indications of this [5,6] from various
independent analyses of the ‘‘Gold’’ SNIa data set [7].
Moreover, by constraining redshift parametrization of
w�z� they also exclude that this could result from assuming
a constant w [8,9]. The w<�1 regime would rule out
quintessence since w� � �1 [see Eq. (1)], as well as most
dark-energy models.

Devising consistent models with w<�1 has proven to
be challenging. Existing theories generally involves
ghosts, such as phantom models [10], resulting in insta-
bilities and other pathologies [11]. Fields with nonminimal
06=73(8)=083509(9)$23.00 083509
couplings to gravity, such as Brans-Dicke theory, can
mimic w<�1 [12]. However, solar-system constraints
render the Brans-Dicke scalar field nearly inert, thereby
driving w indistinguishably close to �1. Other proposals
for w<�1 include brane-world scenarios [13], quantum
effects [14], quintessence-moduli interactions [15], and
photon-axion conversion [16].

In this paper we show that w<�1 naturally arises if
quintessence interacts with dark matter. The mechanism is
simple. Because of the interaction, the mass of dark matter
particles depends on �. Consequently, in the recent past
the dark matter energy density redshifts more slowly than
the usual a�3, which, for fixed present matter density,
implies a smaller matter density in the past compared to
normal cold dark matter (CDM).

An observer unaware of the interaction and fitting the
data assuming normal CDM implicitly ascribes this dark
matter deficit to the dark energy. The effective dark-energy
fluid thus secretly receives two contributions: the quintes-
sence part and the deficit in dark matter. The latter is
growing in time, therefore causing the effective dark-
energy density to also increase with time, hence w<�1.

Treating dark matter as noninteracting is a sine qua non
for inferring w<�1. There are no wrong-sign kinetic
terms in our model—in fact the combined dark matter
plus dark-energy fluid satisfies w>�1. Hence the theory
is well defined and free of instabilities.

Interacting dark matter/dark energy models have been
studied in various contexts [17–23]. Huey and Wandelt
[24] realized that coupled dark matter/quintessence can
yield an effectivew<�1. (See also [25] for similar ideas.)
However, the dynamics in [24] are such that DM density
becomes negligibly small for z * 1, thereby forcing the
addition of a second noninteracting DM component. In
contrast, our model involves a single (interacting) DM
component.

Given the lack of competing consistent models, we
advocate that measuring w<�1 would hint at an interac-
-1 © 2006 The American Physical Society
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tion in the dark sector. More accurate observations could
then search for direct evidence of this interaction. For
instance, we show that the extra attractive force between
dark matter particles enhances the growth of perturbations
and leads to a few percent excess of power on small scales.
Other possible signatures are discussed below.
FIG. 1. Redshift evolution of weff (solid line) and w� (dash
line). As advocated, weff <�1 in the recent past due to the
interaction with the dark matter.
II. DARK-SECTOR INTERACTION

Consider a quintessence scalar field � which couples to
the dark matter via, e.g., a Yukawa-like interaction

f��=MPl� �  ; (2)

where is f is an arbitrary function of � and  is a dark
matter Dirac spinor. In order to avoid constraints from
solar-system tests of gravity, we do not couple � to bary-
ons. See [19], however, for an alternative approach.

In the presence of this dark-sector interaction, the energy
density in the dark matter no longer redshifts as a�3 but
instead scales as

�DM �
f��=MPl�

a3 : (3)

This can be easily understood since the coupling in Eq. (2)
implies a �-dependent mass for the dark matter particles
scaling as f��=MPl�. Since the number density redshifts as
a�3 as usual, Eq. (3) follows.

Thus the Friedmann equation reads

3H2M2
Pl �

��0�DM

a3

f��=MPl�

f0
� ��; (4)

where f0 � f��0=MPl� with �0 the field value today, and

�� �
1
2

_�2 � V��� (5)

is the scalar field energy density. With a � 1 today, ��0�DM is
identified as the present dark matter density.

Meanwhile, the scalar field evolution is governed by

��� 3H _� � �V;� �
��0�DM

a3

f;�
f0
: (6)

This differs from the usual Klein-Gordon equation for
quintessence models by the last term on the right-hand
side, arising from the interaction with dark matter.

The standard approach to constraining dark energy with
experimental data assumes that it is a noninteracting per-
fect fluid, fully described by its equation of state, weff .
Given some weff�z�, the evolution of the dark-energy den-
sity is then determined by the energy conservation equa-
tion:

d�eff
DE

dt
� �3H�1� weff��eff

DE: (7)

Meanwhile, the dark matter is generally assumed to be
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noninteracting CDM, resulting in the Friedmann equation

3H2M2
Pl �

��0�DM

a3 � �
eff
DE: (8)

An observer applying these assumptions to our model
would infer an effective dark-energy fluid with

�eff
DE �

��0�DM

a3

�
f��=MPl�

f��0=MPl�
� 1

�
� ��; (9)

obtained by comparing Eqs. (4) and (8). The end result is to
effectively ascribe part of the dark matter to dark energy.
Notice that today the first term vanishes, hence the effec-
tive dark-energy density coincides with ��. In the past,
however,� � �0, and the two differ. In particular, we will
find that the time-dependence of �eff

DE can be such that
weff <�1.

To show this explicitly requires an expression for weff .
Taking the time derivative of Eq. (9) and substituting the
scalar equation of motion, Eq. (6), we obtain

d�eff
DE

dt
� �3H

�
��0�DM

a3

�
f��=MPl�

f��0=MPl�
� 1

�
� �1� w����

�
:

(10)

Comparing with Eq. (7) allows us to read off weff :

1� weff �
1

�eff
DE

��
f��=MPl�

f��0=MPl�
� 1

�
��0�DM

a3 � �1� w����

�
:

(11)

Now suppose that the dynamics of � are such that
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f��=MPl� increases in time. This occurs in a wide class of
models, as we will see in Sec. III. In this case,

x � �
��0�DM

a3��

�
f��=MPl�

f��0=MPl�
� 1

�
� 0 (12)

for all times until today, with equality holding at the
present time. It is straightforward to show that weff takes
a very simple form when expressed in terms of x:

weff �
w�

1� x
: (13)

This is our main result. Since x � 0 today, one has w�0�eff �

w�0�� , which is greater than or equal to �1. In the past,
however, x > 0. Moreover, for sufficiently flat potentials,
w� 	 �1. Hence it is possible to have weff <�1 in the
past. This is shown explicitly in Fig. 1 for a fiducial case:
f��=MPl� � exp���=MPl� and V��� � M4�MPl=���.
III. QUINTESSENCE DYNAMICS

We now come back to the equation of motion for �,
Eq. (6), and demonstrate that its dynamics can lead to
weff <�1. The scalar potential V��� is assumed to satisfy
the tracker condition [26],

� �
V;��V

V2
;�

> 1: (14)

For an exponential potential, � � 1, while � � 1� ��1

for V��� ����. Moreover, we take the coupling function
f to be monotonically increasing.

Without coupling to dark matter, the scalar field would
run off to infinite values. Here, however, the interaction has
a stabilizing effect since � wants to minimize the effective
potential

Veff � V��� �
��0�DM

a3

f��=MPl�

f��0=MPl�
: (15)

Indeed, it is easily seen that the right-hand side of Eq. (6) is
just �Veff

;� . Similar stabilization mechanisms have been
explored in other contexts, such as so-called VAMPS sce-
narios [27], string moduli [28,29], chameleon cosmology
[19,20], interacting neutrino/dark-energy models [23], and
other interacting dark matter/dark energy models [24,30],
to name a few.

Having� at the minimum of the effective potential is an
attractor solution [20]: as the dark matter density redshifts
due to cosmic expansion, � adiabatically shifts to larger
field values, always minimizing Veff . This is because the
period of oscillations about the minimum, m�1, is much
shorter than a Hubble time, i.e., m
 H. We show this for
the present epoch, leaving the proof for all times as a
straightforward exercise.

The mass of small fluctuations about the minimum is
given as usual by
083509
m2 � Veff
;�� �

��0�DM

a3

f;��
f0

�
1�

f2
;�

f;��f
�

V
��0�DM

a3

f
f0

�
; (16)

where we have substituted � using its definition, Eq. (14).
Evaluating this today, and noting that ��0�DM � 3H2

0M
2
Pl�

�0�
DM

and V��0�< 3H2
0M

2
Pl�

�0�
DE, we find

m2
0

H2
0

> 3��0�DMM
2
Pl

�f;��
f

�
0

�
1� �

� f2
;�

f;��f

�
0

��0�DE

��0�DM

�
: (17)

The right-hand side is greater than unity for M2
Plf;��=f *

1. In addition, as we will see later, �
 1 for consistency
with observations of large-scale structure. These condi-
tions guarantee that fluctuations about the minimum of
the effective potential are small at the present time. For
concreteness, let us evaluate this in the case of f��� �
exp���=MPl� and V��� � M4�MPl=��

�:

m2
0

H2
0

> 3�2��0�DM

�
1�

�� 1

�
��0�DM

��0�DE

�
: (18)

This is indeed larger than unity for � & 1 and � * O�1�,
the latter corresponding to a gravitational-strength interac-
tion between dark matter and dark energy.

Next we show that the field is slow-rolling along this
attractor solution. The proof is again straightforward.
Differentiating the condition at the minimum, Veff

;� � 0,
with respect to time, we obtain

_� �
3H

m2

��0�DM

a3

f;�
f0
� �

3H

m2 V;�; (19)

where in the last step we have used Veff
;� � 0. Thus,

_�2

2V
�

9H2

2m4

V2
;�

V
<

9H2

2m2

1

�
: (20)

Since m>H along the attractor, and since �
 1 as
mentioned earlier, Eq. (20) implies that � has negligible
kinetic energy compared to potential energy, which is the
definition of slow roll.

The slow-roll property has many virtues. First of all, it
implies that our attractor solution is different than that
derived by Amendola and collaborators [18]. In their
case, during the matter-dominated era, the scalar field
kinetic energy dominates over the potential energy and
remains a fixed fraction of the critical density. This sig-
nificantly alters the growth rate of perturbations.
Microwave background anisotropy then constrains the
dark matter–dark energy coupling to be less than gravita-
tional strength: �< 0:1 for f��� � exp���=MPl�. In our
case, as we will see in Sec. V C, slow roll implies a nearly
identical growth rate to that in CDM models, even in the
interesting regime � * 1.

More importantly, slow roll meansw� 	 �1. As argued
below Eq. (13), this facilitates obtaining weff <�1.
-3
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In essence, slow roll is enhanced by the dark matter
interaction term in Eq. (6) which acts to slow down the
field. To see this explicitly, note that in usual quintessence
models (without dark matter interaction), slow roll is
achieved in the large � limit, for which

_�2

2V
	

1

4�
: (21)

Comparison with Eq. (20) shows that this ratio is further
suppressed by H2=m2 � 1 in our case.

The attractor solution described here has a large basin of
attraction. The covariant form of Eq. (6) involves T�� , the
trace of the stress tensor of all fields coupled to�. These do
not exclusively consist of DM. For instance, in a super-
symmetric model where the DM is the lightest supersym-
metric particle, � could conceivably couple to a host of
superpartners. Deep in the radiation-dominated era, the T��
source term is generally negligible compared to the Hubble
damping term, 3H _�. However, they become comparable
for about a Hubble time whenever a particle species
coupled to � becomes nonrelativistic [28], therefore driv-
ing � towards the minimum of its effective potential. This
provides an efficient mechanism for reaching the attractor
[20].

IV. AN EXPLICIT EXAMPLE

In this section we illustrate our mechanism within a
specific model. We consider an inverse power-law poten-
tial, V��� � M4�MPl=��

�, where the mass scale M is
tuned to �10�3 eV in order for acceleration to occur at
the present epoch. This potential is a prototypical example
of a tracker potential in quintessence scenarios. Its run-
away form is in harmony with nonperturbative potentials
for moduli in supergravity and string theories.

The coupling function is chosen to be f��� �
exp���=MPl�. The exponential form is generic in dimen-
sional reduction in string theory where � measures the
volume of extra dimensions. Moreover, � is expected to be
of order unity, corresponding to gravitational strength.
While the coupling to matter exacerbates the fine-tuning
of the quintessence potential [31], we find the phenome-
nological consequences of our model sufficiently interest-
ing to warrant sweeping naturalness issues under the rug.

In this example, the condition at the minimum reads

�
�M4M�

Pl

���1 �
�
MPl

��0�DM

a3 e�����0�=MPl � 0: (22)

Evaluating this today, and noting that V0 	 3H2
0M

2
Pl�

�0�
DE

because of slow roll, we obtain

�0

MPl
	
�
�

��0�DE

��0�DM

: (23)

Equations (22) and (23) combine to provide a simple
expression for the redshift evolution of � as it follows
083509
the minimum of the effective potential:�
�
�0

�
��1
� �1� z��3e���0���=MPl : (24)

Next we calculate the resulting effective equation of
state. To do so, we first need an expression for �� as a
function of redshift. Notice that in the slow-roll approxi-
mation, �� 	 V���. This does not imply, however, that
�� 	 const, since �� does not obey the usual conservation
equation. Using Eq. (22), we instead have

�� 	
V
V;�

V;� �
�
�

�
MPl

��0�DM

a3 e�����0�=MPl : (25)

Substituting this and Eq. (25) in the definition of x given in
Eq. (12), we arrive at

x �
��0�DM

��0�DE

�0

�

�
exp

�
�

��0�DE

��0�DM

�
1�

�
�0

��
� 1

�
: (26)

This shows explicitly that x is a positive, monotonically
increasing function of z which vanishes today. Moreover,
since the field is slow rolling, we have w� 	 �1.
Therefore, Eq. (13) implies

weff 	 �
1

1� x
� �1; (27)

with the approximate equality holding today. Hence this
yields an effective dark-energy fluid with w<�1 in the
recent past.

Note from Eq. (26) that x � 1 at some time in the past,
implying that jweffj momentarily diverges and then be-
comes positive again at higher redshifts. This is because
�eff

DE eventually becomes negative, at which point the ef-
fective dark-energy fluid has both negative pressure and
energy density. As z increases further and x becomes large,
one has weff 	 0, and the fluid behaves like dust.

In Fig. 1 we plot the redshift evolution ofweff andw� for

� � 0:2, � � 1 and ��0�DE � 0:7. (As will be discussed in
the next section, a small value for � is required for con-
sistency with large-scale structure observations.) Whilew�
remains bounded from below by �1, weff is less than �1
for z * 0:1, as claimed above.

The evolution of weff�z� shown in Fig. 1 is consistent
with the observational limits on redshift dependent pa-
rametrizations of the dark-energy equation of state [6].
One way to see this is to consider the weighted average

�w eff �

R
�eff�a�weff�a�daR

�eff�a�da
; (28)

where the integral runs from z � 0 up to the maximum
redshift of current SN Ia data, z� 1:5. This gives �weff 	
�1:1, which lies within the allowed range of w found in
[1]. Note that while Fig. 1 was derived using the above
analytical expressions, we have checked these against
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numerical solutions of the equations of motion and found
very good agreement.
V. OBSERVATIONAL CONSTRAINTS AND
CONSEQUENCES

We have shown that the interaction between quintes-
sence and dark matter can mimic the cosmology of a
phantom fluid. In this section we discuss some observa-
tional consequences of this scenario and argue that it is
consistent with current observations. At the level of homo-
geneous cosmology this is certainly true, as long as pa-
rameters are chosen such that weff lies within the allowed
range. We argue that this is also the case when considering
inhomogeneities, at least at the linear level. The main
effect here is the fifth force between dark matter particles
mediated by �, which enhances the growth rate of density
perturbations.

A rigorous comparison with observations would require
a full likelihood analysis including a host of cosmological
probes, which is beyond the scope of this paper. We instead
contend ourselves with a simplified (and perhaps more
conservative) analysis to derive general constraints. As in
Sec. IV, we focus on an exponential coupling function and
inverse power-law potential.

A. Mass estimates from large-scale structure

The tightest constraint comes from various estimates of
the dark matter density at different redshifts. Since the dark
matter redshifts more slowly than a�3 in our model, then
for fixed present matter density this implies a smaller
matter density in the past compared to a CDM model.
Indeed, at early times (�� �0), the matter density differs
from that of a usual dust CDM model by

�DM

�CDM
! e���0=MPl � exp

�
��

��0�DE

��0�DM

�
; (29)

where in the last step we have used Eq. (23).
It is reasonable to assume that this ratio cannot deviate

too much from unity, for otherwise we risk running into
conflict with estimates of the matter density at various
redshifts, e.g. from galaxy counts, Lyman-� forest, weak
lensing, etc. This is supported by the fact that the allowed
range of ��0�DM is almost independent of the specifics of the
dark energy, as derived from a general analysis [6,32] of
the combined SNIa Gold data [7], Wilkinson Anisotropy
Microwave Probe (WMAP) power spectra [33] and Two-
Degree Field (2dF) galaxy survey [34]. In particular
0:23 & ��0�DM & 0:33 at 2� (see also [1,35]). Substituting
��0�DM � 0:33 in Eq. (29), we obtain

� & 0:2: (30)

Thus dark matter density estimates require the scalar field
potential to be sufficiently flat, thereby making the attrac-
083509
tor behavior and slow-roll condition discussed in Sec. III
more easily satisfied.

Equation (29) shows that �DM redshifts like normal
CDM (i.e., �DM � a�3) for most of the cosmological
history, except in the recent past. This is crucial in satisfy-
ing constraints on ��0�DM and traces back to our choice of
inverse power-law potential. In contrast, the exponential
potential studied in [24] has a very different attractor
solution. In this case, dark energy remains a constant
fraction of the total energy density and modifies the DM
equation of state at all redshift. This in turn renders the
matter density negligibly small for z * 1. Therefore, in
order to satisfy constraints on ��0�DM (as well as zeq), one
must introduce a second DM component, which is non-
interacting and dominates for most of the history.

Finally, we note that while Eq. (30) is an extra tuning on
V���, normal quintessence also suffers from the same
constraint. Indeed, ‘‘tracker’’ quintessence with V��� �
M4�MPl=��

� leads to a dark-energy equation of state

w� � �
2

�� 2
: (31)

Imposing the current observational constraint w<�0:9
results in a bound on � identical to Eq. (30).

B. CMB and SNIa observables

We now focus on cosmological distance tests, in par-
ticular, the SNIa luminosity-distance relation and the
angular-diameter distance to the last scattering surface as
inferred from the position of CMB acoustic peaks. We wish
to compare these observables for three different models,
namely, the interacting scalar field dark matter model with
� � 0:2 and � � 1, a �CDM model, and a phantom
model with w � �1:2.

The position of Doppler peaks depends on the angular-
diameter distance to the last scattering surface,

dA�zrec� � �1� zrec�
�1
Z zrec

0

dz
H�z�

; (32)

where zrec is the redshift at recombination. Observations of
SNIa, on the other hand, probe the luminosity distance

dL�z� � �1� z�
Z z

0

dz
H�z�

: (33)

Figure 2(a) shows the luminosity distance for all three
models with ��0�DM � 0:3, while Fig. 2(b) gives their per-
centage difference. The difference between our model and
�CDM is & 4% for z < 1:5; similarly the difference with
respect to the phantom model is within & 2%. Thus all
three models are degenerate within the uncertainties of
present SNIa data which determine dL�z� to no better
than �7%. Furthermore, this suggests that percent-level
accuracy from future SNIa experiments such as the
Supernova Acceleration Probe (SNAP) [36], combined
-5



FIG. 3. Same as in Fig. 2, except ��0�DM � 0:4 for the interact-
ing scalar field dark matter model in this case. This gives equal
dA�zrec� for all three models.

FIG. 2. Upper panel shows the luminosity distance (dL) as a
function of redshift for our model (solid) a phantom model with
w � �1:2 (dash-dotted) and �CMD (dashed). We have fixed
��0�DM � 0:3. Lower panel shows the percentage difference be-
tween our model and phantom (dash-dot), and between our
model and �CDM (dashed), respectively.
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with other cosmological probes, could distinguish between
them.

Since ��0�DM is kept fixed in this case, the matter density
in the interacting dark-energy model differs in the past
from that in the �CDM and phantom cases, as seen from
Eq. (29). This results in a 10% difference in dA�zrec�, which
is again within current CMB uncertainties.

Suppose we instead keep dA�zrec� fixed, which essen-
tially amounts to fixing the matter density at high redshift.
With ��0�DM � 0:3 for both the �CDM and phantom mod-
els, this is achieved by setting ��0�DM � 0:4 for our model.
These values are compatible with current limits, as men-
tioned earlier. The resulting luminosity distances and per-
centage differences are plotted in Fig. 3. In this case we find
that our model is nearly degenerate with �CDM. Since
��0�DMh

2 is tightly constrained by CMB temperature anisot-
ropy, however, such a difference in ��0�DM implies a 10%
difference in h between our model and �CDM. This is
comparable to the uncertainty in the measured value of h
by the Hubble Key Project [37].

C. Growth of density perturbations

In the slow-roll approximation the evolution equation
for dark matter inhomogeneities, � � ��DM=�DM, is given
in synchronous gauge by [20]
083509
�00 � aH�0 �
3

2
a2H2

�
1�

2�2

1� a2V;��=k2

�
�; (34)

where primes denote differentiation with respect to con-
formal time. This differs from the corresponding expres-
sion in CDM models only through the factor in square
brackets, normally equal to unity. Since this term accounts
for the self-attractive force on the perturbation, the extra
contribution proportional to �2 arises from the attractive
fifth force mediated by the scalar field. This force has a
finite range, which for an inverse power-law potential is

� � V�1=2
;�� �

����������������������������������
���2

���� 1�M4M�
Pl

s
: (35)

Perturbations with physical wavelength much larger
than �, i.e., a=k
 �, evolve as normal CDM. On the
other hand, perturbations with a=k� �, evolve as if
Newton’s constant were a factor of 1� 2�2 larger. Thus
the interaction with the quintessence field leads to an
enhancement of power on small scales [38]. In particular,
small-scale perturbations go nonlinear at higher redshift
than in �CDM, as shown recently in a closely related
context of chameleon cosmology [39]. (Numerical simu-
lations have also found that a similar attractive scalar
interaction for dark matter particles, albeit with a much
smaller range of 1 Mpc, results in emptier voids between
concentrations of large galaxies [40].)

Quantitatively, from Eqs. (23) and (24) in the limit ��
1, we obtain
-6
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V;�� 	 H2
0�1� z�

6e2�����0�=MPl
3�2

�
���0�DM�

2

��0�DE

; (36)

where H0 is the present value of the Hubble parameter.
This implies, for instance, that at the present epoch

��0� � H�1
0

������������������������
���0�DE

3�2���0�DM�
2

vuut 	 0:7H�1
0 ; (37)

where in the last step we have taken � � 0:2, � � 1 and
��0�DM � 0:3. Hence the present range of this fifth force is
comparable to the size of the observable universe.
However, � varies with redshift, and it is easily seen that
�� H�1 in the past. In particular, we do not expect
measurable effects in the CMB. This is in contrast with
quintessence models [4], as well as the interacting dark
matter/dark energy model of Amendola and collaborators
[18], where m�H along the attractor solution, leading to
imprints in the CMB.

We solve numerically Eq. (34) and compute the linear
matter power spectrum, �2�k� / k3P�k�, normalized to
WMAP [33], where P�k� � j�kj2. In Fig. 4(a) we plot
the resulting power spectrum for our model (solid line)
and �CDM (dash line) with ��0�DM � 0:4 and 0.3, respec-
tively. The two curves are essentially indistinguishable by
eye.

In Fig. 4(b) we plot the fractional difference between the
two spectra. The discrepancy is <2% on the scales probed
FIG. 4. The upper panel shows the matter power spectrum
[�2�k�] over the relevant range of scales for our model (solid)
and �CDM (dash) with ��0�DM � 0:4 and 0.3, respectively. The
lower panel shows the percentage difference between the two
curves, which is well within current experimental accuracy.
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by current large-scale structure surveys and consistent with
the experimental accuracy of 2dF Galaxy Redshift Survey
[34] and Sloan Digital Sky Survey (SDSS) [41]. On large
scales the perturbations in the two models evolve in a
similar way (k < 0:01 h Mpc�1), while on intermediate
scales (0:01< k< 0:4 h Mpc�1) the �CDM shows a few
percent excess of power which is mostly due to small
difference in the expansion rate of the two models after
decoupling. Most importantly, on smaller scales (k >
0:4 h Mpc�1) the power spectrum of �CDM is suppressed
compared to our model. This is due to the fifth force which
enhances the clustering of dark matter perturbations com-
pared to the uncoupled case.

Thus deviations from �CDM are relevant only on small
scales, well within the nonlinear regime. Therefore pros-
pects for distinguishability using for instance the Lyman-�
forest matter power spectrum requires accurate N-body
simulations for this specific class of interacting dark mat-
ter/dark energy models. Another important probe is 21 cm
tomography [42], which will allow to measure the power
spectrum on very small scales and in a high enough redshift
range (30 & z & 200) that linear analysis is valid.

D. Galaxy and cluster dynamics

Since the �-mediated force is long-range today [see
Eq. (37)], our model is subject to constraints from galaxy
and cluster dynamics [38]. For instance, a fifth force in the
dark sector leads to a discrepancy in mass estimates of a
cluster acting as a strong lens for a high-redshift galaxy.
Lensing measurements probe the actual mass since pho-
tons are oblivious to the fifth force, while dynamical ob-
servations are affected and would overestimate the mass of
the cluster.

Other effects studied in [38] include mass-to-light ratios
in the Local Group, rotation curves of galaxies in clusters,
and dynamics of rich clusters. These combine to yield a
constraint of � & 0:8, consistent with our assumption of
��O�1�. This is consistent with generic string compacti-
fications; if for instance � is the radion field measuring the
distance between two end-of-the-world branes, � � 1=

���
6
p

[20].
VI. DISCUSSION

In this paper we have shown that an interaction between
dark matter and dark energy generically mimics w<�1
cosmology, provided that the observer treats the dark mat-
ter as noninteracting. Unlike phantom models, the theory is
well defined and free of ghosts.

Our model is consistent with current observations pro-
vided the scalar potential is sufficiently flat. For our fidu-
cial V��� � M4=��, this translates into � & 0:2. This is
no worse than normal quintessence with tracker potential,
where a nearly identical bound follows from observational
constraints on w�.
-7
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In fact our scenario is less constrained than other inter-
acting dark-energy/dark matter models studied in the lit-
erature. There is no need to introduce a noninteracting DM
component, as in [24]; nor does the coupling strength need
be much weaker than gravity, � & 0:1, as in [18]. Instead,
our model allows for a single interacting DM species with
gravitational-strength coupling to dark energy—��
O�1�. In both cases this traces back to a difference in
attractor solutions.

At the level of current uncertainties, the model is degen-
erate with both �CDM and phantom models. However, our
calculations of luminosity and angular-diameter distances
indicate that these models could be distinguished by the
next generation of cosmological experiments devoted to
the study of dark energy, such as SNAP, the Large Synoptic
Survey Telescope [43], the Joint Efficient Dark-Energy
Investigation (JEDI) [44], the Advanced Liquid-mirror
Probe for Astrophysics, Cosmology and Asteroids
(ALPACA) [45], and others.

A dark-sector interaction may reveal itself in various
ways in the data. A strong hint would be a preference for
w<�1 when fitting cosmological distance measurements
assuming CDM. Another indication is a discrepancy be-
tween the clustering matter density at various redshifts and
the expected �1� z�3 dependence in normal CDM models,
which could appear as a discrepancy in the inferred value
of ��0�M .

We also uncovered modifications in the linear matter
power spectrum and large-scale structure. These are pri-
marily due to the attractive scalar-mediated force which
enhances the growth of DM perturbations on small scales.
Note that the opposite behavior obtains for a phantom
scalar coupled to dark matter, resulting in a repulsive scalar
083509
force which damps perturbations [46]. As mentioned ear-
lier, nonlinear effects are important for the relevant range
of scales and would require N-body simulations. As an
example it would be particularly useful to study the evo-
lution of dark matter merging rates. Because of the fifth
force, the gravitational interaction between dark matter
halos is stronger than in standard CDM. This can poten-
tially lead to higher halo merging events during structure
formation and alleviate the so-called ‘‘dark matter halo
problem.’’ Other observational effects that could distin-
guish our model from �CDM and phantom include the
bias parameter. Since baryons are unaffected by the fifth
force, baryon fluctuations develop a constant large-scale
bias [47] which could be observable. Similarly, comparison
of the redshift dependence of the matter power spectrum,
P�k; z�, may be useful to constrain the scale �, which varies
with z. The integrated Sachs-Wolfe effect is another
mechanism worth studying. Since the present range of
our scalar force is comparable to the size of the observable
universe, it might account for the observed lack of power
on large scales in the CMB.
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