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Dynamical backreaction of relic gravitons
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The dynamical effects of the tensor modes of the geometry are investigated in the context of curvature
bounces. Since the bouncing behavior implies sharp deviations from a radiation-dominated evolution,
significant backreaction effects of relic gravitons may be expected at short wavelengths. After developing
a general iterative framework for the calculation of dynamical backreaction effects, explicit analytical and
numerical examples are investigated for different parametrizations of the energy-momentum pseudoten-
sor(s) of the produced gravitons. The reported results suggest that dynamical backreaction effects are a
necessary ingredient for a consistent description of bouncing models at late times.
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I. INTRODUCTION

Relic gravitons are copiously produced in the early
Universe due to the pumping action of the background
geometry [1,2]. If a quasi-de Sitter phase of expansion is
followed by a radiation-dominated phase, the logarithmic
energy spectrum (in units of the critical energy density),
customarily denoted by �gw���, is quasiflat [3] (see also
[4–6]) for present (physical) frequencies � ranging be-
tween 10�16 Hz and, approximately, 100 MHz. The tran-
sition from the radiation-dominated to the matter epoch
produces an infrared branch where �gw � �

�2 between
10�18 Hz and 10�16 Hz [7–9].

In pre-big bang models [10,11], the spectrum of relic
gravitons is far from scale-invariant. The spectral slope of
�gw��� (for frequencies larger than 10�16 Hz) is violet, i.e.
�gw � �� with � > 1 [5,12] (see also [13] and, in a
complementary perspective, [14]). Minimal pre-big bang
models are characterized by a slope � � 3 that become
progressively less steep as the frequency increases in the
kHz and MHz region.

Depending on the features of the cosmological model,
the energy density of relic gravitons may affect the dy-
namics and change the time evolution of the scale factor as
well as of the other homogeneous quantities. If the equa-
tion of state of the sources of the background geometry is
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stiffer than radiation (i.e. p � w� with w> 1=3) the rela-
tivistic gravitons of short wavelengths can change the
dynamical evolution, as it was noticed in the context of
the stiff model of Zeldovich [2].

When a stiff phase follows an inflationary stage of
expansion [15] (see also [16,17] 1) the backreaction effects
of the produced gravitons set a limit on the possible
duration of the stiff (post-inflationary) phase. This aspect
is relevant in different situations and, for instance, in the
context of quintessential inflationary models [20] where
�gw / � for frequencies larger than the mHz [21–23] (see
also [24–27] for possible detection strategies). Blue spec-
tral slopes have been also derived in the context of quin-
tessential models on the brane [28,29] (see also [30]).
Constraints arising from the production of relic gravitons
in quintessential models have been discussed in [31].

Defining as � the conformal time coordinate and k as the
comoving wave number, two physically different regimes
appear naturally in the problem. If k�� 1 (short wave-
length limit) the Fourier modes of the tensor fluctuations of
the geometry are said to be superadiabatically amplified. In
the opposite regime, i.e. k�� 1 (long wavelength limit)
the tensor modes are oscillating. In the short wavelength
limit the effective equation of state obeyed by the relic
gravitons is radiative, i.e. hpgwi � h�gwi=3 where hpgwi

and h�gwi correspond to the averaged pressure and energy
densities. In this case, h�gwi � a

�4, where a��� is the scale
factor. In the long wavelength limit the effective equation
of state may depend on the salient features of the back-
ground evolution. For instance, during the transition from a
quasi-de Sitter stage of expansion to a radiation-dominated
stage, the modes of long wavelengths are compatible with
an effective equation of state hpgwi � �h�gwi=3 implying
that h�gwi � a�2. In this limit the system behaves, effec-
tively, as a generalized fluid dominated by the spatial
gradients of the tensor modes of the geometry.

While the conclusions mentioned in the previous para-
graph must rely on specific definitions of the energy and
pressure densities of the relic gravitons, it is well known
-1 © 2006 The American Physical Society
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that, in general, it is impossible to assign a localized energy
density to the gravitational field [32]. This caveat does not
exclude the possibility of adopting consistent frameworks
for the analysis of a gravitational energy-momentum
pseudotensor.

To be more specific, the tensor modes of the geometry
can be characterized by a rank-two tensor hij defined in the
three spatial dimensions (that will taken to be flat), i.e.

ds2 � a2����d�2 � ��ij 	 hij�dx
idxj
;

hii � @ihij � 0;
(1.1)

where �ij is Kroeneker symbol and hij, being traceless and
divergenceless, carries two independent degrees of free-
dom that correspond to the two polarizations of a gravita-
tional wave in a conformally flat Friedmann-Robertson-
Walker (FRW) background.2 The simplest way of estimat-
ing the impact of the created gravitons on the background
dynamics is by computing the lowest-order nonlinear cor-
rections to the Einstein tensor

G �
� � R�� �

1
2�

�
�R; (1.2)

where R�� and R are, respectively, the Ricci tensor and the
Ricci scalar. The nonlinear corrections to the Einstein
tensor, will consist, to lowest order, of quadratic combina-
tions of hij that can be formally expressed as3

‘2
PT

�
� � ��

�2�
t G�

�; (1.3)

where the superscript at the right-hand side denotes the
second-order fluctuation of the corresponding quantity
while the subscript refers to the tensor nature of the fluc-
tuations. This procedure is essentially the one described in
[33,34] and has been reexplored, in a related context, by
the authors of Refs. [35,36] mainly in connection with
conventional inflationary models where the Universe is
always expanding4

In [38] (see also [39]) a complementary perspective was
invoked and it was observed that, by perturbing the
Einstein-Hilbert action to second order in the amplitude
of the tensor modes of the geometry in a Friedmann-
Robertson-Walker background, each single polarization
2Since hij is transverse and traceless, the direction of propa-
gation can be chosen to lie along the third axis and, in this case
the two physical polarizations of the graviton will be h1

1 �
�h2

2 � h� and h2
1 � h1

2 � h�. This will be the nomenclature
followed in the present paper.

3In the present notations the Planck length will be defined as
‘P �

����������
8�G
p

in units @ � c � 1. Natural gravitational units
16�G � 2‘2

p � 1 will also be adopted when needed.
4Recently in [37] the field theoretical formulation of General

Relativity was further developed with the purpose of deriving an
energy-momentum tensor for the gravitational field. Our ap-
proach, in the present context, is more modest since we simply
want to compare the dynamical consequences of different pos-
sible definitions of the energy-momentum pseudotensor of the
relic gravitons.
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of the graviton obeys, up to total derivatives, the action
of a minimally coupled scalar degree of freedom

��2�t S �
1

2

Z
d4xa2����	
@	h@
h; (1.4)

where the dimensionless amplitude h has been defined as

h �
h����
2
p
‘P

�
h����
2
p
‘P

: (1.5)

Consequently, following [38], a natural ansatz for describ-
ing the backreaction of the created gravitons on the back-
ground space-time would be to use, for each single
polarization, the energy-momentum tensor of a minimally
coupled scalar field. This approach has been exploited, for
instance, in [6] and in [17] for estimating the energy and
pressure densities of the relic gravitons in a multistage
Universe. A possible weakness of this second approach is
that Eq. (3.4) holds, strictly speaking, in a Friedmann-
Roberston-Walker background. In spite of this, it is clearly
useful to bear in mind this possibility.

The purpose of the present paper is to scrutinize the
dynamical backreaction effects of the relic gravitons in the
extreme situation where the background geometry under-
goes a contraction that smoothly evolves, through a
bounce, into an expanding phase. This sequence of events
takes place, for instance, in pre-big bang models. The
bouncing behavior is related to strong deviations from a
radiative Universe. Consequently, short wave fluctuations
are expected to modify or even restrict the dynamical range
of bouncing models since, in this regime, the effective
equation of state of relic gravitons is the one of radiation.
For long wavelength fluctuations, the qualitative expecta-
tion is more difficult to formulate since, as already men-
tioned, the effective equation of state is sensitive to the
specific features of the background evolution before and
after the bounce.

Consider then, as an example, one of the simplest real-
izations of bouncing dynamics, i.e. the one provided by
minimal pre-big bang models where, in the Einstein frame,
the Universe first contracts as a��� �

���������������
��=�1

p
and then

expands, in the post-big bang phase, as a��� �
����������
�=�1

p
. An

accurate description of the bouncing regime in the region
��1 < �< �1 may be achieved, for instance, by means of
a nonlocal potentials [40–42] that depend on the so-called
shifted dilaton which is usually introduced in the context of
the scale-factor-duality symmetry [10] (or more generally,
in the treatment of O�d; d� transformations [43,44] acting
on the background fields of the low-energy string effective
action). The features of the regular bouncing solutions
discussed in [45,46] are such that the rôle of the dilaton
potential is only crucial in the bouncing region while, away
from the bounce (i.e. j�j> �1) the geometry is driven by
the kinetic energy of the dilaton field.

As soon as the tensor modes reach into the superadia-
batic regime, i.e. k�� 1 the effective pressure density of
-2
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the relic gravitons becomes hpgwi ’ h�gwi. Consequently,
at least up to the bounce, the energy density of the relic
gravitons is not likely dominate on the energy density of
the dilatonic sources since the two components evolve
exactly in the same way with the scale factor. While it is
plausible that only around the bounce the short wavelength
modes become dynamically relevant, it is also clear that
the whole qualitative picture should be corroborated by a
detailed numerical and analytical treatment.

It will be instructive to conduct the calculation of the
dynamical backreaction within different ansatz for the
energy-momentum pseudotensor. Then the results will be
compared. A by-product of the present analysis will indeed
be that different forms of the energy-momentum pseudo-
tensor lead, quantitatively, to the same backreaction
effects.

A final remark concerns the use of the Einstein frame
where all the calculations will be presented. In fact, the
Einstein frame is particularly useful for the comparison of
the obtained results arising in different cosmological situ-
ations where the dilaton field is totally absent (such as the
case of the transition from a de Sitter stage of expansion to
a radiation-dominated phase). At the same time, the cal-
culations could be conducted in the string (or Jordan)
frame. In the string frame the dilaton field enters the action
coupled to the Einstein-Hilbert term. In the Einstein frame
the action is diagonal in the sense that the dilaton does not
mix with the Ricci scalar. The Einstein and string metric
tensors (and the scale factors) are related, in four dimen-
sions, as

Gs
�� � e’GE

��; as � aEe’=2: (1.6)

From Eq. (1.6), bearing in mind the conventions of
Eq. (1.1), the tensor modes are defined, in each of the
two frames, as

�tg
E
ij � �a

2
Ehij; �tG

s
ij � �a

2
s

~hij; (1.7)

where both hij and ~hij are traceless and divergenceless.
Now, from the first of the two equations reported in (1.6),
we also have that

�tGs
ij � e’�tgE

ij: (1.8)

This last equality holds in the case of tensor modes. In the
case of scalar modes its form changes because the fluctua-
tion of the dilaton field contributes to the scalar modes.
Therefore, inserting Eq. (1.7) into Eq. (1.8) and recalling
the relations between the scale factor in the two frames
[second relation in Eq. (1.6)], we have that hij � ~hij, so the
amplitude of the tensor modes are the same in both frames.
Therefore, there is no surprise that if one computes ~hij (in
the string frame, i.e. using as background the appropriate
as) one finds exactly the same hij obtainable in the Einstein
frame (where the scale factor is aE). Of course the canoni-
cal action for the single tensor polarization in the string
083505
frame is (formally) different from the one reported in
Eq. (1.4),

��2�t
~S �

1

2

Z
d4xa2

s ���e
�’�	
@	 ~h@
 ~h: (1.9)

Again, using Eq. (1.6) and recalling, as previously shown,
that ~h � h, Eqs. (1.4) and (1.9) coincide. Notice, in fact,
that by going from the String to the Einstein frame (or vice
versa) the conformal time coordinate � is invariant. From
Eq. (1.9) one can read-off the correct normal modes to be
quantized in the string frame. We checked explicitly that
various ‘‘observables’’ (such as the mixing coefficients)
have exactly the same numerical dependence upon the
comoving momentum if they are evaluated either in the
string frame or in the Einstein frame.

The present paper is then organized as follows. In Sec. II
a class of string inspired bouncing cosmologies will be
introduced. Section III is devoted to the analysis of the
production of relic gravitons and to the different definitions
of their energy-momentum pseudotensor in the framework
of bouncing solutions. Section IV deals with the analytical
estimates of the effective barotropic indices. Section V
describes the implementation of a self-consistent (itera-
tive) scheme that allows to compute the backreaction
effects of relic gravitons. Section VI summarizes the
main lessons to be drawn from the present analysis and
contains also the concluding remarks. Finally, various
technical results that are relevant for the present investiga-
tion are reported in the appendix.

II. A CLASS OF REGULAR CURVATURE BOUNCES

Regular bouncing solutions can be obtained by means of
dilaton potentials that respect the scale-factor duality sym-
metry [10]. These potentials do not depend solely upon the
dilaton field� but rather upon the so-called shifted dilaton,
i.e. � � �� log

����������
�Gs

p
[40–42] (see also [47]) where Gs

is the determinant of the four-dimensional metric in the
string frame and in the cosmic time coordinate.

Therefore the starting point of the present analysis is a
generally covariant action supplemented by a nonlocal
dilaton potential [45,46,48]. These equations are reported
in appendix A. In particular, Eqs. (A3) and (A4) will now
be written for the case of a four-dimensional background
geometry characterized by a conformally flat Friedmann-
Robertson-Walker metric and by a homogeneous dilaton
field:5

g�� � a2������; � � ����: (2.1)

Using Eq. (2.1), the set of homogeneous equations
stemming from Eqs. (A3) and (A4) can be linearly com-
bined and the relevant set of evolution equations, in units
-3
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2‘2
P � 1, becomes

H 2 �
�02

12
	
e�a2

6
V; (2.2)

H 0 � �
�02

6
	
a2e�

6

�
V �

3

2

@V

@�

�
; (2.3)

�00 	 2H�0 � �e�a2

�
V �

1

2

@V

@�

�
; (2.4)

where the prime will denote, from now on, a derivation
with respect to the conformal time coordinate � and
H � a0=a.

By summing H 0 [from Eq. (2.3)] to 2H 2 [from
Eq. (2.2)], the right-hand side of the obtained equation
reconstructs, up to a numerical coefficient, the right-hand
side of Eq. (2.4) so that the dependence on the potential
terms may be eliminated. The remaining equation becomes
then particularly simple:

d
d�

�
a2

�
H 	

�0

2

��
� 0: (2.5)

Direct integration of Eq. (2.5) gives then:

H 	
�0

2
�



a2 ; (2.6)

where  is the integration constant. Unfortunately, in the
conformal time coordinate the integration cannot proceed
further with analytical methods. However, Eq. (2.6) can
indeed be integrated analytically by defining the new time
coordinate �, i.e.

d� �
d�

a2���
: (2.7)

Since the relation of � to cosmic time is dt � a���d�, the
relation of the cosmic time t to the �-parametrization is
simply dt � a3���d�. Equation (2.7) can then be used into
Eq. (2.6) and the result is

F 	
d�
d�
� ; (2.8)

where F � �lna�, � and its relation to H is simply H �
F =a2. By integrating once Eq. (2.8) and by naming as �1

the new integration constant the following explicit relation
between the scale factor and the dilaton field can be
obtained

a���e����=2 � e��	�1�: (2.9)

Equation (2.9) simply fixes a relationship between a���
and ����; such a relationship must hold for any potential.
Conversely, the particular form of the dilaton potential
plays a crucial role in determining the relative evolution
of the scale factor and of the dilaton whose combination
appears directly in Eq. (2.9). Finally, once the potential is
chosen, the Hamiltonian constraint of Eq. (2.2) selects the
specific value of .
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To proceed even further it is necessary to write
Eqs. (2.2), (2.3), and (2.4) in the parametrization defined
by Eq. (2.7); in doing so it is useful to notice that

H !
F

a2 ; H 0 !
1

a2

�
dF
d�
� 2F 2

�
: (2.10)

Consequently, Eqs. (2.2), (2.3), and (2.4) can be written as

F 2 �
�2

12
	
e�a6

6
V: (2.11)

dF
d�
�
e�a6

2

�
V �

1

2

@V

@�

�
; (2.12)

d�
d�
� �e�a6

�
V �

1

2

@V

@�

�
; (2.13)

where � � d�=d�. Equations (2.11) and (2.13) stem di-
rectly from Eq. (2.2) and (2.4) by using Eqs. (2.10).
Equation (2.12) follows from Eq. (2.3) by eliminating, in
the obtained expression, the dependence on F 2 through
Eq. (2.11).

The solutions of the system formed by Eqs. (2.11),
(2.12), and (2.13) can now be derived for the general class
of potentials V � �V0e

	�. In this case we have

a6e�V � �V0a
6e�		� � �V0

e��	�2��=2

a3�	�2�
;

a6e�
�
V �

1

2

@V

@�

�
�
	� 2

2
V0
e��	�2��=2

a3�	�2�
;

(2.14)

where we used that � � �� 3 lnas, as��� being the scale
factor in the string frame metric. Furthermore, bearing in
mind that the scale factor in the Einstein frame is given by
a � e�=2as, Eqs. (2.14) follow immediately from the defi-
nition of the potential in terms of �.

Equations (2.11) and (2.12) can now be combined and
the result is

dF
d�
	

3

2
�	� 2�F 2 �

	� 2

8
�2: (2.15)

On the other hand, Eq. (2.6) allows to express � in terms of
 and F , i.e.

�
2
� �F : (2.16)

Eliminating � from Eq. (2.15) through Eq. (2.16) the whole
problem can be reduced to the following equation

dF
d�
�
	� 2

2
�2 � 2F 2 � 2F 
; (2.17)

that can be easily integrated with the result that F is

F � �

2
	

���
3
p


2
tanh

�

��	 �2�

2

�
; (2.18)
-4
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FIG. 1 (color online). In the left plot the evolution of F =�b and �=�b are illustrated for different values of the parameter 	. In the
right plot the logarithm (to base 10) of the scale factor is illustrated for different values of 	.
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where 
 �
���
3
p
�	� 2� and �2 is an integration constant.

Inserting Eq. (2.18) into Eq. (2.16), the explicit form of �
turns out to be

� � 3�
���
3
p
 tanh

�

��	 �2�

2

�
: (2.19)

Equations (2.18) and (2.19) can be integrated again so
that the explicit functional dependence of the dilaton and
of the scale factor upon the time coordinate � becomes:

a��� � e��b=2e�����2�1�=2�

�
cosh


��	 �2�

2

�
1=	�2

;

(2.20)

���� � �b 	 3��
2

	� 2
ln cosh


��	 �2�

2
: (2.21)

The consistency of Eqs. (2.20) and (2.21) with the
Hamiltonian constraint (2.11) demands that the value of
 is fixed as:

32 � V0e
�	�2��be�3�	�2��1 : (2.22)

Equation (2.20) can now be inserted into Eq. (2.7) to
obtain the asymptotic relation (i.e. for �! 1) between
the � and �. This relation is logarithmic in the sense that,
up to numerical factors� ’ � ln���� (for� and � going to
�1) and � ’ ln� (for � and � going to 	1). This is
particularly appropriate for numerical purposes since, in
practice, the �-parametrization acts as a logarithmic scale
in the asymptotic regions. On the contrary, the central
region of the dynamics (i.e. � ’ �2) is described by a
linear time-scale.

To describe the features of the obtained solution let us
fix, for simplicity, �1 � �2 � 0. In short the basic feature
of the solution are the following:
(a) f

6In the present paper the natural logarithm will always be

denoted as ln while the logarithm to base 10 will be denoted as
log.
or 	> 2 the solution (2.20) and (2.21) describes a
smooth interpolation between a contracting regime
(i.e. F < 0) for �< 0 and an expanding solution,
i.e. F > 0 valid for �> 0;
083505
(b) f
-5
or 	< 2 the dynamical sequence is reversed since
the scale factor expands for �< 0 and contracts for
�> 0, as is can be argued from the specific form of
F (see Eq. (2.18));
(c) f
or 	 � 2 the solution always contract and the
bouncing behavior is not realized.
If �1 or �2 (or both) are different from zero the solutions
are not centered around � � 0 and the same discussion
applies for an appropriately translated coordinate system.

Concerning the third item of the above list, it is interest-
ing to notice that, in the case 	 � 2, the explicit solution
reads

a��� � e��b=2e��=2; ���� � 3�	�b;

32 � V0;
(2.23)

implying that F � �=2. In Fig. 1 (left panel) the evolu-
tion of ���� and F ��� is illustrated as it emerges from
Eqs. (2.18) and (2.19). The time scale is given in terms of
�b � 1=, i.e. the typical bouncing time. In the left plot,
the logarithm6 (to base 10) of the scale factor is illustrated
for the same range of 	. The initial conditions for the
solutions can be characterized in terms of � or more
precisely e�=2 that measures the initial strength of the
gauge coupling. We shall be primarily interested in the
case when the solution contracts for �< 0 and expands for
�> 0 (i.e. 	> 2). In this situation the pre-big bang initial
conditions will be reproduced since e�=2 � 1 for �!
�1. Notice that �b measures the strength of the gauge
coupling around the bounce, i.e. for � ’ 0. Of particular
interest will be the case when �b ’ 0, i.e. when strong
coupling is reached just at the bounce. It is clearly always
possible to tune�b in such a way that the gauge coupling is
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much smaller than 1 but we shall try to avoid this tuning
and examine the more realistic situation where �b ’ 0.

The �-parametrization is particularly useful for the
numerical evolution of the fluctuations and for the self-
consistent treatment of the dynamical backreaction effects.
It is sometimes practical, in a complementary perspective,
to solve for the mode functions directly in the conformal
time parametrization. As already remarked, in the confor-
mal time parametrization we cannot rely on exact solu-
tions. Therefore the idea will be to map the asymptotic
solutions in the � parametrization into asymptotic solu-
tions in the � parametrization and then solve numerically
Eqs. (2.2), (2.3), and (2.4). It is therefore necessary to
develop the numerical intuition for the evolution of the
background in the conformal time parametrization. Of
particular technical relevance is the precise mapping of
the initial conditions from the �-parametrization to the
conformal time coordinate.

To fix the ideas, consider the case 	 � 4 with the bounce
occurs around �1 � �2 � 0. In this case the mapping of
the initial conditions between the � and the � parametri-
zation can be derived from the following chain of relations
32 � V0e
2�b �

e�2�b

�2
1

; (2.24)
where the first equality is nothing but Eq. (2.22) in the case
	 � 4 (and �1 � 0). The second equality is fixed by
solving directly the Hamiltonian constraint of Eq. (2.2) in
the asymptotic regions (i.e. �! 1). Equation (2.24)
fixes the relation between the bouncing time in the
�-parametrization, i.e. �b � 1=, in terms of the bouncing
time in the �-parametrization, i.e. �1. In Fig. 2 the numeri-
cal integration of Eqs. (2.2), (2.3), and (2.4) is illustrated in
terms of the scale factor. In particular, for � <��1 the
solution is well approximated by
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FIG. 2 (color online). The evolution of the scale factor (left panel)
the right plot the analytical approximations for the evolution of th
solution.
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a��� � a�

��������
��
2�1

s
; a� � e��b=2

���������������������
2�

���
3
p
	 1����
3
p

vuut ; (2.25)

while for � >��1 the solution is well approximated by

a��� � a	

��������
�

2�1

s
; a	 � e��b=2

���������������������
2�

���
3
p
� 1����
3
p

vuut ; (2.26)

where �b is the same constant introduced in Eq. (2.21). In
the prebounce region the evolution of the dilaton can be
obtained from Eq. (2.21) by using the asymptotic relation
between � and � in the limit �! �1 and �! �1. The
result is

���� � �b �

� ���
3
p
� 1

�
ln2�

���
3
p

ln
� ���

3
p
	 1���
3
p

�

�
���
3
p

ln
�
�
�
�1

�
: (2.27)

In the intermediate region, the minimum of the scale
factor corresponds to

amin � 0:61e��b=2: (2.28)

The ‘‘width’’ of the bounce is illustrated in Fig. 2 (right
plot) and can be estimated analytically as

��
�1
� �

0:74

a2
�

e��b ;
�	
�1
�

0:74

a2
	

e��b : (2.29)

In Fig. 2 the values of � correspond to the two vertical
arrows around the origin.

By changing the various parameters it appears that both
a2H2 and �02=2 are not sensitive to the value of �b but
rather they depend on �1. In particular, it turns out that

H 2 ’
0:61

�2
1

;
�02

2
’

7:5

�2
1

: (2.30)
−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.5
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4

τ /τ1

a
(τ

)

Eq. (2.33)

Eq. (2.34)

is illustrated for different initial values of the gauge coupling. In
e scale factor (dashed lines) are compared with the numerical
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In the case 	 � 2 the solution can be expressed exactly
also in the conformal time parametrization. Recalling
Eq. (2.7) we obtain that

� � �
1


ln����; a��� � e��b=2

����������
��
p

;

���� � �b � 3 ln����:
(2.31)

Thus, unlike the case 	> 3 the solution with 	 � 2 is
singular in the conformal time parametrization.

The � parametrization has one more important feature
that has been already implicitly treated in Eq. (2.10). While
the sign of H and F is preserved by the mapping �! �,
the sign of H 0 is, in general, different from the sign of F ,
�. The simplest way of realizing this aspect is to notice
that, from Eqs. (2.7) and (2.10) we can write

F � a2H ;
@F
@�
� a4�H 0 	 2H 2�: (2.32)

Consider now the simple case of a radiation-dominated
Universe. In this case a��� � ��	 2�1�=�1 for � � ��1.
Consequently, from Eq. (2.32), H and F will have the
same sign but F ;� will be always positive while H 0 �
�1=��	 2�1�

2 will always be negative. The cure for this
type of problem is very simple. The invariant quantities
(like for instance) the Ricci scalar are always the same in
both coordinate systems. So, for instance, in a radiation-
dominated Universe the background Ricci scalar, i.e. R is
always zero both in the � and in the � parametrizations. In
fact,

R � �
6

a2 �H
2 	H 0� � �

6

a6

�
@F
@�
�F 2

�
; (2.33)

where the second equality follows by using Eq. (2.10).
Now, it is easy to show that, for a radiation-dominated
Universe, the evolution equation obeyed by F is exactly
F ;� � F 2.

It is appropriate to remark at this point that the bouncing
solutions obtained here in the framework of the low-energy
string effective action differ from the ones derived in the
presence of spatial curvature and in a general relativistic
context. For instance in [49,50] (see also [51,52] and
references therein) spatially closed models driven by a
massive scalar were studied. As anticipated, in this frame-
work the dynamical sequence of events differs from the
one discussed here. In [49,50] the Universe first deflates,
then bounces and finally inflates.7 In spite of this statement,
the treatment the dynamical backreaction of relic gravitons
in closed bounces can be developed by following the same
methods discussed here.
7This class of closed bounces has a long history. For instance
in [53,54] useful analytical solutions were derived and exploited.
In connection with this problem see also [55–57].
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III. ENERGY-MOMENTUM PSEUDOTENSOR(S)

A. General considerations

Recalling Eq. (1.1), the quadratic action for hij can be
obtained by perturbing Eq. (A1) to second-order in the
amplitude of the tensor fluctuations of the metric. Some
relevant expressions can be found in the appendix B. Up to
total derivatives, the result can be written as

��2�t S � Sgw �
1

8‘2
P

Z
d3xd�

�������
�g

p
@	h

j
i@
h

i
jg
	
; (3.1)

where g	
 � a2����	
 and �	
 is the Minkowski metric.
As discussed in connection with Eq. (1.1), the two

polarizations of the graviton can be chosen to be h1
1 �

�h2
2 � h� and h2

1 � h1
2 � h�. Furthermore recalling the

notations of Eq. (1.5) and (3.1) becomes, for a single tensor
polarization

Sgw �
1

2

Z
d3xd�

�������
�g

p
@	h@
hg

	
; (3.2)

Using the parametrization defined in Eq. (2.7) and (3.2) can
be also written as

Sgw �
1

2

Z
d3xd�

��
@h
@�

�
2
� a4���@mh@mh

�
: (3.3)

The associated canonical momentum, i.e. � � @�h allows
one to obtain the Hamiltonian of the tensor modes, i.e.

Hgw��� �
1

2

Z
d3x��2 	 a4@mh@

mh
: (3.4)

By promoting the classical fields to quantum mechanical
operators we have that8

ĥ� ~x; �� �
1

2�2��3=2

Z
d3k�ĥ ~k���e

�i ~k� ~x 	 ĥy~k ���e
i ~k� ~x
;

�̂� ~x; �� �
1

2�2��3=2

Z
d3k��̂ ~k���e

�i ~k� ~x 	 �̂y
~k
���ei ~k� ~x
:

(3.5)

In the Heisenberg representation the evolution of the field
operators can be written as

ĥ ~k��� � â ~k��i�Fk��� 	 â
y

� ~k
��i�Fk����; (3.6)

�̂ ~k��� � â ~k��i�G~k��� 	 â
y

� ~k
��i�Gk����; (3.7)

where â ~k��i� and â
� ~k��i� annihilate the vacuum for �i !

�1. The mode functions Fk and Gk now obey

d2Fk
d�2

	�2Fk � 0; Gk �
dFk
d�

; (3.8)

where � � ka2���.
8Notice that, within our set of conventions, ĥy
� ~k
� ĥ ~k and

�̂y

� ~k
� �̂ ~k.
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B. Mixing coefficients

In the short wavelength limit, i.e. kj�j> 1 the mode
function Fk��� has an oscillating behavior. This regime
characterizes the asymptotics of the evolution of the evo-
lution of the mode functions. Initially, for �! �1 the
approximate solution of Eq. (3.8) is simply given by

Fk��� �
1�������
2�
p e�i

R
�d�;

Gk��� � �
1�������
2�
p �F 	 i�
e�i

R
�d�:

(3.9)

In the limit �! 	1 the solution can be expressed by
means of two mixing coefficients c	�k� and c��k�, i.e.

Fk��� �
1�������
2�
p �c	�k�e

�i
R

�d� 	 c��k�e
i
R

�d�
;

Gk��� �
1�������
2�
p ���F 	 i��c	�k�e

�i
R

�d�

	 �i��F �c��k�e
i
R

�d�
: (3.10)

In the long wavelength limit, i.e. kj�j< 1 the approximate
solution of Eq. (3.8) across the bounce is even simpler and
it is given by

Fk � Ak 	 Bk�; Gk � Bk: (3.11)

It is relevant to remark here that the condition kj�j ’ 1
reads, in the �-parametrization,��������Z �d�

��������’ 1: (3.12)

Because of the presence of the absolute values, there will
be two distinct moments, in the dynamical evolution,
where the condition kj�j � 1 is verified. Before the
bounce, i.e. for �< 0, for a given mode k the condition
�k���� ’ 1 will define the time of ‘‘exit’’ in the � pa-
rametrization. The notation ���� simply means that the
specific relation between � and � has to be derived from
Eq. (2.7) by using the appropriate expression of the scale
factor. After the bounce, i.e. for �> 0, the condition
k���� ’ 1 will define the time of ‘‘reentry’’ in the
�-parametrization.

Defining conventionally the typical time scale of the
bounce as �b � 1=, consider the expression of the scale
factor given in Eq. (2.20). In units of bouncing times the
exit and reentry occur, approximately, for

�ex

�b
� �

1���
3
p
	 1

ln
� ���

3
p
	 1

�
e�b 22=�	�2�

�
; (3.13)

�re

�b
�

1���
3
p
� 1

ln
� ���

3
p
� 1

�
e�b 22=�	�2�

�
; (3.14)

where we defined � � k�b, i.e. the wave number in units
of inverse bounce time. Equations (3.13) and (3.14) can be
083505
easily derived from Eq. (3.12) by using the explicit ex-
pressions of a��� given in Eq. (2.20) evaluated, respec-
tively, in the limits�<��b and�>�b. Equations (3.13)
and (3.14) are derived by fixing �1 � �2 � 0 in Eq. (2.20)
and by using Eq. (2.7). Moreover, because of the consid-
erations elaborated in the previous section, the expressions
given in Eqs. (3.13) and (3.14) hold for 	> 2.

For modes � < 1, the three solutions given in Eqs. (3.9),
(3.10), and (3.11) can be appropriately matched in such a
way that the field operators are continuous function of �.
This procedure leads to the determination of the coeffi-
cients Ak, Bk

Ak �
1�����������

2�ex

p e�ik�ex�1	 �F ex 	 i�ex��ex
;

Bk � �
1�����������

2�ex

p e�ik�ex�F ex 	 i�ex�;

(3.15)

and, ultimately, of the mixing coefficients c�k�:

c��k� � �
i

2
����������������
�ex�re

p e�ik��re	�ex���F re �F ex�

	 i��re ��ex� � �F re 	 i�re��F ex 	 i�ex�

� ��re � �ex�
; (3.16)

c	�k� � �
i

2
����������������
�ex�re

p e�ik��ex��re���F ex �F re�

	 i��re 	�ex� 	 �F re � i�re��F ex 	 i�ex�

� ��re � �ex�
: (3.17)

In Eqs. (3.15), (3.16), and (3.17), the obvious notations
�ex � ���ex�, F ex � F ��ex� (and similarly for �re and
F re) have been employed. Equations (3.16) and (3.17)
imply that jc	�k�j2 � jc��k�j2 � 1 which is a simple con-
sequence of the unitary evolution. For � > 1 the mixing
coefficient is exponentially suppressed. To assess accu-
rately the form of exponential suppression, a numerical
treatment is necessary. The strategy here is to integrate
numerically Eqs. (3.8) with initial conditions given by
Eq. (3.9) and to obtain, numerically the mixing coeffi-
cients, i.e.

jc	�k�j2 � jc��k�j2 � i�F�k���Gk��� � Fk���G�k���
;

(3.18)

jc	�k�j
2 	 jc��k�j

2 �
1

�
fjGk���j

2 	 �F 2 	�2�jFk���j
2

	F �F�k���Gk��� 	 Fk���G
�
k���
g:

(3.19)

For the numerical consistency of the whole approach, it
must be true for each specific numerical integration, that
the combination reported in Eq. (3.18), corresponding to
the Wronskian of the solution, is equal to 1 [since it is
-8
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chosen to be equal to one at the initial integration time, see
Eq. (3.9)]. The numerical accuracy of the Wronskian nor-
malization condition is a check of the consistency of the
whole approach. Along the same lines, the combination in
Eq. (3.19) must go to a constant for �! 	1.

A set of first-order equations valid for the mixing co-
efficients will now be discussed. Defining

e � ei
R

�d�; (3.20)

it is possible to find that the mixing coefficients obey

dc	
d�

�
1

2

d ln�

d�
e2
	c�;

dc�
d�
�

1

2

d ln�

d�
e2
�c	:

(3.21)

Equation (3.21) was derived, in a related context, in
Ref. [16]. Since c	�k� and c��k� are two complex quanti-
ties subjected to the condition jc	�k�j2 � jc��k�j2 � 1,
they correspond, overall to three real variables that can
be chosen to be

nk � jc��k�j2;

pk � c	�k�c
�
��k�e

2
� 	 c��k�c

�
	�k�e

2
	;

qk � i�c	�k�c
�
��k�e

2
� � c

�
	�k�c��k�e

2
	
:

(3.22)

The quantities nk, pk and qk obey the following set of
equations

dnk
d�
� Fpk; (3.23)

dpk
d�
� 2F �1	 2nk� � 2�qk; (3.24)

dqk
d�
� 2�pk: (3.25)
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FIG. 3 (color online). In the plot at the left, the numerical result
compared with the analytical expectation (thin lines) for different
evaluation of the mixing coefficients reported for �� 1 [see Eqs. (
corresponding function is illustrated as a function of � in units o
corresponds to the case 	 � 4, �b � 0 and �1 � �2 � 0.
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The initial conditions should be such that, initially,
c	�k� � 1 and c� � 0, i.e.

n k��i� � 0; pk��i� � 0; qk��i� � 0: (3.26)

Now the analytical estimates will be corroborated by nu-
merical integration. One of the pleasant features of the
�-parametrization is that the spectrum of the canonical
momenta is strictly constant in the long wavelength limit.
The spectrum of canonical momenta is the Fourier trans-
form of the two-point correlation function of �̂� ~x; ��, i.e.

h�̂� ~x; ���̂� ~y; ��i �
Z
d lnkj���k;��j

2 sinkr
kr

; (3.27)

where

j���k;��j2 �
k3

2�2 jGk���j2: (3.28)

Equations (3.27) and (3.28) can be obtained by using
Eqs. (3.5) together with Eqs. (3.6) and (3.7). When per-
forming the appropriate quantum mechanical expectation
values (in the Heisenberg representation) it should be
recalled that hâ ~kâ

y
~pi � ��3�� ~k� ~p�.

Consequently, from Eq. (3.11) and from the second
relation reported in Eq. (3.15) we get

���k;�� �
k3=2

2�

�����������������������
F 2

ex 	�2
ex

�ex

s
; (3.29)

where the quantities at the right hand side are fully deter-
mined analytically by using Eqs. (3.13) and (3.15) and by
recalling Eq. (2.18). In Fig. 3 (left panel), the analytical
expectation given by Eq. (3.29) is compared with the
numerical result obtained by integrating Eqs. (3.8) with
initial conditions dictated by Eq. (3.10). In Fig. 3 (plot at
the right) the numerical result for the integration of
Eqs. (3.8) with initial conditions dictated by Eq. (3.10) is
5 10 15 20 25 30
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lo
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+
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) κ =10−2
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   log(|c+|2 − |c−|2)

of the spectrum of the canonical momenta (thick lines), �� is
values of the wave numbers. In the right plot, the numerical

3.18) and (3.19)]. In both plots the logarithm (to base 10) of the
f bouncing time �b. The background used for this integration
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reported in terms of the mixing coefficients. We checked
that, within the accuracy of the algorithm, the system of
Eqs. (3.23), (3.24), and (3.25) with initial conditions given
by Eq. (3.26) reproduces the same asymptotic results for
the mixing coefficients. From the analytical estimate the
spectrum of the mixing coefficients, in the limit �� �b,
leads to

jc	�k�j
2 	 jc��k�j

2 ’ 11
4 	

25
16ln

2� (3.30)

that agrees with the explicit numerical calculation of the
same quantity reported in Fig. 3. This statement can be
explicitly verified by inserting different values of � and by
comparing the obtained results with numerical values il-
lustrated in the right plot of Fig. 3. For instance, for � �
10�2 we get, from Eq. (3.30), log�jc	�k�j2 	 jc��k�j2
 ’
1:55, for �� 10�5 we get log�jc	�k�j

2 	 jc��k�j
2
 ’ 2:13

and so on.
While the right plot of Fig. 3 nicely illustrates the case

�� 1, Fig. 4 deals with the case � ’ 1. In this regime, the
mixing coefficient c��k� is known to be exponentially
suppressed. It is clear that from the plot at the right that
as � approaches 1 the mixing is suppressed in such a way
that for �� 1 we have that �jc	�k�j2 	 jc��k�j2� ’
�jc	�k�j

2 � jc��k�j
2� implying that jc��k�j2 ’ 0.

A relevant implication of the results reported so far is
that since the spectrum of the mixing coefficients is loga-
rithmically increasing with the wave number (for � �
k�b < 1), the spectra of the field operators i.e. �h ’
k3=2jFk���j (related to the Fourier transform of the two-
point function at equal times) will be violet (up to loga-
rithmic corrections). By parametrizing the spectrum as
�h ’ k

�nt�1�=2 we have, in the example discussed so far,
nt � 4 (up to logarithmic corrections). Moreover, since the
spectrum of the mixing coefficients increases with fre-
quency it is plausible to expect that the energy spectrum
will be even steeper as a function of the wave number k.
Consequently, the energy spectrum will be convergent in
the infrared. In the ultraviolet, the maximally amplified �,
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FIG. 4 (color online). The suppression of the mixing coefficients i
when � increases from � � 1 to � > 1, jc��k�j2 ! 0. The backgro
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i.e. �� 1 will give a natural ultraviolet cutoff of the energy
density when the (initial) zero-point energy is appropri-
ately subtracted.

It is finally appropriate to notice that the calculation of
the mixing coefficients can be conducted also in the string
frame. In this case the relevant action will be the one
defined in Eq. (1.9). The numerical values of the mixing
coefficients as well as their dependence upon the comoving
wave number turn out to be exactly the same.

C. Energy and pressure densities of relic gravitons

Different possibilities for assigning the energy and pres-
sure densities of the relic gravitons will now be examined.
The first strategy is to compute the second-order correc-
tions to the Einstein tensor G�

� that appears in Eq. (A3).
The details of the calculation are reported in the appendix
and the main result for the components of the energy-
momentum pseudotensor can be expressed, in the confor-
mal time parametrization, as follows:

T 0
0 �

1

a2‘2
P

�
Hh0k‘h

k‘ 	
1

8
�@mhk‘@mhk‘ 	 h0k‘h

k‘0�

�
;

(3.31)

T j
i �

T

3
�ji 	�j

i ; (3.32)

where

T �
1

a2‘2
P

�
5

8
h0k‘h

k‘0 �
7

8
@mhk‘@

mhk‘
�
; (3.33)

�j
i �

1

a2‘2
P

�
1

6

�
h0k‘h

k‘0 �
1

2
@mhk‘@mhk‘

�
�ji

	
1

2
@mh‘i@

mh‘j �
1

4
@ihk‘@

jhk‘ �
1

2
h0kih

kj0
�
;

(3.34)

with �i
i � 0. From Eqs. (3.31) and (3.33) the components
lo
g(

|c
+|

2  
+

|c
−

|2
)
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s illustrated for the regime � > 1. It is clear from both plots that
und parameters are the same as in Fig. 3.
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of the energy and pressure density can be easily obtained
since, by definition, �gw � T 0

0 and pgw � �T =3.
The components of the energy-momentum pseudotensor

given in Eqs. (3.31) and (3.32) are not covariantly con-
served. However, since the Bianchi identity r�G

�
� � 0

should be valid to all orders, we will also have that:

��2�t �r�G
�
� � � 0; (3.35)

whose explicit form is

@��
�2�
t G�

� 	 �
�2�
t ���	G

	
� 	 ���	�

�2�
t G	

� 	 �
�1�
t ���	�

�1�
t G	

�

� ��2�t �
�	G	

 � �
�	�

�2�
t G	


 � �
�1�
t �
�	�

�1�
t G	


 � 0: (3.36)

Recalling now the components of the energy-momentum
pseudotensor and the results for the fluctuations of the
Christoffel symbols (i.e. Eqs. (B3) of the appendix) we
have

@�gw

@�
	 3H ��gw 	 pgw� �

2�H 2 �H 0�

a2‘2
P

��2�t �kk0 � 0;

(3.37)

that can also be written as

@�gw

@�
	 3H ��gw 	 P gw� � 0 (3.38)

where

P gw � pgw 	
�H 2 �H 0�

3Ha2
h0k‘h

k‘: (3.39)

Equations (3.31), (3.33), and (3.39) imply that the operators
corresponding to the energy and pressure densities are, in
the �-parametrization,

�̂ gw �
1

a6
f4F �ĥ �̂	�̂ ĥ
 	 a4@mĥ@

mĥ	 �̂2g; (3.40)

p̂ gw �
1

3a6
��5�̂2 	 7a4�@mĥ��@

mĥ�
; (3.41)

P̂ gw � p̂gw 	
4

3a6

�
F �

d lnF

d�

�
��̂ ĥ	ĥ �̂
; (3.42)

where ĥ and �̂ are the canonical field operators defined in
Eq. (3.5). The averaged components of the energy-
momentum pseudotensor can be obtained by taking the
expectation values of the operators defined in Eqs. (3.40),
(3.41), and (3.42) and by recalling that the initial state is the
one annihilated by the creation and destruction operators of
Eqs. (3.6) and (3.7). The result is then expressed in terms of
the appropriate mode functions, i.e.

h�̂gwi �
1

a6

Z d3k

�2��3
f4F �Fk���G�k��� 	 F

�
k���Gk���


	�2jFk���j
2 	 jGk���j

2g; (3.43)
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hp̂gwi �
1

3a6

Z d3k

�2��3
�7�2jFk���j

2 � 5jGk���j
2
;

(3.44)

hP̂ gwi � hp̂gwi 	
4

3a6

Z d3k

�2��3

�
3F �

d lnF

d�

�
��Fk���G�k��� 	 F

�
k���Gk���
: (3.45)

It is relevant to remark here that Eq. (3.8) implies that
@�h�̂gwi 	 3F h�̂gw 	 P̂ gwi � 0. The initial conditions for
the field operators (3.6) and (3.7) for �i !�1 imply that
the contribution of the zero-point energy is given byR
�k4�=�2�2a4�d lnk (where we recalled that � � ka2).

To discard this quantity by appropriate subtraction (both
in the energy and pressure densities) amounts to neglect the
contribution of the zero-point oscillations of the vacuum.
As already mentioned, there are different ansatz for the
energy-momentum pseudotensor that have been proposed
in order to treat backreaction effects of the relic gravitons.
It is therefore appropriate to comment here about these
possibilities. By looking at the form of Eq. (3.2), the
authors of Ref. [38] (see also [39]) argued that a natural
ansatz for the energy and pressure densities of the relic
gravitons is the one we can derive from the energy-
momentum tensor of a minimally coupled scalar field for
each of the two tensor polarizations. This consideration
implies that the energy and pressure densities can be
written as

�̂ gw �
1

a6
��̂2 	 a4@mĥ@

mĥ
; (3.46)

p̂ gw �
1

a6
��̂2 �

a4

3
@mĥ@mĥ
: (3.47)

The averaged energy and pressure densities become then:

h�̂gwi �
1

a6

Z d3k

�2��3
�jGk���j

2 	�2jFk���j
2
; (3.48)

hp̂gwi �
1

a6

Z d3k

�2��3
�jGk���j2 �

�2

3
jFk���j2
: (3.49)

Equations (3.48) and (3.49) imply @�h�̂gwi 	 3F h�̂gw 	

p̂gwi � 0 provided the evolution equations of Fk and Gk

are the ones given in Eq. (3.8).
In order to keep track of the possible ambiguities related

with the definitions of the energy-momentum pseudotensor
we will first perform the calculations within the approach
defined by Eqs. (3.43), (3.44), and (3.45). Then, for each
dynamical quantity, the results will be compared with the
answers obtained using the approach defined by Eqs. (3.48)
and (3.49).
-11
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coupling at the bounce is of order 1. The initial conditions for the tensor modes are the ones dictated by quantum mechanics (see
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IV. EFFECTIVE BAROTROPIC INDICES

As a consequence of the dynamical evolution of the
background the energy and pressure densities have a steep
(violet) spectrum. Using the results of the previous section,
it appears, for instance that for k < kmax we will have,
qualitatively, that the logarithmic spectrum of the energy
density is9

a4
d�gw

d lnk
’ k4jc��k�j

2; (4.1)

where the initial zero-point energy has been already
subtracted. For k > kmax the mixing coefficient is not en-
hanced logarithmically, but rather exponentially sup-
pressed (see Fig. 4 where this aspect is numerically
illustrated). Consequently it is plausible that the integrals
appearing in the averaged energies and pressure densities
are dominated by the modes that are maximally amplified,
i.e. � ’ �max. Since �max ’ 1, kmax � 1=�b (see Fig. 4).
The direct calculation supports this view since integrals of
the energy density can be performed numerically. Let us
then define, for practical reasons,

a6�gw �
Z kmax

A1;2�k;��d lnk; (4.2)

where the indices 1 and 2 refer to the two different pa-
rametrizations of the energy density of the relic gravitons
discussed, respectively, in Eqs. (3.43) and (3.48). In Fig. 5
(left plot) the numerical evaluation of �gw is reported. The
initial conditions for the mode functions are the ones
specified in the previous section for each k-mode. With
the dashed line the energy density discussed in Eq. (3.48) is
illustrated. With the full line the energy density of
9In the following sections, for sake of simplicity, the averages
h�̂gwi will be denoted simply by �gw and similarly for the
pressure densities.
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Eq. (3.43) is instead reported. The integral appearing in
Eq. (4.2) is indeed dominated by the upper limit. This
aspect is also illustrated, in a related perspective from the
right plot of Fig. 5 where the contribution of the integrand
for �� 1 is reported for a sample of k-modes. In practice,
it is useful to specify a given �min, i.e. the lower limit of
integration appearing in Eq. (4.2). For instance, typical
values chosen for the present examples are � � 10�12 or
� � 10�10. Since the spectrum is dominated by �max,
different choices �min produce the same results for the
integrated energy density. According to Eq. (3.13), �min

determines a minimal �ex, i.e. �ex��min�. This implies that,
to be consistent, the initial conditions for the field operators
have been given for �i � �ex��min� so that, at the initial
time, all the tensor modes were of short wavelength.

The right panel of Fig. 5 has some interesting features
that will now be discussed. Within the region limited by the
two diagonal lines the corresponding modes satisfy j��j<
1. Bearing in mind Eq. (4.2), we then have that for modes
of long wavelength a6�gw is constant. Outside the region
marked by the two diagonal lines the corresponding modes
satisfy j��j> 1. In this region a6�gw increases as a2, i.e.
�gw � a

�4.
These considerations suggest that in the short wave-

length limit the effective barotropic index is the one of
radiation, i.e. 1=3. In fact, in the short wavelength limit the
approximate evolution of the mode functions is simply
given by Eqs. (3.9) and (3.10). Inserting these solutions
either in Eqs. (3.43), (3.44), and (3.45) or in Eqs. (3.48) and
(3.49) the results are the same for both parametrizations.
In the long wavelength limit, according to Fig. 5 we
should instead have that the effective barotropic index is
close to 1.

To corroborate the numerical result, we can solve, di-
rectly in the conformal time parametrization, the evolution
equations of the mode functions in the approximate back-
ground of Eqs. (2.25) and (2.27). The (averaged) energies
-12



DYNAMICAL BACKREACTION OF RELIC GRAVITONS PHYSICAL REVIEW D 73, 083505 (2006)
and pressure densities will then be computed and the result expanded in the limit of k�� 1.
Following this procedure [see appendix B and, in particular, Eqs. (C27) and (C28)], from Eqs. (3.48) and (3.49), we have

for � <��1:

�gw ’
1

a4

Z k4

2�2 d lnk
�

1

���k��
	O�k��

�
; � <��1

pgw ’
1

a4

Z k4

2�2 d lnk
�

1

���k��
	O�k��

�
; � <��1:

(4.3)
Thus, from Eqs. (4.3) we have that, for k�� 1, pgw �
�gw. Furthermore, recalling that, for � <��1, a��� ��������
��
p

, we have as expected that �gw and pgw scale as a�6.
If the energy-momentum pseudotensor is derived from

the quadratic corrections to the Einstein tensor, the ratio
between the pressure and the energy densities becomes, for
k�� 1,

P gw

�gw
� 1�

5

3

1

�1� 4�	 4 ln2� 4 ln��k��

; (4.4)

where � is the Euler-Mascheroni constant. Notice that this
result is consistent with the one of Eqs. (4.3) with the
difference that in Eq. (4.4) logarithmic corrections do
appear.

The conclusion previously drawn in the present section,
becomes therefore physically justified. The ratio between
the energy (or pressure) density of the relic gravitons and
the energy (or pressure) density of the dilatonic sources is
constant in the long wavelength limit. Of course this con-
clusion depends on the background. While different back-
grounds may change the effective barotropic index of the
long wavelengths, the equation of state of the relic grav-
itons in the limit k� > 1 is always the one of radiation.

It is therefore instructive to compare the present case
with the one of a sudden transition from a de Sitter stage of
expansion to a radiation-dominated stage of expansion.
The typical time scale �1 will now mark the transition
from a de Sitter stage of expansion to a radiation-
dominated epoch and the analytical form of the scale factor
in the two regions is:

a��� � �
�1

�
; � � ��1; (4.5)

a��� �
�	 2�1

�1
; � >��1: (4.6)

In this case (see appendix B for further details), Eqs. (3.43),
(3.44), and (3.45) imply, for � <��1,

�gw �
1

a4

Z k4

2�2 d lnk
�

1�
7

2x2

�
; (4.7)

P gw � pgw �
1

3a4

Z k4

2�2 d lnk
�

1	
7

2x2

�
; (4.8)

where x � k�. The energy-density is positive for k�� 1
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but it becomes negative when the relevant modes become
larger than the Hubble radius, i.e. for k�� 1. The equa-
tion of state has an effective barotropic index 1=3, for
k�� 1. In the opposite limit, i.e. k�� 1 the effective
barotropic index becomes�1=3. From Eqs. (4.7) and (4.8)
the energy and pressure densities scale as a�2 and this is
consistent with Eq. (3.38) for the equation of state P gw �

��gw=3.
Consider then the case of modes k�� 1 for � >��1

i.e. during the radiation-dominated epoch. The exact re-
sults are reported in the appendix and here only the long
wavelength limit will be given. As the approach defined by
Eqs. (3.33) and (3.34) is concerned, the relevant results are
reported in Eqs. (C11), (C13), and (C14) of the appendix.
To lowest order in jk�j � 1 and jk�1j � 1 Eq. (C11) leads
to

�gw � �
5

6

1

a2

Z d lnk

2�2�4
1

k2: (4.9)

In the same limit, from Eqs. (C13) the following result

pgw �
7

6

1

a2

Z d lnk

2�2�4
1

k2; (4.10)

can be obtained. We can immediately notice that
pgw=�gw � �

7
5 , which agrees with the calculation of

[35,36]. The fact that the averaged energy density can
have negative values for a limited amount of time was
noticed, in a related context, in [58].

Finally, from Eq. (C14), to lowest order in jxj � 1 and
jx1j � 1,

P gw � pgw � �
8

9

1

a2

Z d lnk

2�2�4
1

k2: (4.11)

Therefore, putting together the results expressed in
Eqs. (4.9), (4.10), and (4.11), the following chain of equal-
ities holds

pgw � �
7
5�gw; (4.12)

P gw � �
7
5�gw 	

16
15�gw � �

1
3�gw: (4.13)

These results coincide with the ones obtained in [35,36].
Instead of using the energy-momentum pseudotensor

derived from the quadratic corrections to the Einstein
tensor, we could use the energy and pressure densities
-13
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discussed in Eqs. (3.46) and (3.47). The relevant results, in
this case, are reported in Eqs. (C16) and (C17) of the
appendix. Again, to lowest order in jxj � 1 and jx1j �
1, Eqs. (C16) and (C17) lead to

�gw �
1

2a4

Z k4

2�2 d lnk
x2

x4
1

�
1�

2

9
x2 	 . . .

�
; (4.14)

pgw � �
1

6a4

Z k4

2�2 d lnk
x2

x4
1

�
1�

6

9
x2 	 . . .

�
; (4.15)

where the ellipses stand for higher-order corrections.
While in the case of Eq. (4.9) the averaged energy density
is negative, in the case of Eq. (4.14) the averaged energy
density is positive. Moreover, from Eqs. (4.14) and (4.15)
we have that the effective equation of state in the long
wavelength limit is given by

pgw � �
1
3�gw; (4.16)

which is the same of Eq. (4.13).
Therefore, we can conclude that both in the bouncing

case and in the transition from de Sitter to radiation the two
parametrizations of the energy-momentum pseudotensor
give the same information. In particular, P gw defined by
means of the corrections to the Einstein tensor obeys the
same equation of state obeyed, in the approach of
Eqs. (3.46) and (3.47) by pgw.
10It should be mentioned that an iterative approach for the
solution of the backreaction problems has been also invoked by
the authors of Ref. [59].
V. ITERATIVE CALCULATIONS OF
BACKREACTION EFFECTS

The evolution equations including the dynamical effects
of the produced gravitons reduce to an integro-differential
system whose numerical solution may be obtained by
means of iterative methods that we are now going to
describe and exploit. One of the important qualitative
features of the bounce solutions discussed in Sec. II was
expressed by the Eq. (2.5) whose form becomes now

d
d�

�
F 	

�
2

�
�
a6

4
��gw � pgw�; (5.1)

where with �gw and pgw we denote the averages of the
components of the energy-momentum pseudotensor of the
relic gravitons. To this equation the evolution equation for
� should be added, i.e.

d�
d�
� �e�a6

�
V �

@V

@�

�
; (5.2)

which is (formally) independent on the energy and pressure
densities of the created gravitons. The dynamical quanti-
ties appearing in Eq. (5.1) and (5.2) are subjected to the
following (generalized) Hamiltonian constraint:

F 2 �
a6

6
�gw 	

�2

12
	
e�a6

6
V; (5.3)
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that has to be satisfied along the different steps of the
numerical solution. Recalling the examples given in
Fig. 5, �gw and pgw are computed by integrating the
evolution equations of the mode functions, i.e. Eqs. (3.8).
In this sense, Eq. (5.1) is actually an integro-differential
equation whose explicit form is indeed

d
d�

�
F 	

�
2

�
�

1

4

Z kmax

B��; ��d lnk; (5.4)

where the quantity B��; �� depends on the specific form
of the energy-momentum pseudotensor. In particular, sub-
tracting Eq. (3.49) from Eq. (3.48)

B 2��; �� �
2k3

3�2 ��
2���jFk���j2 �����
: (5.5)

Similarly, taking the difference between Eq. (3.43) and
(3.44)

B 1��; �� �
2k3

3�2 f2jGk���j2 ��2���jFk���j2

	 3F �Fk����Gk��� 	 Fk���Gk����

�����
g: (5.6)

In both equations Fk��� and Gk��� satisfy Eqs. (3.8). Note
that in Eqs. (5.5) and (5.6) the zero-point energy and
pressure densities have been subtracted as discussed in
Sec. IV.

Equation (5.4) can be solved by iteration.10 In fact, from
Eq. (5.4) the following hierarchy of equations can be
deduced:

F 0��� 	
�0���

2
� 0; (5.7)

F 1��� 	
�1���

2
�

1

4

Z �
d�0

Z kmax

0
B0����

0�; �0�d lnk;

(5.8)

F 2��� 	
�2���

2
�

1

4

Z �
d�0

Z kkmax

0
B1����

0�; �0�d lnk;

(5.9)

and so on. Notice that the subscript appearing in Eqs. (5.8)
and (5.9) do not refer to the parametrization of B [as in
Eqs. (5.5) and (5.6)] but to the order of the iteration in spite
of the specific choice of B.

The subscripts appearing in the various dynamical quan-
tities of Eqs. (5.7), (5.8), and (5.9) denote the order of the
iteration. The source term appearing in the hierarchy is
computed from the previous order. So, to zeroth order, i.e.
Eq. (5.7), F 0 and �0 are simply the solutions discussed in
-14
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Sec. II. These solutions will be used to obtain numerically
the mode functions that will determine B0��; ��. To first
order, F 1 and �1 will be determined from the zeroth order
source, i.e. B0��; ��. This will lead to the first-order mode
functions allowing the quantitative determination of
B1��; �� and so on.

Based on the results of the previous section, the stron-
gest effect is expected from modes of high wave number
(i.e. small wavelength). The rationale for this expectation
is that in the long wavelength limit a6��gw � pgw�, is
smaller than the energy density of the dilaton and also
approximately vanishing. In the short wavelength limit
a6��gw � pgw� increases as a2 and it is expected to domi-
nate the background at sufficiently late times: as time goes
by more and more modes will contribute to the ultraviolet
branch of the energy spectrum. For the numerical solution
of the problem the (stiff) Rosenbrok method [60] has been
used. In Fig. 6 the backreaction effects are reported for the
case of a zeroth-order solution with 	 � 4. With the
dashed line the zeroth-order iterative solution is illustrated.
With the full line the combined effect of the first-order
iteration is illustrated. In a radiation-dominated Universe
the evolution equation obeyed by F ��� is simply given by

dF
d�
� F 2; F 2 �

a6

4
�r; (5.10)

where �r is a generic radiation fluid with pr � �r=3. As
already noticed in connection with Eq. (2.33) the first of the
two relations appearing in Eq. (5.10) implies that the Ricci
scalar vanishes in a radiation-dominated Universe. The
behavior of the solution for �� �b, illustrated by the
full lines in Fig. 6, corresponds, indeed to the one of a
radiation-dominated Universe in the � parametrization. In
this parametrization, in fact F ’ ��� ����1 and F =a is
constant. This nonstandard evolution of the scale factor
becomes more familiar by translating the result from the
�-parametrization to the � parametrization. Recalling, in
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FIG. 6 (color online). The evolution of the scale factor (left plot) a
are implemented using the Eq. (5.5). The parameters of the zeroth o
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fact, that a���2d� � d�, we do find that � ’ ��� ����1.
This occurrence implies, as expected, that a��� ’ � which
is the well known result for a radiation-dominated Universe
in the conformal time parametrization.

In Fig. 6 the backreaction effects have been imple-
mented by using Eq. (5.5) which comes from Eqs. (3.48)
and (3.49). In Fig. 7 the numerical calculation has been
instead performed by using Eq. (5.6). By comparing Fig. 6
with Fig. 7 the main visible effect is an enhanced oscillat-
ing behavior of the first-order iteration after the bounce.
However, the evolution of the scale factor and of F is
clearly the same.

The iterative method described in the present section can
be also applied in the conformal time parametrization. We
will omit here the technical details but the general idea is to
start with the asymptotic solution valid for ����1

[which is, for instance the one provided by Eqs. (2.25)
and (2.27)] and then integrate numerically both for the
background and for the fluctuations. The main technical
difference between the integration in the � and in the �
parametrization is the following. In the � parametrization
the analytical solution of Eqs. (2.18) and (2.19) can be used
in the zeroth-order iteration. In the � parametrization al-
ready the zeroth order iteration requires numerical treat-
ment. Moreover, in the � parametrization the evolution
equations for the mode functions are formally different
and are the ones reported in Eq. (C20) of the appendix B.

In Fig. 8 the integration of the iterative problem is
illustrated in the � parametrization. With the dashed line
the zeroth-order solution is reported. With the full line the
result of the first iteration is illustrated. In the left plot of
Fig. 8 the parameters are chosen to be the same ones of
Figs. 6 and 7. In the right plot the value of the gauge
coupling at the bounce is chosen to be much smaller than
1. This implies that the scale factor after the bounce is
much larger than in the case when the gauge coupling is of
order 1 at the bounce. This can be understood analytically
since the asymptotic zeroth-order solution, i.e. Eq. (2.26),
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leads to a scale factor whose absolute normalization in-
creases as the gauge coupling at the bounce diminishes. It
is evident from Fig. 8 that the first-order iteration already
leads to a scale factor that increases linearly in conformal
time. For both plots in Fig. 8 the backreaction effects have
been parametrized through the analog of Eq. (5.5), appro-
priately translated in the � parametrization.

Before closing the present section, it is appropriate to
discuss the second and higher order in the iteration scheme
presented here. The effect of the second iteration leads to
results that are typically smaller than the first iteration by a
factor 1=a�2. Since the first iteration, as numerically dem-
onstrated, leads to an expanding (radiation-dominated)
Universe the effect of the second iteration leads to a
comparatively small correction that becomes even smaller
as time goes by. Of course, this discussion holds in the case
of the class of bouncing models investigated in the present
083505
paper. Different physical situations may lead to opposite
conclusion on the validity of the iteration scheme discussed
in the present paper. We believe, however, that the iteration
scheme proposed in the present paper may be usefully
employed also in other (related) contexts.
VI. CONCLUDING REMARKS

Dynamical backreaction of relic gravitons is relevant in
different contexts, so that the nature of the induced physi-
cal effects may vary. A particularly interesting situation is
the one of bouncing solutions of pre-big bang type where
backreaction effects are known to be important already
from qualitative estimates. One of the purposes of the
present investigation is to propose a theoretical scheme
where more quantitative predictions could be derived. The
present findings are then useful for implementing a smooth
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exit from the pre-big bang phase with consequent produc-
tion of radiation. The bouncing solutions examined here
may also be viewed as a practical theoretical laboratory
where the methods for the analysis of the backreaction
effects of relic gravitons may be tested. In this respect,
the reported results suggest that the role of the produced
gravitons is crucial for determining the asymptotic state of
the solution at late times.

The strategy followed in the present analysis relies on
the interplay between analytical methods and numerical
calculations. We have been interested in situations where
the Universe undergoes an accelerated contraction before
the bounce, while, after the bounce, the zeroth-order solu-
tion exhibits a decelerated expansion. After quantizing the
tensor modes of the geometry, the initial values of the field
operators have been set well before the bounce. At that
time all the gravitons were of short-wavelengths in com-
parison with the typical time scale of the background
evolution. Then, the field operators have been evolved in
the Heisenberg representation and the mixing coefficients
have been accurately determined both analytically and
numerically. This step allowed to understand what kind
of regularization is required for the energy and pressure
densities of the produced gravitons. The second step has
been to adopt a consistent ansatz for the gravitational
energy-momentum pseudotensor. Two complementary
definitions of the energy and pressure densities of the relic
gravitons have then been scrutinized and compared both
analytically and numerically. On the basis of the reported
results, these two different approaches lead to compatible
quantitative results.

The self-consistent analysis of backreaction effects leads
naturally to an integro-differential problem. Consequently,
an iterative method for its solution has been proposed and
tested in the specific dynamical framework of bouncing
solutions that arise in the context of the low-energy string
effective action supplemented by a nonlocal dilaton poten-
tial. It turns out that the treatment both of the background
and of the tensor fluctuations becomes rather simple by
selecting a different parametrization of the time coordinate
which does not coincide with the usual conformal or
cosmic times. In this time parametrization analytical
bouncing solutions can be derived in the Einstein frame
metric.

By looking at the structure of the low-energy string
effective action, it is possible to infer that not only relic
gravitons but also other massless fields may lead to similar
effects whose analysis is certainly one of the possible
developments of future studies. In this respect, the present
investigation dealt with the minimal field content of the
model with the aim of achieving a reasonably accurate
description of the underlying physical processes. Thus,
some of the ideas discussed here will hopefully be useful
also for the description of dynamical systems with a richer
field content.
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APPENDIX A: COVARIANT EQUATIONS WITH
NONLOCAL DILATON POTENTIAL

The problem will be directly analyzed in the Einstein
frame metric where the dilaton field and the Einstein-
Hilbert term are decoupled and the relevant action is [46]

S �
Z
d4x

�������
�g
p

�
�

R

2‘2
P

	
1

2
g	
@	�@
��W���

�
;

(A1)

where

W��� � e�V�e���;

e�� � e�=2
Z
d4y�

�������
�g
p ���������������������������

g	
@	�@
�
q

�y

� ����x� ���y��: (A2)

In the following the prime denotes a derivation of the
corresponding function with respect to his own argument
(so, for instance, V0 will denote a derivation of V with
respect to e�� and so on).

The evolution equations derived from the action (A1)
are then [46]

G �
� � ‘2

P�T
�
���� 	 ~T����; g�
; (A3)

g	
r	r
�	 e
�
�
V �

1

2

@V

@�

� e�=2

� ���r�r�����������������������������
g	
@	�@
�

q I1 � V
0I2

��
� 0; (A4)

where G�
� is the Einstein tensor already introduced in

Eq. (1.2). In Eq. (A3) T����� and ~T����; g� are, respec-
tively,

T����� � @��@
���

1

2
���g

	
@	�@
�; (A5)

~T �
���; g� � e��V��� 	 �

�
�

���������������������������
g	
@	�@
�

q
e�=2I1�;

(A6)

where the induced metric ���

��� � g�� �
@��@��

g	
@	�@
�
; (A7)

has been defined. In Eqs. (A4) and (A6) the two integrals
I1 and I2 are:

I1�x� �
1

‘3
P

Z
d4y�

�������
�g
p

V 0�y����x� ���y��;

I2�x� �
1

‘3
P

Z
d4y�

�������
�g
p ���������������������������

g	
@	�@
�
q

�y�
0���x� ���y��:

(A8)
-17



MASSIMO GIOVANNINI PHYSICAL REVIEW D 73, 083505 (2006)
APPENDIX B: ENERGY-MOMENTUM
PSEUDO-TENSOR

From Eq. (1.1) we have

��1�t gij � �a
2hij; hii � @ih

i
j � 0; (B1)

where, as in the bulk of the paper, the subscript refers to the
tensor nature of the fluctuation while the superscript de-
notes the perturbative order. Equation (B1) implies that

��1�t g
ij �

hij

a2 ; ��2�t g
ij � �

hikh
kj

a2 : (B2)

Consequently, the fluctuations of the Christoffel connec-
tions to first and second order become:
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��1�t �0
ij �

1
2�h
0
ij 	 2Hhij�;

��1�t �ji0 �
1
2h
j0
i ;

��1�t �kij �
1
2�@ih

k
j 	 @jh

k
i � @

khij�;

��2�t �ji0 � �
1
2h
ikh0kj;

��2�t �kij �
1
2h
i‘�@‘hjk � @khj‘ � @jhk‘
;

(B3)
where, as in the bulk of the paper, the prime denotes a
derivation with respect to the conformal time coordinate.
The fluctuations of the various components of the Ricci
tensor to first and second order are then:
��1�t Rij �
1
2�h
00
ij 	 2Hh0ij �r

2hij
 	 �H
0 	 2H 2�hij; (B4)
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hijr2hij; (B5)
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(B6)

The Ricci scalar is zero to first order in the tensor fluctuations, i.e. ��1�t R � 0. This is due to the traceless nature of these
fluctuations. To second-order, however, ��2�t R � 0 and its form is:
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1
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�
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4
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Recalling the form of the Einstein tensor [see Eq. (1.2)],

��2�t G00 � �‘
2
PT 00 � ��2�t R00 �

1
2g00�

�2�
t R; (B8)

we obtain

‘2
PT 00 �Hh0k‘h

k‘ 	 1
8�h
0
k‘h

k‘0 	 @ihk‘@ihk‘� 	D00;

(B9)

where D00 is a total derivative, i.e.

D 00 �
1
8@‘�@ih

k‘hik � 2@kh
‘
i h

ki
 (B10)
From Eqs. (B6) and (B7) it is also possible to write:
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4
@ihk‘@ihk‘

�

	
1

a2 DR; (B11)

where Dij and DR are further total derivative
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Dij �
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Therefore, up to total derivatives, the following result
holds:

‘2
PT 00 �Hh0k‘h

k‘ 	 1
8�h
0
k‘h

k‘0 	 @ihk‘@ihk‘�; (B13)

and

‘2
PT ij �

3
8�ij�@mhk‘@

mhk‘ � h0k‘h
k‘0
 	 1

2h
k0
j h
0
ik

	 1
4@ihk‘@jh

k‘ � 1
2@kh

‘
i @
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To pass from doubly covariant indices to mixed ones, it is
useful to recall that, to second order,

��2�G�
� � ��2��g�	G�	


� ��2�g�	G�	 	 g�	��2�G�	 	 ��1�g�	��1�G�	:

(B15)

By looking at the form of the specific terms arising in the
previous equation it is clear that T 0

0 � g00T 00 and that
T j

i � gjkT ki. The expressions for T 0
0 and T j

i are the ones
reported in Eqs. (3.31) and (3.32) [see also Eqs. (3.33) and
(3.34)]. These expressions coincide with the ones obtained,
for instance, in [35,36] and are also consistent with the
ones of [33,34].
11In the bulk of the paper, for practical reasons, we dropped the
expectation values for the averaged quantities. In this appendix,
to make clear the computational procedures, the expectation
values will be restored.
APPENDIX C: ANALYTICAL ESTIMATES OF THE
EFFECTIVE BAROTROPIC INDICES

Since the Hamiltonian defined in Eq. (3.4) is time-
dependent, it is always possible to perform time-dependent
canonical transformations, leading to a different form of
the Hamiltonian that will be classically equivalent to (3.4).
This procedure correspond to drop total time derivatives
from the corresponding classical action [61].

From the action (3.3), defining the new field� � ah and
dropping a total time derivative the following Hamiltonian
can be obtained in the �-parametrization

~H gw��� �
1

2

Z
d3x��2 	 �@i��

2 � �H 2 	H 0��2
;

(C1)

where � � �0. This form of the Hamiltonian is particu-
larly convenient for the studying the time evolution of the
field operators in the conformal time parametrization. By
appropriate Fourier transforms of the field operators [see
Eq. (3.5)], the analog of Eqs. (3.6) and (3.7) are

�̂ ~k��� � b̂ ~k��i�fk��� 	 b̂
y

� ~k
��i�f

�
k���;

�̂ ~k��� � b̂ ~k��i�gk��� 	 b̂
y

� ~k
��i�g�k���;

(C2)
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where the new mode functions now obey

f00k 	
�
k2 �

a00

a

�
fk � 0; gk � f0k: (C3)

In the limit �i ! �1, the operators b̂ ~k��i� and b̂
� ~k��i�

annihilate the same initial vacuum state as the one annihi-
lated by â ~k��i� and â

� ~k��i� in the limit �i ! �1.
In this framework all the calculations discussed in the

�-parametrization can be reformulated. The expectation
values of the energy and pressure density can be computed.
For instance from Eqs. (3.31) and (3.32) we have11

h�̂gwi �
1

a4

Z d3k

�2��3
f�k2 � 7H 2�jfk���j2 	 jgk���j2

	 3H �fk���g
�
k��� 	 f

�
k���gk���
g;

hp̂gwi �
1

3a4

Z d3k

�2��3
fjfk���j

2�7k2 � 5H 2� � 5jgk���j
2

	 5H �f�k���gk��� 	 fk���g
�
k���
g:

hP̂ gwi � hp̂gwi 	
4�H 2 �H 0�

3Ha4

Z d3k

�2��3
�fk���g�k���

	 f�k���gk���
: (C4)

In similar terms, the expectation values of the energy and
pressure densities can be obtained within the approach of
Refs. [38,39].

Consider now the case of a transition from a de Sitter
stage of expansion to a radiation-dominated stage of ex-
pansion, i.e. Eqs. (4.5) and (4.6). For � � ��1,

fk��� �
1�����
2k
p

�
1�

i
x

�
e�ix;

gk��� � i

���
k
2

s �
1

x2 � 1	
i
x

�
e�ix;

(C5)

where x � k�. For � >��1 the canonical fields can be
expressed as

�̂ ~k��� � b̂ ~kFk��� 	 b̂
y

� ~k
F�k���;

�̂ ~k��� � b̂ ~kGk��� 	 b̂
y

� ~k
G�k���;

(C6)

where the mode functions are now

Fk��� �
1�����
2k
p e�i�x	2x1�; Gk��� � �i

���
k
2

s
e�i�x	2x1�:

(C7)

Since the field operators must be continuous we have
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fk���1� � c	�k�Fk���1� 	 c��k�F
�
k���1�;

~gk���1� � c	�k�Gk���1� 	 c��k�G�k���1�:
(C8)

so that c	�k� and c��k� can be determined as

c	�k� �
e2ix1�2x2

1 � 1	 2ix1�

2x2
1

; c��k� �
1

2x2
1

; (C9)

where x1 � k�1. It can be verified immediately that
jc	�k�j

2 � jc��k�j
2 � 1.

It is now instructive to consider the behavior of the
effective barotropic indices in the two regimes � <��1

and � >��1. Furthermore, in each regime, we shall be
interested in the relative weight of the short and long
wavelength modes. This analysis is useful for the compari-
son with the case of bouncing models. Since during the
de Sitter phase, H 0 �H 2, Eqs. (C4) imply that hp̂gwi �

hP̂ gwi. Furthermore, if we will have that 3h�gwi � hpgwi.
During the radiation-dominated phase, i.e. � >��1, the
short wavelength modes also obey a radiative equation of
state and the energy and pressure densities explicitly de-
pend upon the mixing coefficients, i.e.

h�̂gwi �
1

a4

Z kd3k

�2��3
�2jc��k�j

2 	 1
;

hP̂ gwi � hpgwi �
1

3a4

Z kd3k

�2��3
�2jc��k�j2 	 1
;

(C10)

where, for simplicity, the vacuum contribution has not
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been subtracted. Notice that, now (i.e. in the radiation-
dominated epoch and for k�� 1), the equality of hP̂ gwi

and hp̂gwi, is a consequence of the explicit form of the
mode functions in this regime, i.e. FkG�k 	 F

�
kGk � 0.

In the long wavelength limit, i.e. k�� 1 and during the
de Sitter phase we obtain, instead, the same expressions
reported in Eqs. (4.7) and (4.8). Consider finally the last
case, i.e. long wavelength modes during the radiation-
dominated epoch. After making use of the explicit expres-
sions of the mixing coefficients we will have, for the
averaged energy density,

h�̂gwi �
1

a4

Z kd3k

�2��3

�
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2

�
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�
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�
3

�x	 2x1�x3
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�
7�2x2
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4x4
1�x	 2x1�

2

��
;

(C11)

Consequently, to lowest order in jxj � 1 and jx1j � 1 the
averaged energy density will be

h�̂gwi � �
5

6

1

a2

Z d lnk

2�2�4
1

k2; (C12)

which is the result reported in Eq. (4.9). Along similar lines
the averaged pressure density can be obtained:
hp̂gwi �
1

3a4

Z k4d lnk
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�
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(C13)
hP̂ gwi � hp̂gwi �
8

3a4
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1 � 1�
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(C14)

implying, to lowest order in jxj � 1 and jx1j � 1,

hp̂gwi �
7

6

1

a2

Z d lnk

2�2�4
1

k2; hP̂ gwi � hp̂gwi � �
8

9

1

a2

Z d lnk

2�2�4
1

k2; (C15)

which are the results reported in Eqs. (4.10) and (4.11).
Instead of using the energy-momentum pseudotensor derived from the quadratic corrections to the Einstein tensor, we

could use the energy and pressure densities proposed in [38,39] (see also [6]). In this second case the expectation values of
the energy and pressure density become:
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h�̂gwi �
1

a4

Z k4

2�2 d lnk
�
1

2

�
2	

1

�x	 2x1�
2

�
1	

1

2x4
1

�
	 cos2�x	 x1�

�
�2x2

1 � 1�

4x4
1�x	 2x1�

2 �
1

x3
1�x	 2x1�

�

	 sin2�x	 x1�

�
�2x2

1 � 1�

2x4
1�x	 2x1�

	
1

2x3
1�x	 2x1�

2

��
; (C16)
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(C17)
If we now expand the previous expressions for jx1j � 1
and for jxj � 1 we get to the results reported in Eqs. (4.14)
and (4.15).

In the following we are going to cross-check some of the
results obtained in the case of the � parametrization but
working directly in the conformal time coordinate. It
should be clear that the specific parametrization is not
crucial to obtain a given result. However, it can happen
that, for practical reasons, a given parametrization has to be
preferred since it leads either to more transparent or to
swifter results. The idea will be here to solve the evolution
of the mode functions exactly but keeping an approximate
form of the background in the post-bounce and in the
prebounce region. In the conformal time parametrization
the action given in Eq. (1.4) reads

Sgw �
1

2

Z
d3xd�a2��@�h�2 � a2�@mh�2
; (C18)

whose associate Hamiltonian is

Hgw �
1

2

Z
d3x��2 	 a2�@mh�2
; (C19)

with canonical momentum given as � � a2h0. Therefore
in this case the mode functions obey

~f 00k 	 2H ~f0k 	 k
2 ~fk � 0; ~gk � a2 ~f0k: (C20)

Consider, for instance, the case given in Eqs. (2.25), (2.26),
and (2.27). The form of the mode functions before the
bounce (i.e. for � <��1) will then be

~fk��� �
���������
�1�
p���

2
p
a�

ei�=4H�1�0 ��x�;

~gk��� � �a2���k
�����
�1
p

ei�=4

����
�
2

r
H�1�1 ��x�;

(C21)

where, as in the previous example, x � k�; H1
��z� and

H�2�� �z� will denote, in the following, the Hankel functions
of index � and argument z [62,63]. For � > �1, recalling
Eq. (2.26), the evolution of the mode functions can be
written as:
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�����
�1
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����
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r
�c	�k�ei�=4H�1�1 �x�

	 c��k�e�i�=4H�2�1 �x�
: (C22)

It is now instructive to pretend that the analytical form of
the mode functions is unavailable in the intermediate re-
gion, i.e. ��1 < �< �1. Therefore let us try to excise a
thin region around the bounce and compute the mixing
coefficients by assuming

~f k���1� � ~Fk��1�; ~gk���1� � ~Gk��1�: (C23)

This allows to determine

c	�k� � �i
�
4
x1�H

�2�
1 �x1�H

�1�
0 �x1� 	H

�2�
0 �x1�H

�1�
1 �x1�
;

c��k� � �
�
2
x1H

�1�
0 �x1�H

�1�
1 �x1�; (C24)

Notice that from the previous formulas it is possible to
obtain, after some trivial algebra, that jc	�k�j2 �
jc��k�j2 � 1. Recalling now that [62,63]

H�1�0 �x1� � i
2

�
lnx1; H�1�1 �x1� � �

2i
�x1

(C25)

we find that for x1 � 1

c��k� � �
2

�
lnx1 (C26)

Now this result is (qualitatively) similar to the one ob-
tained, by a totally different approach, in Eqs. (3.16),
(3.17), and (3.30). By doing a more careful comparison it
is possible to show that the method discussed in Sec. III of
the present paper is the most accurate, also from a con-
ceptual point of view. However, the path followed in the
present appendix is able to reproduce the gross features of
the mixing and, therefore, can be used for semiquantitative
estimates.

It is interesting to notice that, within this approach, the
results of the effective barotropic indices (numerically
obtained in the text) can be checked. For instance, in the
approach of [38,39] the energy and pressure densities
-21
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before the bounce become, in the present example

h�̂gwi �
1

a4

Z k4

2�2 d lnk
�
�
4
��x��J1��x�

2 	 Y1��x�
2

	 J0��x�
2 	 Y0��x�

2


�
;

hp̂gwi �
1

a4

Z k4

2�2 d lnk
�
�
4
��x��J1��x�

2 	 Y1��x�
2


�
�
12
��x��J0��x�2 	 Y0��x�2


�
; (C27)

where J��z� and Y��z� are the Bessel functions of order �
083505
and argument z [62,63]. In the small argument limit, from
Eqs. (C27) we do get:

hp̂gwi ’ h�̂gwi �
1

a4

Z k4

2�2 d lnk��
1

�x
�; (C28)

which is one of the results discussed in Sec. IV. Both h�gwi

and hpgwi scale as a�6 (since a��� �
�������
��
p

) as it is con-
sistent with the equation of state h�̂gwi ’ hp̂gwi.

The same analysis can be preformed when the energy-
momentum pseudotensor is obtained from the quadratic
corrections to the Einstein tensor. The result is
h�̂gwi �
1

a4

Z k4

2�2 d lnkf��J0��x�J1��x�	Y0��x�Y1��x�
�
�
4
�J0��x�2	 J1��x�2	Y0��x�2	Y1��x�2
g;

hp̂gwi �
1

a4

Z k4

2�2 d lnkf��J0��x�J1��x�	Y0��x�Y1��x�
�
�
4
x�J0��x�2	Y0��x�2	 J1��x�2	Y1��x�2
g;

hP̂ gwi� hp̂gwi �
1

a4

Z k4

2�2 d lnk4��J0��x�J1��x�	Y0��x�Y1��x�
: (C29)

Let us now expand the previous expressions for jxj � 1. The result is:

h�̂gwi �
1

a4

Z k4

2�2 d lnk
�
�

1

�x
�1� 4�	 4 ln2� 4 ln��x��

�
;

hp̂gwi �
1

a4

Z k4

2�2 d lnk
5

3�x
;

hP̂ gwi � hp̂gwi �
1

a4

Z k4

2�2 d lnk
2

�x
�2�� 2 ln2	 2 ln��x�
:

(C30)

where � is the Euler-Mascheroni constant [62,63]. From Eqs. (C30) it is possible to obtain that in this parametrization of
the energy-momentum pseudotensor, indeed, logarithmic corrections to the effective barotropic index arise, as pointed out
in Sec. IV. From the examples reported here it is clear that also the conformal time parametrization can be employed for the
self-consistent analysis of backreaction effects. Indeed, in Sec. V, explicit numerical integrations have been reported also in
the � parametrization. It is however true that, in the context of bouncing models, the � coordinate allows to obtain the
wanted results much faster both analytically and numerically.
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