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Clustering of primordial black holes: Basic results
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We investigate the spatial clustering properties of primordial black holes (PBHs). With minimal
assumptions, we show that PBHs created in the radiation era are highly clustered. Using the peaks theory
model of bias, we compute the PBH two-point correlation function and power spectrum. For creation from
an initially adiabatic power spectrum of perturbations, the PBH power spectrum contains both isocurva-
ture and adiabatic components. The absence of observed isocurvature fluctuations today constrains the
mass range in which PBHs may serve as dark matter. We briefly discuss other consequences of PBH
clustering.
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I. INTRODUCTION

Primordial black holes (PBHs) are a unique probe
of cosmology, general relativity, and quantum gravity.
Formed by high concentrations of energy density in the
early universe, PBHs are distinguished from other (astro-
physical) black holes by not being formed through stellar
collapse. In this paper we concentrate on PBHs formed
from the direct gravitational collapse of density perturba-
tions that are of order unity on the scale of the cosmologi-
cal horizon [1,2] upon horizon entry, though there are other
mechanisms for their creation, e.g. collapse of cosmic
strings [3] or domain walls [4], or from bubble collisions
[5] in the early universe.

Measurements of the cosmic microwave background
(CMB) anisotropy [6] imply that density perturbations at
the time of decoupling are much smaller (�H � 10�5). As
such, PBH formation will be cosmologically negligible
during and beyond this era. Less constrained are the con-
ditions in the early universe before decoupling, and we
cannot preclude the existence of much larger density con-
trasts which could have formed PBHs.

The theory of inflation [7] has been successful in de-
scribing both the large-scale homogeneity of the Universe
and the formation of small-scale structure through the
creation of a spectrum of cosmological perturbations. It
predicts an era of accelerated expansion dominated by the
energy of a slowly rolling scalar field, ending in a period of
reheating where the energy density is transferred into
(more or less) the particles we observe today and the
radiation dominated epoch begins. The period of reheating
is important for PBH production in two ways. First, it is the
highest energy scale at which one would expect PBH to
take place. Gravitational collapse is inhibited by the accel-
erated expansion, and the number density of any PBHs that
do form would be drastically diluted. Second, several
models of inflation exhibit an increase in the amplitude
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of perturbations at the end of inflation (at the epoch of
reheating), which increases the probability of PBH
formation.

One topic of interest is the feasibility of PBHs as dark
matter (DM) [8]. PBHs appear to be an a priori good cold
dark matter (CDM) candidate. Formed purely by gravity,
they require no special extensions to the standard model of
particle physics (such as supersymmetry) and are predicted
on quite generic grounds to form in the early universe [2].
While the smaller masses of PBHs (compared to astro-
physical black holes) mean that Hawking radiation is non-
negligible, PBHs that are still in the present universe are
still ‘‘dark’’ like other BHs.

Because of this, there have been a number of studies of
PBHs as CDM in the literature. We can split them roughly
into three categories:

QCD PBHs.—These are PBHs formed during the QCD
phase transition, being a fraction of a solar mass [9,10].
This was initially attractive as evidence from microlensing
events suggested a population of massive compact halo
objects (MACHOs) in just this mass range. However, in
order to produce the correct �m, one needs to invoke a
‘‘blue’’ spectrum (n > 1) of perturbations, which is highly
disfavored by CMB observations. Further, the evidence
that these MACHOs compromise a substantial fraction of
DM halos is lessening [11].

‘‘Spiky’’ PBHs.—These are PBHs formed due to the
enhancement of power below a certain scale due to features
(such as spikes) in the radiation power spectrum [12–16].
Such a spiky power spectrum (a generalization of a blue
spectrum, where just the power-law slope is changed) can
be produced in inflationary models with ‘‘plateaus’’ in the
inflationary potential. PBHs created in this manner can
exist over a larger range of masses, given the increased
freedom in choosing an inflationary model. Included in this
class are PBHs created due to perturbation amplification
due to preheating [17–20].

Relic PBHs.—These are PBHs of around a Planck mass
that exist in some theories of quantum gravity as the end
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result of PBH evaporation [21–23]. As all PBHs with
initial masses less than �1015 g would have evaporated
by the present day, any model that produces a number of
light PBHs will leave behind relic PBHs.

The only limits on PBHs with masses above 1015 g
derive from the requirement that they do not overclose
the Universe (�PBH < 1), so there is a range of PBH
masses over which they may serve as DM. Knowing the
PBH abundance is necessary, but not sufficient, to fully
gauge their feasibility as DM. Also important are their
spatial clustering properties, as that too is constrained by
CMB and large-scale structure data, though to date dis-
cussions of PBH clustering have been sparse in the litera-
ture. A recent general review of PBHs can be found in [24].

A. PBH clustering

The first discussions of PBH clustering came soon after
their ‘‘discovery.’’ A theory was posited by Mészáros [25]
where galaxy formation proceeds from the fluctuations in
PBH number density. The model does not address how the
PBHs are created but assumes they are around a solar mass
and created at or before the QCD phase transition. It
claimed that for PBH fluctuations that are uncorrelated
on scales greater than the horizon scale (i.e., Poisson
fluctuations only), it would be sufficient to be able to allow
for galaxy formation. This model was refuted in [26] (and
later expanded upon in [27]) where it was pointed out that
the PBH creation process cannot create the ‘‘extra’’ density
fluctuations on superhorizon scales that was claimed.1

Kotok and Naselsky [29] posit a theory where an initial
stage (1st generation) of PBH formation leads to an early
stage of matter (PBH) domination. PBH clustering then
enhances a second stage (2nd generation) of PBH forma-
tion due to collapse in this (pressureless) era—specifically,
due to the coagulation of PBHs during matter domination.
Provided this coagulation is not complete, the remainder of
the 1st generation PBHs evaporate (thus, reheating the
Universe) leaving behind the 2nd generation of PBHs.
They claim that with a blue spectrum of initial perturba-
tions (n � 1:2), PBHs of the 2nd generation are overpro-
duced with respect to observational constraints.

While PBH reheating has been considered [20,30], it can
be shown that [31–33] the period of PBH domination
necessary would lead to the overproduction of (supersym-
metric) moduli fields and gravitinos upon their evaporation
that contradict the predictions of big bang nucleosynthesis
(BBN). While the authors of [29] seem to confuse the
distinction between radiation perturbations and PBH per-
turbations [see their Eq. (11)], we show later that PBH
merging could be a natural consequence of clustering.

Assuming PBHs comprise the bulk of the CDM,
Afshordi, McDonald, and Spergel [34] study how the dis-
1Though see [28] for a refutation of some of the refutations of
[26,27].
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creteness of their population affects the CDM power spec-
trum. They note that PBH perturbations on large scales
(superhorizon sized at creation) are a mixture of adiabatic
(as with other forms of CDM) and isocurvature (due to
Poisson fluctuations alone). Using Ly� forest observa-
tions, they use this to constrain the mass of PBHs to be
less than 104M�. They are also the first to investigate PBH
cluster dynamics; estimating the lifetime due to ‘‘evapora-
tion’’ (different from Hawking evaporation) to show that
PBH clusters with N & 3000 objects will evaporate by the
current day. We expand on this analysis later.

Results from microlensing experiments indicate a popu-
lation of MACHOs in our galaxy. A possibility is that this
population is made up of PBHs of around a half a solar
mass—the right mass range for QCD PBHs. In such a
population, gravitational attraction between PBHs would
induce the formation of PBH-PBH binaries. As such, such
objects have been studied as sources of gravitational waves
[35–38], though to date no such signals have been detected
[39].

PBHs would be the first gravitationally collapsed objects
in the Universe. As clustering is ubiquitous in other, ob-
served gravitationally collapsed systems (galaxies, clusters
of galaxies, superclusters, etc.), it will be no different for
PBHs. The aim of this work is to compute the spatial
clustering properties of PBHs and see what impact that
has for PBHs in cosmology. We will be particularly inter-
ested in the viability of PBHs as DM. In Sec. II we describe
general properties of PBHs we will use throughout the
paper. In Sec. III we derive the initial clustering properties
of PBHs after their formation, computing the PBH two-
point correlation function and power spectrum. We con-
clude in Sec. IV with a discussion of observational con-
straints and avenues for further research.

II. PBH BASICS

A black hole of mass M has a Schwarzschild radius
RS � 2GM � 2M

M2
P

. Throughout we assume that any PBHs

have negligible angular momentum and electric charge.
PBHs form from large perturbations in the radiation

density field that are able to overcome the resistance of
radiation pressure and collapse directly to black holes. For
a perturbation of a fixed comoving size, it cannot begin to
collapse until it passes within the cosmological horizon.
The size of a PBH when it forms, therefore, is related to the
horizon size when the collapsing perturbation enters the
horizon.2 In the radiation dominated regime where a / t1=2

and assuming a top-hat window function, the horizon mass
is simply

MH�t� � MP

�
t
tP

�
� �2	 105M��

�
t

1 s

�
; (1)
2Which is to be expected, being the only characteristic length
scale involved.
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3Sometimes quoted in the literature instead of 	 is � �
	=�1� 	�. In the limit where the PBH mass M � MH, the
initial �PBH=�rad � �.
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where tP is the Planck time. Assuming radiation domina-
tion, we can rewrite this in terms of temperature as

MH�T� �
�

3
���
5
p

4�3=2g1=2



��
T
MP

�
�2
MP

� 1018 g
�

T

107 GeV

�
�2
; (2)

where g
 is the effective number of relativistic degrees of
freedom.

The Hubble scale is then determined by the Friedmann
equation

H2 �
8�G

3
�: (3)

The fluctuation of the (radiation) density field is defined
as

� �
�� ��

��
(4)

and is characterized by its variance on a comoving scale �
at a time t as

�2��; t� �
V

2�2

Z
dkk2P�k�T�k; t�2jWk�k��j

2; (5)

where P�k� is the (primordial) power spectrum, Wk is the
Fourier transform of the window function, and T�k; t� is the
transfer function appropriate for the type of perturbation
(adiabatic or isocurvature). We further assume that the
perturbations are Gaussian. It is known that the perturba-
tions cannot be completely Gaussian, as that would predict
perturbations with � <�1, implying negative energy den-
sities. This non-Gaussianity is especially important in the
production of PBHs [10], as they derive from the high end
(tail) of the probability distribution. Nevertheless, we focus
here on the case of underlying Gaussian perturbations for
computational ease.

Consider a perturbation ��rH� smoothed over the co-
moving Hubble radius rH � RH=a � �aH��1. As the
underlying perturbations �k are assumed Gaussian, the
smoothed perturbation will be as well (central limit theo-
rem). As the perturbation must have enough mass to over-
come pressure, there is a threshold value �c below which a
PBH will not form. Further, the horizon sized perturbation
cannot be larger than unity, or it will pinch off and form a
separate universe [40]. Therefore the range that forms
PBHs is � 2 ��c; 1. The exact value of �c is not known
precisely. Analytically, �c � w, where w is the equation of
state parameter of the background universe defined through
p � w�. The PBH mass was then estimated to be M �
w3=2MH. Numerical simulations of PBH formation [41–
43] have shown a more complex relation, where

M � �MH��� �c�
�; (6)

in accordance with other critical phenomena, where � � 3,
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� � 0:7, and �c � 2w. The values of these parameters
vary depending on the shape of the initial perturbation
(Gaussian, polynomial, etc.). This formally allows for
PBHs of an arbitrarily small mass compared to the horizon
size, though some numerical simulations [41] have showed
that there is a minimum value of � 10�3:5MH as �! �c.
Rather than focus on one particular formula, we can en-
capsulate our uncertainty in the PBH mass-horizon mass
relation with a parameter f:

MPBH � f�w; �c; t; . . .�MH: (7)

While the study of single PBH creation is numerically
tractable, the same is not true for studying the PBH popu-
lation as a whole due to their incredible rarity. As such we
resort to analytical estimates. Given a creation threshold �c
and the value of the radiation fluctuation size at horizon
crossing �rad�rH�, the probability of forming a PBH within
a given horizon volume is simply the probability of having
a perturbation with �c < � < 1, or

	 �
Z 1

�c
�2��2

rad�rH��
�1=2 exp

�
�

�2

2�2
rad�rH�

�
d�: (8)

Introducing 
 � �c=�rad�rH� (the threshold in ‘‘sigma’’
units) in the limit where 
 � �c=��rH� � 1, the upper
limit can be taken to infinity, so that the expression can be
written in terms of the complementary error function (erfc)
as

	 � erfc
�

���
2
p

�
�

����
2

�

s
e�


2=2



: (9)

Note that this can be used to determine the initial PBH
density3

�PBH�
;M� �
�PBH

�c
� 	

�
M
MH

�
� f	 � B; (10)

where we have used nPBH � 	=VH.
Without an observed population to compare calculations

to, the value of the (physical) PBH number density varies
in the literature. While [44] did not address PBH formation
per se, knowing that PBHs form at peaks in the density
field implies

nPBH �
�n� 3�3=2

�2��263=2
�
2 � 1�e�


2=2R�3
H ; (11)

where n is the index of the power spectrum (n � 1 for a
scale-invariant spectrum). Whereas [44] use peaks in the
density field, [45] uses peaks in the metric perturbation to
compute a density which is identical to the [44] result, but
with (n� 3) replaced with (n� 1). This latter calculation
only holds for n > 1 [46]. Generically, we can write the
-3



FIG. 1. Allowed region in 
�MPBH parameter space for
PBHs, assuming f � 1. Solid curve is the upper limit on 

due to isocurvature perturbations [from Eq. (59)]. Other curves
are lower limits on 
 due to number density [Eq. (14)]: long
dashed line uses the erfc approximation; dotted line uses the
BBKS formula with n � 1; short dashed line uses the GLMS
formula with n � 1:5. Heavy lines show where PBH dark matter
is allowed by the isocurvature constraint. Shown also is the
temperature of the Universe T when PBHs form. The line at
M � M
 � 1015 g is mass below which PBHs would have
Hawking evaporated by the current day (assuming no accretion
or merging). The line at M� 3M� is the mass above which
PBHs would be confused with astrophysical BHs.
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initial PBH density as

nPBH �
N
�
�e�


2=2

VW
; (12)

where N
�
� encapsulates the nonexponential dependence
upon 
. Equivalently, the initial horizon fraction going into
PBHs is

	 � N
�
�e�

2=2: (13)

The values ofN
�
� for the different models is summarized
below:

N
�
� �

8>>><>>>:
���
2
�

q

�1 erfc approximation

1�����
2�
p �n�3

6 ��

2 � 1� BBKS

1�����
2�
p �n�1

6 ��

2 � 1� GLMS

9>>>=>>>;:
(14)

Having determined the initial PBH density, their abun-
dance at subsequent times is simple to calculate. PBHs are
nonrelativistic matter, so �PBH / a�3. Because radiation
redshifts as �rad / a�4, the PBH to radiation ratio grows
until the epoch of matter-radiation equality:

�PBH

�rad
�teq� �

B�t�
1� B�t�

�teq

t

�
1=2
: (15)

After the epoch of equality, �PBH remains constant during
matter domination up until the era of vacuum energy
domination. The condition that PBHs do not overclose
the Universe4 is �PBH�teq�< 1=2, or

B�t�<
1

2

�
t
teq

�
1=2
: (16)

Throughout, we will assume a monochromatic mass func-
tion such that �PBH � MnPBH. We can then write

B�t� � fN
e�

2=2: (17)

Figures 1–3 show the lower limit on 
 derived from the
latter equations. This exponential dependence of the PBH
abundance upon 
means we must now turn to a discussion
of the form of the underlying power spectrum P�k�.

A given mode crosses within the horizon at a time t
given by kH � a�t�H�t�. The radiation fluctuation on the
horizon scale (crossing during radiation domination) is
computed using Eq. (5)

�2
rad�rH; t� �

V

2�2

Z
dkk2Prad�k�T

2
ad�k; t�W

2
k �krH�: (18)

For adiabatic perturbations (which we are assuming for
radiation field), Tad�k; t� / k�2

H (up to horizon crossing)
and for a power-law spectrum Prad�k� / kn,
4This is also the condition that PBHs do not induce an early
matter-dominated phase.
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�2
rad�rH� / k

�n�1�
H ; (19)

where kH � 1=rH. The spectrum for n � 1 is known as the
Harrison-Zel’dovich [47,48] spectrum (also called a scale-
invariant spectrum) and corresponds to fluctuations of
different physical sizes having identical power when they
enter the horizon. Spectra with n > 1 are known as blue
spectra and correspond to models having more power at
smaller scales (larger k).

During radiation domination, the horizon mass MH /

t / a2 / k�2
H , or kH / M

�1=2
H , so that �2

rad�rH� / M
�1�n�=2
H .

During matter domination the scaling is different, MH �

�R3
H / a

�3H�3 � k�3
H , or kH / M

�1=3
H , so that �2

rad /

M�1�n�=3
H . For a pure power-law spectrum then, we can

relate the power at any earlier time to the power today:

�2�rH� � �2�H�1
0 �

�Meq

M0

�
�1�n�=3

�
MH

Meq

�
�1�n�=2

; (20)

where 0 subscripts refer to current values and eq refers to
the epoch of matter-radiation equality. From this, a value of
-4



FIG. 2. The same as Fig. 1 except with f � 0:1.
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n > 1 can produce sufficient power at small scales to
produce significant black holes. Our understanding of the
physics at these scales in the early universe is only theo-
retical, and thus there may be significant deviations from
pure power-law behavior then.

Because of quantum effects [49], a BH of mass M will
emit particles as a blackbody with temperature Th given by
FIG. 3. The same as Fig. 1 except with f � 10�3:5.
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Th�M� �
1

8�GM
�

M2
P

8�M
� 1022

�
M
1 g

�
�1

eV: (21)

As the temperature is inversely proportional to the mass,
this is unobservable for a one solar mass (and higher) BH
(Th�M�� � 62 nK) but cannot be neglected in the mass
range of PBHs. This emission also corresponds to a mass
loss for the PBH,

_M � �Lh � ��


SBT

4
h�4�R

2
s� � �

��M�

M2 ; (22)

where �
SB is the effective Stefan-Boltzmann constant and
is related to the effective number of relativistic degrees of
freedom in the emitted particles. PBHs therefore have a
finite lifetime, after which they would have emitted their
entire rest mass, given by

� �
M3

0

3��M0�
� �10�26 s�

�
M
1 g

�
3
: (23)

The variation of the parameter � with mass is not great,
changing by a factor of 10 over at least 7 decades of mass
[50]. As the lifetime scales with M3, there is a threshold
mass above which holes will not have evaporated by the
present day (t0). This threshold mass M
 is given by

M
 � �4	 1014 g�
��

��M
�

6:94	 1025 g3=s

�

	

�
t0

4:4	 107 s

��
1=3
: (24)

Given the uncertainties in � and t0, a threshold mass of
M
 � 1015 g is typically quoted in the literature.

A large enough abundance of PBHs with M � M
 will
produce a number of observable effects through their
evaporation in the current day. They would contribute to
cosmic rays [51], the gamma ray background [50,52],
511 keVemission due to positron annihilation in the galac-
tic center [53], or be the cause of short duration gamma ray
bursts [54,55]. Observations (or the lack thereof) of PBHs
evaporating today depend critically upon not only the
number density of PBHs present today nPBH�t0�, but also
upon how clustered they are within the galaxy. Assuming
an isothermal halo model, the effective number density is
�nPBH�t0� where � is the local density enhancement factor
[50–52] and ranges from 105–107.

PBHs with M<M
 would have evaporated by the
present day. The main mechanism for ‘‘observing’’ PBHs
in cosmology is through their Hawking radiation. In the
absence of a direct detection, the main utility of PBHs is to
set limits of PBH abundance at various times given a
nondetection—although PBHs also have been invoked to
explain baryogenesis [56], reionization [57], and as a
solution to the magnetic monopole problem [58,59].
-5
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Evaporating PBHs have their most dramatic effect dur-
ing the era of BBN, where Hawking radiation can alter
light element abundances [60]. Therefore, the success of
BBN implies an upper limit to the number of PBHs evap-
orating at that time.

Combining Eqs. (1), (7), and (23) gives the relation

��t� �
f3M3

P

3�

�
t
tP

�
3
; (25)

the lifetime � of a PBH created at a time t. What this allows
one to do is use information from a ‘‘late epoch’’ (time �)
to examine conditions at an ‘‘early epoch’’ (time t� �). In
the above example, �� tBBN, and the limits on initial PBH
abundance from BBN imply 	< 10�16 for MPBH between
109 g and 1015 g (see, i.e., [61]).

This relation depends critically upon the PBH mass
monotonically decreasing due to evaporation and not gain-
ing mass in any way (accretion or merging). Should this
not be the case, the lifetime � is no longer given by the
initial PBH mass, and the link between late epoch and early
epoch is broken. Instead, the energy in PBHs that would
have evaporated away can now linger for longer periods of
time. It was shown in [40] that PBHs will not appreciably
increase their mass through radiation accretion. PBH merg-
ing then would be the dominant mechanism for (signifi-
cant) mass growth in the radiation dominated epoch. Since
� / M3, the merging of two equal mass BHs will result in a
BH with a lifetime 8 times as long. If this merging can
continue, then there is a greater chance of PBHs produced
in the early universe still existing today.

Depending on the epoch of PBH formation, there is
reason to believe there would be merging occurring before,
say, the epoch of nucleosynthesis, which could skew limits
obtained from using Eq. (25). Assuming an unclustered
population, PBH binaries can form in the radiation era and
be a source of gravitational waves today [38]. Any PBH
clustering will only enhance the formation of close PBH
binaries (and possibly of larger bound structures), and
orbital decay will cause merging before evaporation can
occur.

III. BIAS MODEL

Measuring the two-point function (or its Fourier trans-
form, the power spectrum) of astrophysical objects is a
powerful tool in studying their clustering properties. The
physical interpretation of �r� is as follows: The differen-
tial probability of finding two objects (galaxies, clusters,
PBHs, etc.) in volume dV1 and dV2, a distance r apart is
given by

dP � �2�1� �r��dV1dV2: (26)

The two-point function then measures the excess probabil-
ity (over random) of finding pairs with a separation r (here
and throughout we use comoving distances). A large (posi-
tive) value of  implies a large amount of clustering
083504
(objects are preferentially close to each other), a negative
value of  implies anticlustering (objects are preferentially
far away).

It is important to note that the galaxy-galaxy correlation
function gg is not identical to the underlying mass corre-
lation function m; in other words, galaxies are not a
perfect tracer of mass. Further, different types of objects
which may act as tracers (quasar, galaxy clusters) have
different clustering properties. Measurements of  for
clusters of galaxies showed that they were more clustered
than galaxies themselves by a factor of 10. Kaiser [62]
showed that this may be explained using what is now
known as the peak-background split model of bias: as
clusters of galaxies form from higher peaks in the density
field than galaxies, it is natural that they be more clustered.
In the limit of large separation and large peaks, the bias is
given by

peak�r� �

2

�2 �r�: (27)

This can be roughly understood as follows: Split the
density field into a long wavelength and a short wavelength
component. Next, consider a peak in just the long wave-
length component (‘‘background’’); the physical density
field will consist of this component modulated by the short
wavelength portion. If the threshold for gravitational col-
lapse is close to the value of the background peak value, the
physical field will cross this threshold a number of times
in the vicinity of the peak. The regions above threshold,
therefore, are preferentially found near the background
peak.

The assumptions used follow:
PBH creation is rare.—PBH formation occurs during

radiation domination (w � 1=3); and the radiation pertur-
bations are Gaussian. At creation, there will be at most one
PBH per horizon volume and PBH formation at around the
horizon mass.

Peaks theory bias.—Since PBH formation is a threshold
process, we can use peaks theory [44] to determine the
number density and correlation statistics. While we only
consider the two-point function and power spectrum here,
all higher order correlation functions can be derived in a
similar manner.

We now derive the bias for a population of PBHs formed
at a single mass scale, compared to the underlying radia-
tion field. For the overdensities of PBHs and radiation �PBH

and �r, we define their two-point correlation functions

PBH�r� � h�PBH�x��PBH�x� r�i; (28)

rad�r� � h�rad�x��rad�x� r�i; (29)

and the bias parameter

PBH�r� � b�r�2rad�r�; (30)

where, in general, b�r� is not a constant. The averaging
-6
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done in the definition of the correlation functions includes
a window function on the scale of the horizon for smooth-
ing. Thus, the size of the fluctuations5 in either the radia-
tion and PBHs is characterized by

�2
X;0 � X�0�: (31)

From the definition of the radiation and PBH correlation
functions, this is given by

�PBH;0 � b�0��rad;0: (32)

The power spectrum P�k� is defined as

P�k� �
�
4�
V

�Z
drr2�r�

�
sin�kr�
kr

�
: (33)

As PBHs form in regions above a certain threshold
density, it is straightforward to compute the number den-
sity and bias assumming PBHs form at a single mass only.
The bias is given by an integral over a bivariate Gaussian
distribution; using the notation of Jensen and Szalay [63],
the full expression is given by

1� PBH�r� �
�

1

2
erfc

�

���
2
p

��
�2 Z 1



dy1

	
Z 1


dy2�2��

�1�1� w�r�2��1=2

	 exp
�
�
y2

1 � y
2
2 � 2y1y2w�r�

2�1� w�r�2�

�
; (34)

where w�r� � rad�r�=�
2
rad;0 is the normalized radiation

correlation function and 
 � �c=�rad;0. It is possible to
write this as a power series (the so-called tetrachoric series)
in w�r� [63],

PBH�r� �
X1
m�1

A2
m

m!
w�r�m; (35)

where the coefficients are given by

Am �
2Hm�1�


��
2
p �2�m=2����

�
p

e

2=2erfc� 
��

2
p �

; (36)

where Hn are the Hermite polynomials.
The result of Kaiser [62] is obtained by assuming

w�r� � 1 and 
� 1, so that only the first term in the
series need be used to obtain PBH�r� � 
2w�r�. Relaxing
the condition on w�r� (but not on 
), the coefficients Am !
5While the terms perturbation and fluctuation are sometimes
used interchangeably in the literature to refer to an inhomoge-
neity, we will make a distinction in the usage for radiation and
PBHs. The word perturbation typically implies smallness in the
context of (cosmological) perturbation theory, and we use it to
describe the (initial) radiation field, as they will be no larger than
order unity. As we will show, this will not be the case for PBHs,
and therefore we use the word fluctuation for their case.
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m, obtaining the result of Politzer and Wise [64],

1� PBH�r� � 1�
X1
m�1

�
m�2

m!
w�r�m � exp�
2w�r��:

(37)

As r! 0, w! 1 by definition, so that in the case of
arbitrary 
,

PBH�0� �
� ����
�
p

e

2=2erfc

�

���
2
p

��
�2 X1

m�1

�2Hm�1�

��
2
p ��2

2mm!
:

(38)

Recall that �2
PBH;0 � PBH�0�. For large 
, it follows that

�2
PBH;0 � e


2
. In other words, PBHs start with a large

fluctuation amplitude (compared to radiation) and their
evolution begins in the nonlinear regime. However, the
number density goes as e�


2=2, so the fewer PBHs are
formed, the more clustered they will be.

Note this bias is independent of the PBH mass–horizon
mass relation [Eq. (7)]. Specifically, we have computed the
correlation function of horizon sized regions that contain at
most one PBH. As such PPBH�k� will have an initial upper
cutoff at kH.

While we can compute exactly PBH from the peak-
background split model, it is customary in large-scale
structure studies to measure the power spectrum PPBH

instead. Inserting Eq. (37) into Eq. (33) we obtain the
integral expression

PPBH�k� �
4�
V

Z
drr2PBH�r�

�
sin�kr�
kr

�

�
4�
V

Z 1
rH
drr2

�
exp

�

2

�2
rad;0

rad�r�
�
� 1

�

	

�
sin�kr�
kr

�
: (39)

The lower cutoff at rH � RH=a � k�1
H , the comoving

horizon length at PBH formation, is due to the finite size of
the PBHs. This will translate into an upper cutoff in
PPBH�k� at kH. Generically, the above integral can be
done numerically, but we can say more about the nature
of the PBH fluctuations without it.

By expanding the exponential, we can rewrite Eq. (39)
as

PPBH�k� �

2

�2
rad;0

Prad�k� �
X1
m�2

4�
V

Z 1
rH
drr2

�
sin�kr�
kr

�
1

m!

	

�

2

�2
rad;0

rad�r�
�
m
: (40)

The higher order terms in the above expansion show the
nonlinear dependence of PPBH upon Prad.

Because of the discrete nature of the PBHs, the normal-
ization condition for PPBH is that as k! 0, PPBH ap-
-7



FIG. 5. The PBH power spectrum for 
 � 2:62. Dotted line is
the radiation power spectrum, consisting of a n � 1 spectrum
with COBE normalization, along with a Gaussian spike in power
at k � 1. Solid line is the PBH power spectrum; dashed line is
the quadratic estimate of the PBH power spectrum.
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proaches a spectrum for pure Poisson noise, i.e., a constant
value. This is manifest in our above expression in the first
term, where the PBH power spectrum is simply b2Prad,
with the bias b given by the Kaiser value of 
=�. We can
Taylor expand the sine term in the integrals such that
sin�kr�=�kr� ! 1, and those integrals evaluate to constants:

PPoisson �
1

V

X1
m�2

4�
m!


2m

�2m
rad;0

Z 1
rH
drr2r�r�m: (41)

The total PBH power spectrum then can be written as

PPBH�k� � PPoisson �

2

�2
rad;0

Prad�k� � PSS�k�; (42)

where

PSS�k� �
1

V

X1
l�1

X1
m�2

Z 1
rH
drr2

�
��1�l�kr�2l

�2l� 1�!

�
4�
m!

	

�

2

�2
rad;0

rad�r�
�
m

(43)

represents the small-scale power when kr is not small.
To see the behavior of PPBH at small k, we numerically

integrate Eq. (39). The underlying radiation power spec-
trum Prad is a n � 1 spectrum normalized to the four-year
Cosmic Background Explorer (COBE) value along with a
Gaussian spike at the horizon scale (the latter being nor-
malized to unity). For a fixed �c � 2=3, varying the spike
FIG. 4. The PBH power spectrum for 
 � 1:17. Dotted line is
the radiation power spectrum, consisting of a n � 1 spectrum
with COBE normalization, along with a Gaussian spike in power
at k � 1. Solid line is the PBH power spectrum; dashed line is
the quadratic estimate of the PBH power spectrum.

FIG. 6. The PBH power spectrum for 
 � 3:71. Dotted line is
the radiation power spectrum, consisting of a n � 1 spectrum
with COBE normalization, along with a Gaussian spike in power
at k � 1. Solid line is the PBH power spectrum; dashed line is
the quadratic estimate of the PBH power spectrum.
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FIG. 7. The PBH power spectrum for 
 � 8:30. Dotted line is
the radiation power spectrum, consisting of a n � 1 spectrum
with COBE normalization, along with a Gaussian spike in power
at k � 1. Solid line is the PBH power spectrum; dashed line is
the quadratic estimate of the PBH power spectrum.
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amplitude will vary the value of 
. Figures 4–8 show
PPBH�k� for four values of 
. We see that as 
 increases,
the constant (Poisson) power quickly damps out the linear
(Kaiser) term. The l � 2 terms of PSS�k� survive for inter-
FIG. 8. The PBH power spectrum for 
 � 1:17, 2.62, 3.71.

083504
mediate values of k as a small negative quadratic contri-
bution ( / �k2).

Note that the power spectrum given in Eq. (42) is the
initial spectrum immediately after PBH creation. Because
of the different k dependence of each of the terms, the
power at later times (k� kH) will not be dominated by the
Poisson term. We return to this in Sec. III C where we
compute the power at horizon crossing at later times.

From Eq. (39), we expect PPoisson � e

2
; a better fit for


 * 4 yields

PPoisson �
10

7
exp

�
3

4

2:1

�
: (44)

The power spectrum for a group of N objects randomly
distributed (with a uniform distribution) is 1=N �
�nV��1 � 	�1. Note that our above expression for
PPoisson � 	�1, indicating the PBHs are distributed as
clusters of objects with mean occupation number

Nc � PPoisson	

�
10

7
N
�
� exp

�
3

4

2:1 �

1

2

2

�
� N
�
�e


2=4: (45)
A. Adiabatic vs isocurvature

We now take an aside to further consider the nature of
the PBH fluctuations. That PBHs correspond to isocurva-
ture perturbations has been noted in the literature
[26,44,65,66], though it has not received a lot of attention
in the recent PBH publications. In models where PBHs
constitute the dark matter, it was assumed that their per-
turbations would be purely adiabatic, as with other types of
dark matter. We point out that this is not the case; a large
isocurvature component exists at shorter scales in addition
to the adiabatic component at longer scales.

To demonstrate this, assume that radiation is the only
component in the Universe; there is, therefore, no distinc-
tion between adiabatic or isocurvature type perturbations.
The radiation perturbation corresponds to a perturbation in
the spatial curvature.6 Once PBHs are created from gravi-
tational collapse, they will evolve as a matter (w � 0) field
in the Universe. As such, we can examine the fluctuations
in the PBH density. At the time of PBH creation, their
fluctuations can be classified as either adiabatic or isocur-
vature. By assumption, PBHs form from the collapse of a
density perturbation once it enters the horizon. In the
radiation dominated era, the PBH mass is close to the
horizon mass, so that at most one PBH forms per horizon
volume. Each PBH is separated by at least a horizon
distance. The population cannot have correlations on scales
6Whether the perturbation is Gaussian or non-Gaussian is
largely irrelevant at this point; perturbations of order unity
must be non-Gaussian to some degree, and we will show in
the next section that the perturbations of PBHs are generically
non-Gaussian.
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smaller than the horizon, so that the perturbations only
exist for superhorizon scales. Any superhorizon perturba-
tion can be written as a sum of adiabatic and isocurvature
modes.

Note that, in our setup, only after PBH creation does the
distinction between adiabatic and isocurvature perturba-
tions exist. We intend to prove that the PBH fluctuations
have an isocurvature component. This can be generalized
to the case where there are additional fields and the initial
perturbation is wholly adiabatic.

Isocurvature perturbations correspond to perturbations
in the local equation of state w � p=�, while adiabatic
perturbations correspond to perturbations in the local en-
ergy density, and thus the local curvature. Consider a
volume of space greater than the horizon volume at PBH
creation. The formation of PBHs cannot change the energy
density within this space: the gravitational collapse corre-
sponds to a ‘‘shuffling’’ of energy density from one form
(radiation) into another (matter). The decrement in the
radiation energy density is exactly balanced by the creation
of PBH energy density. Therefore, the curvature is un-
changed on superhorizon scales. The total perturbation
will only become adiabatic if this shuffling takes place as
to satisfy the adiabatic condition. Further, by the second
law of black hole thermodynamics, a black hole will al-
ways have a higher entropy than the material that formed it.
PBH formation thus corresponds to an increase in entropy,
and should this process occur nonuniformly, this will result
in entropy perturbations, i.e. isocurvature perturbations.

The proof that the PBH fluctuations are isocurvature,
then, derives from the fact that PBH formation is highly
nonuniform and equivalently, that PBHs are created highly
clustered, which was shown earlier in this section. Using
the notation of [7], we write the entropy perturbation as

SPBH � �PBH �
3

4
�0rad; (46)

where �0rad is the radiation perturbation after PBH forma-
tion, and �0rad � �rad. Using the parameter B from Eq. (10),
we can trivially write

�rad � �0rad � �PBH � �1� B��rad � B�rad; (47)

which allows us to relate the perturbations as

�rad � �1� B��
0
rad � B�PBH: (48)

We can use this latter equation to rewrite Eq. (46) as

SPBH � �PBH

�
1�

3

4

B
1� B

�
�

3

4

1

1� B
�rad (49)

� �PBH �
3

4
�rad; (50)

which is now a function of the initial radiation perturbation
and the (final) PBH fluctuation, and the approximation
holds as long as B� 1. While �rad < 1 by assumption,
083504
we know from Eq. (32) that �PBH typically will not be due
to clustering. We see that the entropy perturbation is sim-
ply a function of the bias parameter:

SPBH �

�
b�

3

4

�
�rad: (51)

It is apparent that the isocurvature perturbation is almost
inevitable for realistic (rare) PBH production. The bias
parameter b will be dependent on scale; in Fourier space
b is given roughly by

����������������������
PPBH=Prad

p
. For a given k, the bias is

dominated by the term domination of the power spectrum
as given in Eq. (42). At the smallest scales (close to PBH
creation scales), the bias is largest and using Eq. (37) gives
b� exp�
2=2�=�� 1. For larger scales, the linear
(Kaiser) bias gives b � 
=�. In either case, the parameters
(�; 
) would have to be finely tuned in order to produce a
purely adiabatic PBH perturbation.

We note that this mechanism for generating an isocur-
vature perturbation is independent of the process that
created the initial (adiabatic) perturbation, though we as-
sume throughout that it is done through an epoch of
cosmological inflation. This mechanism then is an excep-
tion to the generally held thought that an isocurvature
perturbation cannot be produced from single field inflation
[67]. The reason this occurs is that PBH creation (i.e.
gravitational collapse) is an inherently nonlinear and non-
perturbative process that is not bound by this restriction
from perturbation theory. PBH dark matter is not like
particulate dark matter. Further, for PBHs lighter than M

this isocurvature fluctuation is transferred to the products
of Hawking evaporation. Thus, the absence of an observed
isocurvature perturbation implies a limit on the number of
PBHs that have evaporated in the past. We plan to further
explore this topic in a future paper.

B. Gaussian vs non-Gaussian

In our derivation of the PBH number density and clus-
tering properties, we assumed the underlying radiation
perturbation was Gaussian. As PBHs form only at the
peaks of the density field, and the initial size of the fluc-
tuation is greater than unity, the PBH fluctuations cannot
be Gaussian. They appear instead to be lognormal (LN) in
character. Roughly, a LN distribution is the exponentiation
of a Gaussian distribution. The two-point correlation func-
tion of a LN field is given by [68]

1� LN�r� � exp���r��; (52)

where ��r� is the correlation function of a Gaussian field
with variance ��0� � S2. From Eq. (37), this is exactly the
correlation function for the PBH population assuming
��r� � 
2w�r� and 
� 1.

An isocurvature perturbation necessarily is defined be-
tween two components, here radiation and PBHs. While
we have been focusing on the PBHs, there is of course a
change in the radiation perturbations; the increase in PBH
-10
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density is exactly cancelled by a decrease in radiation
density. From the perspective of the radiation field, not
only is there an isocurvature component along with the
(initial) adiabatic component, but there is now a non-
Gaussian fluctuation along with the (initial) Gaussian one.

C. PBH fluctuation evolution

The evolution of the PBH population after creation is a
complex problem, outside the bounds of perturbation the-
ory due to the size of the initial PBH fluctuations, and
better addressed as a N-body problem [69]. However, we
can make a rough estimate of the power at horizon crossing
of other scales using the results from cosmological pertur-
bation theory. We can break the PBH power spectrum into
its isocurvature and adiabatic components:

PPBH�k� �
�
PPBH�k� �

9

16
Prad�k�

�
�

9

16
Prad�k�

� Piso�k� � Pad�k�: (53)

We can then write the variance at horizon crossing as

�2
PBH�rH; t� �

V

2�2

Z
dkk2�Piso�k�T

2
iso�k; t�

� Pad�k�T2
ad�k; t��W

2
k �krH�: (54)

Rather than computing this explicitly, we will note that
for power-law spectra where Piso�k� / k

niso and Pad�k� /
kn, their contributions to the variance at horizon crossing
can be written as

�2
ad�rH� � �2

ad�H
�1
0 �

�Meq

M0

�
�1�n�=3

�
MH

Meq

�
�1�n�=2

; (55)

�2
iso�rH� � �2

iso�H
�1
0 �

�Meq

M0

�
�niso�3�=3

�
MH

Meq

�
�niso�3�=2

; (56)

while the total variance is their sum:

�2 � �2
iso � �

2
ad: (57)

The condition for scale invariance is no scaling with
mass; for adiabatic perturbations this is n � 1 and for
isocurvature perturbations this is niso � �3. While the
adiabatic portion of PPBH�k� is scale invariant by assump-
tion, for scales larger than the horizon size at their creation,
the isocurvature component has a flat spectrum (niso � 0)
and diminishes at longer scales. Thus while the isocurva-
ture portion dominates initially, there is a crossover scale
where the spectrum becomes adiabatic. Given the lack of
measured isocurvature component at the time of the CMB
(upper limit on isocurvature fraction is fiso < 0:33, from
[70]), we can put a limit on the PBH population so that it
does not violate this bound. Roughly, at the scale of matter-
radiation equality (MEQ � 1048 g),

�2�rEQ� � �2
iso � �

2
ad � �2

H; (58)
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and the bound is

�2
iso�rEQ�< f2

iso�
2
H; (59)

where �H � 1:91	 10�5. To compute �2
iso�rEQ�, we as-

sume Piso�k� � PPoisson, which, as shown in Figs. 4–7, is
valid for k & kH=10. The upper limit is plotted in Figs. 1–3
for three different values of f. This constraint becomes an
upper limit on the (initial) PBH mass if it is to serve as dark
matter. For f � 1, allowed regions for PBH dark matter all
haveMPBH <M�, so that there would be no confusion with
astrophysical BHs. As we decrease f, the upper limit
increases: for f � 10�3:5 it is pushed above the confusion
limit.

IV. CONCLUSIONS

We have shown that for PBHs to serve as dark matter,
clustering constrains them to lie in a particular mass range.
Further, PBHs will preferentially be found in clusters.

As shown in the previous section, PBH fluctuations enter
the horizon with a very large amplitude (�PBH � e


2=2). It
is therefore no longer of value to treat their evolution using
linear perturbation theory, as one is able to do for other
forms of CDM. Instead, we examine the subhorizon evo-
lution of the PBH population as an N-body problem. Being
nonrelativistic, PBHs will cluster hierarchically (just as
CDM)—creating smaller bound systems that get incorpo-
rated into larger ones. The internal dynamics of these
systems are determined solely by gravitational clustering,
analogous to other gravitationally bound systems such as
star clusters and galaxies. For this, we are aided by the
work done in the context of studying more massive black
holes in globular clusters [71] and galaxies [72]. In those
cases, gravitational interactions tend to either produce
bound pairs or ejections, rather than BH coalescence [73].

What occurs in the case of PBHs depends upon how
many form in a ‘‘PBH cluster’’ and what their initial
separations are. The estimate of cluster population in
Eq. (45) is likely an overestimate since our approximation
for PBH�r� breaks down for small r. The initial separations
should be on order of the horizon size at formation, being
the only length scale involved in PBH formation. This
would seem to indicate rather compact clusters (initial
separation on order the size of the PBHs themselves),
though more work (e.g., higher order statistics, numerical
simulations) is needed to verify this.

Frequent merging due to clustering could have a pro-
found impact upon cosmology. Since their lifetime � /
M3, PBHs, due to merging, exist longer than they would
have initially. This could feasibly lead to a PBH population
in the present universe that was formed in the earliest
moments of the early universe, opening up a new and
unique observational window into that time. At the very
least, PBH merging in clusters dramatically changes the
limits on initial PBH abundance, such as those used to put
limits on models of inflation [61,74–81]. The issue of PBH
-11
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clusters and merging is discussed more fully in a compan-
ion paper [69]

Limits on the current number density of PBHs depend
critically upon how clustered PBHs are in our galaxy.
Naı̈vely, from our work in this paper, we might expect a
local clustering enhancement � � e


2=2, or � � 1022 for

 � 10. This is many orders of magnitude larger than the
factors of 107 computed in the literature. This ignores the
effect of PBH merging though; sufficient merging might
concentrate all galactic PBHs into the center SMBH. This
will have implications for models where PBHs are used to
be the ‘‘seed’’ BHs needed for the growth of SMBHs in the
centers of galaxies [82–84].

This PBH merging scenario we have discussed has other
predictions. One prediction is more gravitational wave
emission than originally assumed for a uniform PBH
population. This is due to the increased probability of
PBH binary formation and emission from resonant bound
states.

The other prediction is related to dark matter. Suppose
now that PBHs are not the only component of the dark
matter, and that there also exists a ‘‘standard’’ CDM can-
didate with adiabatic perturbations (in accordance with
CMB measurements), in which case the CDM perturbation
amplitude is related to the radiation perturbation amplitude
by �CDM � �3=4��rad.
083504
Perturbations in the radiation density can only collapse
(into PBHs) if they are of sufficient amplitude on the scale
of the horizon. Perturbations smaller than this, in accor-
dance with linear perturbation theory, will simply oscillate
but not collapse. This implies that there will be scales
slightly larger than those where PBH formation took place
where �r is below the threshold for PBH formation but still
large compared to, say, the amplitude at the time of the
CMB (10�5). There is, accordingly, a similarly large per-
turbation in the CDM density assuming adiabaticity. While
the linear growth of matter perturbations is delayed until
after matter-radiation equality, they still grow logarithmi-
cally in the radiation dominated era. This leads to the
possibility that they will become nonlinear before equality
and form bound dark matter structures along with PBHs. In
which case, one would have to include the interaction
between these two populations of primordial bound
objects.

ACKNOWLEDGMENTS

The author would like to thank Rocky Kolb, John
Carlstrom, Sean Carroll, Ilya Gruzberg, Robert Wald,
Anne Green, Scott Dodelson, Jim Fry, David Wands, and
Niayesh Afshordi for helpful discussions and feedback on
this manuscript. This work was supported in part by the
Department of Energy.
[1] Ya. B. Zel’dovich and I. D. Novikov, Sov. Astron.
Astrophys. J. 10, 602 (1967).

[2] S. W. Hawking, Mon. Not. R. Astron. Soc. 152, 75
(1971).

[3] A. Polnarev and R. Zembowicz, Phys. Rev. D 43, 1106
(1991).

[4] S. G. Rubin, M. Yu. Khlopov, and A. S. Sakharov,
Gravitation Cosmol. S6, 51 (2000).

[5] S. W. Hawking, I. G. Moss, and J. M. Stewart, Phys. Rev.
D 26, 2681 (1982).

[6] D. N. Spergel et al., Astrophys. J. Suppl. Ser. 148, 175
(2003).

[7] A. R. Liddle and D. H. Lyth, Cosmological Inflation and
Large-Scale Structure (Cambridge University Press,
Cambridge, England, 2000).

[8] C. F. Chapline, Nature (London) 253, 251 (1975).
[9] K. Ichiki, M. Orito, and T. Kajino, Astropart. Phys. 20,

499 (2004).
[10] K. Jedamzik, Phys. Rev. D 55, R5871 (1997).
[11] A. M. Green and K. Jedamzik, Astron. Astrophys. 395, 31

(2002).
[12] D. Blais, C. Kiefer, and D. Polarski, Phys. Lett. B 535, 11

(2002).
[13] D. Blais, T. Bringmann, C. Kiefer, and D. Polarski, Phys.

Rev. D 67, 024024 (2003).
[14] P. Ivanov, P. Naselsky, and I. Novikov, Phys. Rev. D 50,
7173 (1994).

[15] P. Ivanov, Phys. Rev. D 57, 7145 (1998).
[16] J. Yokoyama, Astron. Astrophys. 318, 673 (1997).
[17] B. A. Bassett and S. Tsujikawa, Phys. Rev. D 63, 123503

(2001).
[18] A. M. Green and K. A. Malik, Phys. Rev. D 64, 021301

(2001).
[19] T. Suyama, T. Tanaka, B. Bassett, and H. Kudoh, Phys.

Rev. D 71, 063507 (2005).
[20] J. Garcı́a-Bellido and A. Linde, Phys. Rev. D 57, 6075

(1998).
[21] A. Barrau, D. Blais, G. Boudoul, and D. Polarski, Ann.

Phys. (N.Y.) 13, 115 (2004).
[22] J. D. Barrow, E. J. Copeland, and A. R. Liddle, Phys. Rev.

D 46, 645 (1992).
[23] J. H. MacGibbon, Nature (London) 329, 308 (1987).
[24] B. J. Carr, astro-ph/0511743.
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